timer.c 49.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 *  linux/kernel/timer.c
 *
4
 *  Kernel internal timers, basic process system calls
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
23
#include <linux/export.h>
L
Linus Torvalds 已提交
24 25 26 27 28
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
29
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
30 31 32 33 34 35 36
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
37
#include <linux/delay.h>
38
#include <linux/tick.h>
39
#include <linux/kallsyms.h>
40
#include <linux/irq_work.h>
41
#include <linux/sched.h>
42
#include <linux/slab.h>
L
Linus Torvalds 已提交
43 44 45 46 47 48 49

#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

50 51 52
#define CREATE_TRACE_POINTS
#include <trace/events/timer.h>

T
Thomas Gleixner 已提交
53 54 55 56
u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
57 58 59 60 61 62 63 64 65 66
/*
 * per-CPU timer vector definitions:
 */
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)

67
struct tvec {
L
Linus Torvalds 已提交
68
	struct list_head vec[TVN_SIZE];
69
};
L
Linus Torvalds 已提交
70

71
struct tvec_root {
L
Linus Torvalds 已提交
72
	struct list_head vec[TVR_SIZE];
73
};
L
Linus Torvalds 已提交
74

75
struct tvec_base {
76 77
	spinlock_t lock;
	struct timer_list *running_timer;
L
Linus Torvalds 已提交
78
	unsigned long timer_jiffies;
79
	unsigned long next_timer;
80 81 82 83 84
	struct tvec_root tv1;
	struct tvec tv2;
	struct tvec tv3;
	struct tvec tv4;
	struct tvec tv5;
85
} ____cacheline_aligned;
L
Linus Torvalds 已提交
86

87
struct tvec_base boot_tvec_bases;
88
EXPORT_SYMBOL(boot_tvec_bases);
89
static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
L
Linus Torvalds 已提交
90

91
/* Functions below help us manage 'deferrable' flag */
92
static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
93
{
94
	return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
95 96
}

97
static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
98
{
99
	return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
100 101 102 103
}

static inline void timer_set_deferrable(struct timer_list *timer)
{
104
	timer->base = TBASE_MAKE_DEFERRED(timer->base);
105 106 107
}

static inline void
108
timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
109
{
110
	timer->base = (struct tvec_base *)((unsigned long)(new_base) |
111
				      tbase_get_deferrable(timer->base));
112 113
}

114 115
static unsigned long round_jiffies_common(unsigned long j, int cpu,
		bool force_up)
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
{
	int rem;
	unsigned long original = j;

	/*
	 * We don't want all cpus firing their timers at once hitting the
	 * same lock or cachelines, so we skew each extra cpu with an extra
	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
	 * already did this.
	 * The skew is done by adding 3*cpunr, then round, then subtract this
	 * extra offset again.
	 */
	j += cpu * 3;

	rem = j % HZ;

	/*
	 * If the target jiffie is just after a whole second (which can happen
	 * due to delays of the timer irq, long irq off times etc etc) then
	 * we should round down to the whole second, not up. Use 1/4th second
	 * as cutoff for this rounding as an extreme upper bound for this.
137
	 * But never round down if @force_up is set.
138
	 */
139
	if (rem < HZ/4 && !force_up) /* round down */
140 141 142 143 144 145 146 147 148 149 150
		j = j - rem;
	else /* round up */
		j = j - rem + HZ;

	/* now that we have rounded, subtract the extra skew again */
	j -= cpu * 3;

	if (j <= jiffies) /* rounding ate our timeout entirely; */
		return original;
	return j;
}
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

/**
 * __round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
 * The return value is the rounded version of the @j parameter.
 */
unsigned long __round_jiffies(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, false);
}
176 177 178 179 180 181 182
EXPORT_SYMBOL_GPL(__round_jiffies);

/**
 * __round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
183
 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
184 185 186 187 188 189 190 191 192 193 194 195
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
196
 * The return value is the rounded version of the @j parameter.
197 198 199
 */
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
200 201 202 203
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, false) - j0;
204 205 206 207 208 209 210
}
EXPORT_SYMBOL_GPL(__round_jiffies_relative);

/**
 * round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
211
 * round_jiffies() rounds an absolute time in the future (in jiffies)
212 213 214 215 216 217 218 219
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
220
 * The return value is the rounded version of the @j parameter.
221 222 223
 */
unsigned long round_jiffies(unsigned long j)
{
224
	return round_jiffies_common(j, raw_smp_processor_id(), false);
225 226 227 228 229 230 231
}
EXPORT_SYMBOL_GPL(round_jiffies);

/**
 * round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
232
 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
233 234 235 236 237 238 239 240
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
241
 * The return value is the rounded version of the @j parameter.
242 243 244 245 246 247 248
 */
unsigned long round_jiffies_relative(unsigned long j)
{
	return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_relative);

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
/**
 * __round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, true);
}
EXPORT_SYMBOL_GPL(__round_jiffies_up);

/**
 * __round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
{
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, true) - j0;
}
EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);

/**
 * round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
 * This is the same as round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up(unsigned long j)
{
	return round_jiffies_common(j, raw_smp_processor_id(), true);
}
EXPORT_SYMBOL_GPL(round_jiffies_up);

/**
 * round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
 * This is the same as round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up_relative(unsigned long j)
{
	return __round_jiffies_up_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_up_relative);

314 315
/**
 * set_timer_slack - set the allowed slack for a timer
316
 * @timer: the timer to be modified
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
 * @slack_hz: the amount of time (in jiffies) allowed for rounding
 *
 * Set the amount of time, in jiffies, that a certain timer has
 * in terms of slack. By setting this value, the timer subsystem
 * will schedule the actual timer somewhere between
 * the time mod_timer() asks for, and that time plus the slack.
 *
 * By setting the slack to -1, a percentage of the delay is used
 * instead.
 */
void set_timer_slack(struct timer_list *timer, int slack_hz)
{
	timer->slack = slack_hz;
}
EXPORT_SYMBOL_GPL(set_timer_slack);

333
static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
L
Linus Torvalds 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
{
	unsigned long expires = timer->expires;
	unsigned long idx = expires - base->timer_jiffies;
	struct list_head *vec;

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = base->tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = base->tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec = base->tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = base->tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/*
		 * Can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
	} else {
		int i;
		/* If the timeout is larger than 0xffffffff on 64-bit
		 * architectures then we use the maximum timeout:
		 */
		if (idx > 0xffffffffUL) {
			idx = 0xffffffffUL;
			expires = idx + base->timer_jiffies;
		}
		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = base->tv5.vec + i;
	}
	/*
	 * Timers are FIFO:
	 */
	list_add_tail(&timer->entry, vec);
}

375 376 377 378 379 380 381 382 383 384
#ifdef CONFIG_TIMER_STATS
void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
385 386 387 388 389

static void timer_stats_account_timer(struct timer_list *timer)
{
	unsigned int flag = 0;

390 391
	if (likely(!timer->start_site))
		return;
392 393 394 395 396 397 398 399 400
	if (unlikely(tbase_get_deferrable(timer->base)))
		flag |= TIMER_STATS_FLAG_DEFERRABLE;

	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, flag);
}

#else
static void timer_stats_account_timer(struct timer_list *timer) {}
401 402
#endif

403 404 405 406
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr timer_debug_descr;

407 408 409 410 411
static void *timer_debug_hint(void *addr)
{
	return ((struct timer_list *) addr)->function;
}

412 413 414
/*
 * fixup_init is called when:
 * - an active object is initialized
415
 */
416 417 418 419 420 421 422 423 424 425 426 427 428 429
static int timer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_init(timer, &timer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

430 431 432 433 434 435
/* Stub timer callback for improperly used timers. */
static void stub_timer(unsigned long data)
{
	WARN_ON(1);
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int timer_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The timer was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
		if (timer->entry.next == NULL &&
		    timer->entry.prev == TIMER_ENTRY_STATIC) {
			debug_object_init(timer, &timer_debug_descr);
			debug_object_activate(timer, &timer_debug_descr);
			return 0;
		} else {
459 460
			setup_timer(timer, stub_timer, 0);
			return 1;
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
		}
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int timer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_free(timer, &timer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
/*
 * fixup_assert_init is called when:
 * - an untracked/uninit-ed object is found
 */
static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
		if (timer->entry.prev == TIMER_ENTRY_STATIC) {
			/*
			 * This is not really a fixup. The timer was
			 * statically initialized. We just make sure that it
			 * is tracked in the object tracker.
			 */
			debug_object_init(timer, &timer_debug_descr);
			return 0;
		} else {
			setup_timer(timer, stub_timer, 0);
			return 1;
		}
	default:
		return 0;
	}
}

517
static struct debug_obj_descr timer_debug_descr = {
518 519 520 521 522 523
	.name			= "timer_list",
	.debug_hint		= timer_debug_hint,
	.fixup_init		= timer_fixup_init,
	.fixup_activate		= timer_fixup_activate,
	.fixup_free		= timer_fixup_free,
	.fixup_assert_init	= timer_fixup_assert_init,
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
};

static inline void debug_timer_init(struct timer_list *timer)
{
	debug_object_init(timer, &timer_debug_descr);
}

static inline void debug_timer_activate(struct timer_list *timer)
{
	debug_object_activate(timer, &timer_debug_descr);
}

static inline void debug_timer_deactivate(struct timer_list *timer)
{
	debug_object_deactivate(timer, &timer_debug_descr);
}

static inline void debug_timer_free(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}

546 547 548 549 550
static inline void debug_timer_assert_init(struct timer_list *timer)
{
	debug_object_assert_init(timer, &timer_debug_descr);
}

551 552 553
static void __init_timer(struct timer_list *timer,
			 const char *name,
			 struct lock_class_key *key);
554

555 556 557
void init_timer_on_stack_key(struct timer_list *timer,
			     const char *name,
			     struct lock_class_key *key)
558 559
{
	debug_object_init_on_stack(timer, &timer_debug_descr);
560
	__init_timer(timer, name, key);
561
}
562
EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
563 564 565 566 567 568 569 570 571 572 573

void destroy_timer_on_stack(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_timer_on_stack);

#else
static inline void debug_timer_init(struct timer_list *timer) { }
static inline void debug_timer_activate(struct timer_list *timer) { }
static inline void debug_timer_deactivate(struct timer_list *timer) { }
574
static inline void debug_timer_assert_init(struct timer_list *timer) { }
575 576
#endif

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
static inline void debug_init(struct timer_list *timer)
{
	debug_timer_init(timer);
	trace_timer_init(timer);
}

static inline void
debug_activate(struct timer_list *timer, unsigned long expires)
{
	debug_timer_activate(timer);
	trace_timer_start(timer, expires);
}

static inline void debug_deactivate(struct timer_list *timer)
{
	debug_timer_deactivate(timer);
	trace_timer_cancel(timer);
}

596 597 598 599 600
static inline void debug_assert_init(struct timer_list *timer)
{
	debug_timer_assert_init(timer);
}

601 602 603
static void __init_timer(struct timer_list *timer,
			 const char *name,
			 struct lock_class_key *key)
604 605
{
	timer->entry.next = NULL;
606
	timer->base = __raw_get_cpu_var(tvec_bases);
607
	timer->slack = -1;
608 609 610 611 612
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
613
	lockdep_init_map(&timer->lockdep_map, name, key, 0);
614
}
615

616 617 618 619 620 621 622 623 624 625 626 627 628
void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
					 const char *name,
					 struct lock_class_key *key,
					 void (*function)(unsigned long),
					 unsigned long data)
{
	timer->function = function;
	timer->data = data;
	init_timer_on_stack_key(timer, name, key);
	timer_set_deferrable(timer);
}
EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);

629
/**
R
Randy Dunlap 已提交
630
 * init_timer_key - initialize a timer
631
 * @timer: the timer to be initialized
R
Randy Dunlap 已提交
632 633 634
 * @name: name of the timer
 * @key: lockdep class key of the fake lock used for tracking timer
 *       sync lock dependencies
635
 *
R
Randy Dunlap 已提交
636
 * init_timer_key() must be done to a timer prior calling *any* of the
637 638
 * other timer functions.
 */
639 640 641
void init_timer_key(struct timer_list *timer,
		    const char *name,
		    struct lock_class_key *key)
642
{
643
	debug_init(timer);
644
	__init_timer(timer, name, key);
645
}
646
EXPORT_SYMBOL(init_timer_key);
647

648 649 650
void init_timer_deferrable_key(struct timer_list *timer,
			       const char *name,
			       struct lock_class_key *key)
651
{
652
	init_timer_key(timer, name, key);
653 654
	timer_set_deferrable(timer);
}
655
EXPORT_SYMBOL(init_timer_deferrable_key);
656

657
static inline void detach_timer(struct timer_list *timer,
658
				int clear_pending)
659 660 661
{
	struct list_head *entry = &timer->entry;

662
	debug_deactivate(timer);
663

664 665 666 667 668 669 670
	__list_del(entry->prev, entry->next);
	if (clear_pending)
		entry->next = NULL;
	entry->prev = LIST_POISON2;
}

/*
671
 * We are using hashed locking: holding per_cpu(tvec_bases).lock
672 673 674 675 676 677 678 679 680 681
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on ->tvX lists.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
682
static struct tvec_base *lock_timer_base(struct timer_list *timer,
683
					unsigned long *flags)
684
	__acquires(timer->base->lock)
685
{
686
	struct tvec_base *base;
687 688

	for (;;) {
689
		struct tvec_base *prelock_base = timer->base;
690
		base = tbase_get_base(prelock_base);
691 692
		if (likely(base != NULL)) {
			spin_lock_irqsave(&base->lock, *flags);
693
			if (likely(prelock_base == timer->base))
694 695 696 697 698 699 700 701
				return base;
			/* The timer has migrated to another CPU */
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

I
Ingo Molnar 已提交
702
static inline int
703 704
__mod_timer(struct timer_list *timer, unsigned long expires,
						bool pending_only, int pinned)
L
Linus Torvalds 已提交
705
{
706
	struct tvec_base *base, *new_base;
L
Linus Torvalds 已提交
707
	unsigned long flags;
708
	int ret = 0 , cpu;
L
Linus Torvalds 已提交
709

710
	timer_stats_timer_set_start_info(timer);
L
Linus Torvalds 已提交
711 712
	BUG_ON(!timer->function);

713 714 715 716
	base = lock_timer_base(timer, &flags);

	if (timer_pending(timer)) {
		detach_timer(timer, 0);
717 718 719
		if (timer->expires == base->next_timer &&
		    !tbase_get_deferrable(timer->base))
			base->next_timer = base->timer_jiffies;
720
		ret = 1;
I
Ingo Molnar 已提交
721 722 723
	} else {
		if (pending_only)
			goto out_unlock;
724 725
	}

726
	debug_activate(timer, expires);
727

728 729 730
	cpu = smp_processor_id();

#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
731 732
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
		cpu = get_nohz_timer_target();
733 734 735
#endif
	new_base = per_cpu(tvec_bases, cpu);

736
	if (base != new_base) {
L
Linus Torvalds 已提交
737
		/*
738 739 740 741 742
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
		 * handler yet has not finished. This also guarantees that
		 * the timer is serialized wrt itself.
L
Linus Torvalds 已提交
743
		 */
744
		if (likely(base->running_timer != timer)) {
745
			/* See the comment in lock_timer_base() */
746
			timer_set_base(timer, NULL);
747
			spin_unlock(&base->lock);
748 749
			base = new_base;
			spin_lock(&base->lock);
750
			timer_set_base(timer, base);
L
Linus Torvalds 已提交
751 752 753 754
		}
	}

	timer->expires = expires;
755 756 757
	if (time_before(timer->expires, base->next_timer) &&
	    !tbase_get_deferrable(timer->base))
		base->next_timer = timer->expires;
758
	internal_add_timer(base, timer);
I
Ingo Molnar 已提交
759 760

out_unlock:
761
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
762 763 764 765

	return ret;
}

766
/**
I
Ingo Molnar 已提交
767 768 769
 * mod_timer_pending - modify a pending timer's timeout
 * @timer: the pending timer to be modified
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
770
 *
I
Ingo Molnar 已提交
771 772 773 774
 * mod_timer_pending() is the same for pending timers as mod_timer(),
 * but will not re-activate and modify already deleted timers.
 *
 * It is useful for unserialized use of timers.
L
Linus Torvalds 已提交
775
 */
I
Ingo Molnar 已提交
776
int mod_timer_pending(struct timer_list *timer, unsigned long expires)
L
Linus Torvalds 已提交
777
{
778
	return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
779
}
I
Ingo Molnar 已提交
780
EXPORT_SYMBOL(mod_timer_pending);
L
Linus Torvalds 已提交
781

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
/*
 * Decide where to put the timer while taking the slack into account
 *
 * Algorithm:
 *   1) calculate the maximum (absolute) time
 *   2) calculate the highest bit where the expires and new max are different
 *   3) use this bit to make a mask
 *   4) use the bitmask to round down the maximum time, so that all last
 *      bits are zeros
 */
static inline
unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
{
	unsigned long expires_limit, mask;
	int bit;

798
	if (timer->slack >= 0) {
799
		expires_limit = expires + timer->slack;
800
	} else {
801 802 803 804
		long delta = expires - jiffies;

		if (delta < 256)
			return expires;
805

806
		expires_limit = expires + delta / 256;
807
	}
808 809 810 811 812 813 814 815 816 817 818 819 820
	mask = expires ^ expires_limit;
	if (mask == 0)
		return expires;

	bit = find_last_bit(&mask, BITS_PER_LONG);

	mask = (1 << bit) - 1;

	expires_limit = expires_limit & ~(mask);

	return expires_limit;
}

821
/**
L
Linus Torvalds 已提交
822 823
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
824
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
825
 *
826
 * mod_timer() is a more efficient way to update the expire field of an
L
Linus Torvalds 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
843 844
	expires = apply_slack(timer, expires);

L
Linus Torvalds 已提交
845 846 847 848 849
	/*
	 * This is a common optimization triggered by the
	 * networking code - if the timer is re-modified
	 * to be the same thing then just return:
	 */
850
	if (timer_pending(timer) && timer->expires == expires)
L
Linus Torvalds 已提交
851 852
		return 1;

853
	return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
854 855 856
}
EXPORT_SYMBOL(mod_timer);

857 858 859 860 861 862 863
/**
 * mod_timer_pinned - modify a timer's timeout
 * @timer: the timer to be modified
 * @expires: new timeout in jiffies
 *
 * mod_timer_pinned() is a way to update the expire field of an
 * active timer (if the timer is inactive it will be activated)
864 865 866 867 868 869 870
 * and to ensure that the timer is scheduled on the current CPU.
 *
 * Note that this does not prevent the timer from being migrated
 * when the current CPU goes offline.  If this is a problem for
 * you, use CPU-hotplug notifiers to handle it correctly, for
 * example, cancelling the timer when the corresponding CPU goes
 * offline.
871 872 873 874 875 876 877 878 879 880 881 882 883 884
 *
 * mod_timer_pinned(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 */
int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
{
	if (timer->expires == expires && timer_pending(timer))
		return 1;

	return __mod_timer(timer, expires, false, TIMER_PINNED);
}
EXPORT_SYMBOL(mod_timer_pinned);

I
Ingo Molnar 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
/**
 * add_timer - start a timer
 * @timer: the timer to be added
 *
 * The kernel will do a ->function(->data) callback from the
 * timer interrupt at the ->expires point in the future. The
 * current time is 'jiffies'.
 *
 * The timer's ->expires, ->function (and if the handler uses it, ->data)
 * fields must be set prior calling this function.
 *
 * Timers with an ->expires field in the past will be executed in the next
 * timer tick.
 */
void add_timer(struct timer_list *timer)
{
	BUG_ON(timer_pending(timer));
	mod_timer(timer, timer->expires);
}
EXPORT_SYMBOL(add_timer);

/**
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
	struct tvec_base *base = per_cpu(tvec_bases, cpu);
	unsigned long flags;

	timer_stats_timer_set_start_info(timer);
	BUG_ON(timer_pending(timer) || !timer->function);
	spin_lock_irqsave(&base->lock, flags);
	timer_set_base(timer, base);
922
	debug_activate(timer, timer->expires);
923 924 925
	if (time_before(timer->expires, base->next_timer) &&
	    !tbase_get_deferrable(timer->base))
		base->next_timer = timer->expires;
I
Ingo Molnar 已提交
926 927 928 929 930 931 932 933 934 935 936 937
	internal_add_timer(base, timer);
	/*
	 * Check whether the other CPU is idle and needs to be
	 * triggered to reevaluate the timer wheel when nohz is
	 * active. We are protected against the other CPU fiddling
	 * with the timer by holding the timer base lock. This also
	 * makes sure that a CPU on the way to idle can not evaluate
	 * the timer wheel.
	 */
	wake_up_idle_cpu(cpu);
	spin_unlock_irqrestore(&base->lock, flags);
}
A
Andi Kleen 已提交
938
EXPORT_SYMBOL_GPL(add_timer_on);
I
Ingo Molnar 已提交
939

940
/**
L
Linus Torvalds 已提交
941 942 943 944 945 946 947 948 949 950 951 952
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
953
	struct tvec_base *base;
L
Linus Torvalds 已提交
954
	unsigned long flags;
955
	int ret = 0;
L
Linus Torvalds 已提交
956

957 958
	debug_assert_init(timer);

959
	timer_stats_timer_clear_start_info(timer);
960 961 962 963
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
		if (timer_pending(timer)) {
			detach_timer(timer, 1);
964 965 966
			if (timer->expires == base->next_timer &&
			    !tbase_get_deferrable(timer->base))
				base->next_timer = base->timer_jiffies;
967 968
			ret = 1;
		}
L
Linus Torvalds 已提交
969 970 971
		spin_unlock_irqrestore(&base->lock, flags);
	}

972
	return ret;
L
Linus Torvalds 已提交
973 974 975
}
EXPORT_SYMBOL(del_timer);

976 977 978 979
/**
 * try_to_del_timer_sync - Try to deactivate a timer
 * @timer: timer do del
 *
980 981 982 983 984
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
985
	struct tvec_base *base;
986 987 988
	unsigned long flags;
	int ret = -1;

989 990
	debug_assert_init(timer);

991 992 993 994 995
	base = lock_timer_base(timer, &flags);

	if (base->running_timer == timer)
		goto out;

996
	timer_stats_timer_clear_start_info(timer);
997 998 999
	ret = 0;
	if (timer_pending(timer)) {
		detach_timer(timer, 1);
1000 1001 1002
		if (timer->expires == base->next_timer &&
		    !tbase_get_deferrable(timer->base))
			base->next_timer = base->timer_jiffies;
1003 1004 1005 1006 1007 1008 1009
		ret = 1;
	}
out:
	spin_unlock_irqrestore(&base->lock, flags);

	return ret;
}
1010 1011
EXPORT_SYMBOL(try_to_del_timer_sync);

1012
#ifdef CONFIG_SMP
1013
/**
L
Linus Torvalds 已提交
1014 1015 1016 1017 1018 1019 1020
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
1021
 * Synchronization rules: Callers must prevent restarting of the timer,
L
Linus Torvalds 已提交
1022
 * otherwise this function is meaningless. It must not be called from
1023
 * interrupt contexts. The caller must not hold locks which would prevent
1024 1025 1026
 * completion of the timer's handler. The timer's handler must not call
 * add_timer_on(). Upon exit the timer is not queued and the handler is
 * not running on any CPU.
L
Linus Torvalds 已提交
1027
 *
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
 * Note: You must not hold locks that are held in interrupt context
 *   while calling this function. Even if the lock has nothing to do
 *   with the timer in question.  Here's why:
 *
 *    CPU0                             CPU1
 *    ----                             ----
 *                                   <SOFTIRQ>
 *                                   call_timer_fn();
 *                                     base->running_timer = mytimer;
 *  spin_lock_irq(somelock);
 *                                     <IRQ>
 *                                        spin_lock(somelock);
 *  del_timer_sync(mytimer);
 *   while (base->running_timer == mytimer);
 *
 * Now del_timer_sync() will never return and never release somelock.
 * The interrupt on the other CPU is waiting to grab somelock but
 * it has interrupted the softirq that CPU0 is waiting to finish.
 *
L
Linus Torvalds 已提交
1047 1048 1049 1050
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
1051
#ifdef CONFIG_LOCKDEP
1052 1053
	unsigned long flags;

1054 1055 1056 1057
	/*
	 * If lockdep gives a backtrace here, please reference
	 * the synchronization rules above.
	 */
1058
	local_irq_save(flags);
1059 1060
	lock_map_acquire(&timer->lockdep_map);
	lock_map_release(&timer->lockdep_map);
1061
	local_irq_restore(flags);
1062
#endif
1063 1064 1065 1066 1067
	/*
	 * don't use it in hardirq context, because it
	 * could lead to deadlock.
	 */
	WARN_ON(in_irq());
1068 1069 1070 1071
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
1072
		cpu_relax();
1073
	}
L
Linus Torvalds 已提交
1074
}
1075
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
1076 1077
#endif

1078
static int cascade(struct tvec_base *base, struct tvec *tv, int index)
L
Linus Torvalds 已提交
1079 1080
{
	/* cascade all the timers from tv up one level */
1081 1082 1083 1084
	struct timer_list *timer, *tmp;
	struct list_head tv_list;

	list_replace_init(tv->vec + index, &tv_list);
L
Linus Torvalds 已提交
1085 1086

	/*
1087 1088
	 * We are removing _all_ timers from the list, so we
	 * don't have to detach them individually.
L
Linus Torvalds 已提交
1089
	 */
1090
	list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1091
		BUG_ON(tbase_get_base(timer->base) != base);
1092
		internal_add_timer(base, timer);
L
Linus Torvalds 已提交
1093 1094 1095 1096 1097
	}

	return index;
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
			  unsigned long data)
{
	int preempt_count = preempt_count();

#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the timer from inside the
	 * function that is called from it, this we need to take into
	 * account for lockdep too. To avoid bogus "held lock freed"
	 * warnings as well as problems when looking into
	 * timer->lockdep_map, make a copy and use that here.
	 */
1111 1112 1113
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
#endif
	/*
	 * Couple the lock chain with the lock chain at
	 * del_timer_sync() by acquiring the lock_map around the fn()
	 * call here and in del_timer_sync().
	 */
	lock_map_acquire(&lockdep_map);

	trace_timer_expire_entry(timer);
	fn(data);
	trace_timer_expire_exit(timer);

	lock_map_release(&lockdep_map);

	if (preempt_count != preempt_count()) {
1129 1130 1131 1132 1133 1134 1135 1136 1137
		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
			  fn, preempt_count, preempt_count());
		/*
		 * Restore the preempt count. That gives us a decent
		 * chance to survive and extract information. If the
		 * callback kept a lock held, bad luck, but not worse
		 * than the BUG() we had.
		 */
		preempt_count() = preempt_count;
1138 1139 1140
	}
}

1141 1142 1143
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)

/**
L
Linus Torvalds 已提交
1144 1145 1146 1147 1148 1149
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 *
 * This function cascades all vectors and executes all expired timer
 * vectors.
 */
1150
static inline void __run_timers(struct tvec_base *base)
L
Linus Torvalds 已提交
1151 1152 1153
{
	struct timer_list *timer;

1154
	spin_lock_irq(&base->lock);
L
Linus Torvalds 已提交
1155
	while (time_after_eq(jiffies, base->timer_jiffies)) {
1156
		struct list_head work_list;
L
Linus Torvalds 已提交
1157
		struct list_head *head = &work_list;
1158
		int index = base->timer_jiffies & TVR_MASK;
1159

L
Linus Torvalds 已提交
1160 1161 1162 1163 1164 1165 1166 1167
		/*
		 * Cascade timers:
		 */
		if (!index &&
			(!cascade(base, &base->tv2, INDEX(0))) &&
				(!cascade(base, &base->tv3, INDEX(1))) &&
					!cascade(base, &base->tv4, INDEX(2)))
			cascade(base, &base->tv5, INDEX(3));
1168 1169
		++base->timer_jiffies;
		list_replace_init(base->tv1.vec + index, &work_list);
1170
		while (!list_empty(head)) {
L
Linus Torvalds 已提交
1171 1172 1173
			void (*fn)(unsigned long);
			unsigned long data;

1174
			timer = list_first_entry(head, struct timer_list,entry);
1175 1176
			fn = timer->function;
			data = timer->data;
L
Linus Torvalds 已提交
1177

1178 1179
			timer_stats_account_timer(timer);

1180
			base->running_timer = timer;
1181
			detach_timer(timer, 1);
1182

1183
			spin_unlock_irq(&base->lock);
1184
			call_timer_fn(timer, fn, data);
1185
			spin_lock_irq(&base->lock);
L
Linus Torvalds 已提交
1186 1187
		}
	}
1188
	base->running_timer = NULL;
1189
	spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
1190 1191
}

1192
#ifdef CONFIG_NO_HZ
L
Linus Torvalds 已提交
1193 1194
/*
 * Find out when the next timer event is due to happen. This
R
Randy Dunlap 已提交
1195 1196
 * is used on S/390 to stop all activity when a CPU is idle.
 * This function needs to be called with interrupts disabled.
L
Linus Torvalds 已提交
1197
 */
1198
static unsigned long __next_timer_interrupt(struct tvec_base *base)
L
Linus Torvalds 已提交
1199
{
1200
	unsigned long timer_jiffies = base->timer_jiffies;
1201
	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1202
	int index, slot, array, found = 0;
L
Linus Torvalds 已提交
1203
	struct timer_list *nte;
1204
	struct tvec *varray[4];
L
Linus Torvalds 已提交
1205 1206

	/* Look for timer events in tv1. */
1207
	index = slot = timer_jiffies & TVR_MASK;
L
Linus Torvalds 已提交
1208
	do {
1209
		list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1210 1211
			if (tbase_get_deferrable(nte->base))
				continue;
1212

1213
			found = 1;
L
Linus Torvalds 已提交
1214
			expires = nte->expires;
1215 1216 1217 1218
			/* Look at the cascade bucket(s)? */
			if (!index || slot < index)
				goto cascade;
			return expires;
L
Linus Torvalds 已提交
1219
		}
1220 1221 1222 1223 1224 1225 1226 1227
		slot = (slot + 1) & TVR_MASK;
	} while (slot != index);

cascade:
	/* Calculate the next cascade event */
	if (index)
		timer_jiffies += TVR_SIZE - index;
	timer_jiffies >>= TVR_BITS;
L
Linus Torvalds 已提交
1228 1229 1230 1231 1232 1233

	/* Check tv2-tv5. */
	varray[0] = &base->tv2;
	varray[1] = &base->tv3;
	varray[2] = &base->tv4;
	varray[3] = &base->tv5;
1234 1235

	for (array = 0; array < 4; array++) {
1236
		struct tvec *varp = varray[array];
1237 1238

		index = slot = timer_jiffies & TVN_MASK;
L
Linus Torvalds 已提交
1239
		do {
1240
			list_for_each_entry(nte, varp->vec + slot, entry) {
1241 1242 1243
				if (tbase_get_deferrable(nte->base))
					continue;

1244
				found = 1;
L
Linus Torvalds 已提交
1245 1246
				if (time_before(nte->expires, expires))
					expires = nte->expires;
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
			}
			/*
			 * Do we still search for the first timer or are
			 * we looking up the cascade buckets ?
			 */
			if (found) {
				/* Look at the cascade bucket(s)? */
				if (!index || slot < index)
					break;
				return expires;
			}
			slot = (slot + 1) & TVN_MASK;
		} while (slot != index);

		if (index)
			timer_jiffies += TVN_SIZE - index;
		timer_jiffies >>= TVN_BITS;
L
Linus Torvalds 已提交
1264
	}
1265 1266
	return expires;
}
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276
/*
 * Check, if the next hrtimer event is before the next timer wheel
 * event:
 */
static unsigned long cmp_next_hrtimer_event(unsigned long now,
					    unsigned long expires)
{
	ktime_t hr_delta = hrtimer_get_next_event();
	struct timespec tsdelta;
1277
	unsigned long delta;
1278 1279 1280

	if (hr_delta.tv64 == KTIME_MAX)
		return expires;
1281

1282 1283 1284 1285 1286
	/*
	 * Expired timer available, let it expire in the next tick
	 */
	if (hr_delta.tv64 <= 0)
		return now + 1;
1287

1288
	tsdelta = ktime_to_timespec(hr_delta);
1289
	delta = timespec_to_jiffies(&tsdelta);
1290 1291 1292 1293 1294 1295 1296 1297

	/*
	 * Limit the delta to the max value, which is checked in
	 * tick_nohz_stop_sched_tick():
	 */
	if (delta > NEXT_TIMER_MAX_DELTA)
		delta = NEXT_TIMER_MAX_DELTA;

1298 1299 1300 1301 1302 1303 1304 1305 1306
	/*
	 * Take rounding errors in to account and make sure, that it
	 * expires in the next tick. Otherwise we go into an endless
	 * ping pong due to tick_nohz_stop_sched_tick() retriggering
	 * the timer softirq
	 */
	if (delta < 1)
		delta = 1;
	now += delta;
1307 1308
	if (time_before(now, expires))
		return now;
L
Linus Torvalds 已提交
1309 1310
	return expires;
}
1311 1312

/**
1313
 * get_next_timer_interrupt - return the jiffy of the next pending timer
1314
 * @now: current time (in jiffies)
1315
 */
1316
unsigned long get_next_timer_interrupt(unsigned long now)
1317
{
C
Christoph Lameter 已提交
1318
	struct tvec_base *base = __this_cpu_read(tvec_bases);
1319
	unsigned long expires;
1320

1321 1322 1323 1324 1325 1326
	/*
	 * Pretend that there is no timer pending if the cpu is offline.
	 * Possible pending timers will be migrated later to an active cpu.
	 */
	if (cpu_is_offline(smp_processor_id()))
		return now + NEXT_TIMER_MAX_DELTA;
1327
	spin_lock(&base->lock);
1328 1329 1330
	if (time_before_eq(base->next_timer, base->timer_jiffies))
		base->next_timer = __next_timer_interrupt(base);
	expires = base->next_timer;
1331 1332 1333 1334 1335 1336 1337
	spin_unlock(&base->lock);

	if (time_before_eq(expires, now))
		return now;

	return cmp_next_hrtimer_event(now, expires);
}
L
Linus Torvalds 已提交
1338 1339 1340
#endif

/*
D
Daniel Walker 已提交
1341
 * Called from the timer interrupt handler to charge one tick to the current
L
Linus Torvalds 已提交
1342 1343 1344 1345 1346 1347 1348 1349
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;
	int cpu = smp_processor_id();

	/* Note: this timer irq context must be accounted for as well. */
1350
	account_process_tick(p, user_tick);
L
Linus Torvalds 已提交
1351
	run_local_timers();
1352
	rcu_check_callbacks(cpu, user_tick);
P
Peter Zijlstra 已提交
1353
	printk_tick();
1354 1355 1356 1357
#ifdef CONFIG_IRQ_WORK
	if (in_irq())
		irq_work_run();
#endif
L
Linus Torvalds 已提交
1358
	scheduler_tick();
1359
	run_posix_cpu_timers(p);
L
Linus Torvalds 已提交
1360 1361 1362 1363 1364 1365 1366
}

/*
 * This function runs timers and the timer-tq in bottom half context.
 */
static void run_timer_softirq(struct softirq_action *h)
{
C
Christoph Lameter 已提交
1367
	struct tvec_base *base = __this_cpu_read(tvec_bases);
L
Linus Torvalds 已提交
1368

1369
	hrtimer_run_pending();
1370

L
Linus Torvalds 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379
	if (time_after_eq(jiffies, base->timer_jiffies))
		__run_timers(base);
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
1380
	hrtimer_run_queues();
L
Linus Torvalds 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389
	raise_softirq(TIMER_SOFTIRQ);
}

#ifdef __ARCH_WANT_SYS_ALARM

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
1390
SYSCALL_DEFINE1(alarm, unsigned int, seconds)
L
Linus Torvalds 已提交
1391
{
1392
	return alarm_setitimer(seconds);
L
Linus Torvalds 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
}

#endif

#ifndef __alpha__

/*
 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
 * should be moved into arch/i386 instead?
 */

/**
 * sys_getpid - return the thread group id of the current process
 *
 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 * the pid are identical unless CLONE_THREAD was specified on clone() in
 * which case the tgid is the same in all threads of the same group.
 *
 * This is SMP safe as current->tgid does not change.
 */
1413
SYSCALL_DEFINE0(getpid)
L
Linus Torvalds 已提交
1414
{
1415
	return task_tgid_vnr(current);
L
Linus Torvalds 已提交
1416 1417 1418
}

/*
1419 1420 1421 1422
 * Accessing ->real_parent is not SMP-safe, it could
 * change from under us. However, we can use a stale
 * value of ->real_parent under rcu_read_lock(), see
 * release_task()->call_rcu(delayed_put_task_struct).
L
Linus Torvalds 已提交
1423
 */
1424
SYSCALL_DEFINE0(getppid)
L
Linus Torvalds 已提交
1425 1426 1427
{
	int pid;

1428
	rcu_read_lock();
1429
	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1430
	rcu_read_unlock();
L
Linus Torvalds 已提交
1431 1432 1433 1434

	return pid;
}

1435
SYSCALL_DEFINE0(getuid)
L
Linus Torvalds 已提交
1436 1437
{
	/* Only we change this so SMP safe */
1438
	return current_uid();
L
Linus Torvalds 已提交
1439 1440
}

1441
SYSCALL_DEFINE0(geteuid)
L
Linus Torvalds 已提交
1442 1443
{
	/* Only we change this so SMP safe */
1444
	return current_euid();
L
Linus Torvalds 已提交
1445 1446
}

1447
SYSCALL_DEFINE0(getgid)
L
Linus Torvalds 已提交
1448 1449
{
	/* Only we change this so SMP safe */
1450
	return current_gid();
L
Linus Torvalds 已提交
1451 1452
}

1453
SYSCALL_DEFINE0(getegid)
L
Linus Torvalds 已提交
1454 1455
{
	/* Only we change this so SMP safe */
1456
	return  current_egid();
L
Linus Torvalds 已提交
1457 1458 1459 1460 1461 1462
}

#endif

static void process_timeout(unsigned long __data)
{
1463
	wake_up_process((struct task_struct *)__data);
L
Linus Torvalds 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 * pass before the routine returns. The routine will return 0
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task. In this case the remaining time
 * in jiffies will be returned, or 0 if the timer expired in time
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
 * In all cases the return value is guaranteed to be non-negative.
 */
1492
signed long __sched schedule_timeout(signed long timeout)
L
Linus Torvalds 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
1517
		if (timeout < 0) {
L
Linus Torvalds 已提交
1518
			printk(KERN_ERR "schedule_timeout: wrong timeout "
1519 1520
				"value %lx\n", timeout);
			dump_stack();
L
Linus Torvalds 已提交
1521 1522 1523 1524 1525 1526 1527
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1528
	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1529
	__mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
1530 1531 1532
	schedule();
	del_singleshot_timer_sync(&timer);

1533 1534 1535
	/* Remove the timer from the object tracker */
	destroy_timer_on_stack(&timer);

L
Linus Torvalds 已提交
1536 1537 1538 1539 1540 1541 1542
	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1543 1544 1545 1546
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1547 1548
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1549 1550
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1551 1552 1553
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

M
Matthew Wilcox 已提交
1554 1555 1556 1557 1558 1559 1560
signed long __sched schedule_timeout_killable(signed long timeout)
{
	__set_current_state(TASK_KILLABLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);

1561 1562
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1563 1564
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1565 1566 1567
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

L
Linus Torvalds 已提交
1568
/* Thread ID - the internal kernel "pid" */
1569
SYSCALL_DEFINE0(gettid)
L
Linus Torvalds 已提交
1570
{
1571
	return task_pid_vnr(current);
L
Linus Torvalds 已提交
1572 1573
}

1574
/**
1575
 * do_sysinfo - fill in sysinfo struct
1576
 * @info: pointer to buffer to fill
1577
 */
1578
int do_sysinfo(struct sysinfo *info)
L
Linus Torvalds 已提交
1579 1580 1581
{
	unsigned long mem_total, sav_total;
	unsigned int mem_unit, bitcount;
1582
	struct timespec tp;
L
Linus Torvalds 已提交
1583

1584
	memset(info, 0, sizeof(struct sysinfo));
L
Linus Torvalds 已提交
1585

1586 1587 1588
	ktime_get_ts(&tp);
	monotonic_to_bootbased(&tp);
	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
L
Linus Torvalds 已提交
1589

1590
	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
L
Linus Torvalds 已提交
1591

1592
	info->procs = nr_threads;
L
Linus Torvalds 已提交
1593

1594 1595
	si_meminfo(info);
	si_swapinfo(info);
L
Linus Torvalds 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

	/*
	 * If the sum of all the available memory (i.e. ram + swap)
	 * is less than can be stored in a 32 bit unsigned long then
	 * we can be binary compatible with 2.2.x kernels.  If not,
	 * well, in that case 2.2.x was broken anyways...
	 *
	 *  -Erik Andersen <andersee@debian.org>
	 */

1606 1607
	mem_total = info->totalram + info->totalswap;
	if (mem_total < info->totalram || mem_total < info->totalswap)
L
Linus Torvalds 已提交
1608 1609
		goto out;
	bitcount = 0;
1610
	mem_unit = info->mem_unit;
L
Linus Torvalds 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	while (mem_unit > 1) {
		bitcount++;
		mem_unit >>= 1;
		sav_total = mem_total;
		mem_total <<= 1;
		if (mem_total < sav_total)
			goto out;
	}

	/*
	 * If mem_total did not overflow, multiply all memory values by
1622
	 * info->mem_unit and set it to 1.  This leaves things compatible
L
Linus Torvalds 已提交
1623 1624 1625 1626
	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
	 * kernels...
	 */

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	info->mem_unit = 1;
	info->totalram <<= bitcount;
	info->freeram <<= bitcount;
	info->sharedram <<= bitcount;
	info->bufferram <<= bitcount;
	info->totalswap <<= bitcount;
	info->freeswap <<= bitcount;
	info->totalhigh <<= bitcount;
	info->freehigh <<= bitcount;

out:
	return 0;
}

1641
SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1642 1643 1644 1645
{
	struct sysinfo val;

	do_sysinfo(&val);
L
Linus Torvalds 已提交
1646 1647 1648 1649 1650 1651 1652

	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
		return -EFAULT;

	return 0;
}

A
Adrian Bunk 已提交
1653
static int __cpuinit init_timers_cpu(int cpu)
L
Linus Torvalds 已提交
1654 1655
{
	int j;
1656
	struct tvec_base *base;
A
Adrian Bunk 已提交
1657
	static char __cpuinitdata tvec_base_done[NR_CPUS];
1658

A
Andrew Morton 已提交
1659
	if (!tvec_base_done[cpu]) {
1660 1661 1662
		static char boot_done;

		if (boot_done) {
A
Andrew Morton 已提交
1663 1664 1665
			/*
			 * The APs use this path later in boot
			 */
1666 1667
			base = kmalloc_node(sizeof(*base),
						GFP_KERNEL | __GFP_ZERO,
1668 1669 1670
						cpu_to_node(cpu));
			if (!base)
				return -ENOMEM;
1671 1672 1673 1674 1675 1676 1677

			/* Make sure that tvec_base is 2 byte aligned */
			if (tbase_get_deferrable(base)) {
				WARN_ON(1);
				kfree(base);
				return -ENOMEM;
			}
A
Andrew Morton 已提交
1678
			per_cpu(tvec_bases, cpu) = base;
1679
		} else {
A
Andrew Morton 已提交
1680 1681 1682 1683 1684 1685
			/*
			 * This is for the boot CPU - we use compile-time
			 * static initialisation because per-cpu memory isn't
			 * ready yet and because the memory allocators are not
			 * initialised either.
			 */
1686
			boot_done = 1;
A
Andrew Morton 已提交
1687
			base = &boot_tvec_bases;
1688
		}
A
Andrew Morton 已提交
1689 1690 1691
		tvec_base_done[cpu] = 1;
	} else {
		base = per_cpu(tvec_bases, cpu);
1692
	}
A
Andrew Morton 已提交
1693

1694
	spin_lock_init(&base->lock);
1695

L
Linus Torvalds 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	for (j = 0; j < TVN_SIZE; j++) {
		INIT_LIST_HEAD(base->tv5.vec + j);
		INIT_LIST_HEAD(base->tv4.vec + j);
		INIT_LIST_HEAD(base->tv3.vec + j);
		INIT_LIST_HEAD(base->tv2.vec + j);
	}
	for (j = 0; j < TVR_SIZE; j++)
		INIT_LIST_HEAD(base->tv1.vec + j);

	base->timer_jiffies = jiffies;
1706
	base->next_timer = base->timer_jiffies;
1707
	return 0;
L
Linus Torvalds 已提交
1708 1709 1710
}

#ifdef CONFIG_HOTPLUG_CPU
1711
static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
L
Linus Torvalds 已提交
1712 1713 1714 1715
{
	struct timer_list *timer;

	while (!list_empty(head)) {
1716
		timer = list_first_entry(head, struct timer_list, entry);
1717
		detach_timer(timer, 0);
1718
		timer_set_base(timer, new_base);
1719 1720 1721
		if (time_before(timer->expires, new_base->next_timer) &&
		    !tbase_get_deferrable(timer->base))
			new_base->next_timer = timer->expires;
L
Linus Torvalds 已提交
1722 1723 1724 1725
		internal_add_timer(new_base, timer);
	}
}

R
Randy Dunlap 已提交
1726
static void __cpuinit migrate_timers(int cpu)
L
Linus Torvalds 已提交
1727
{
1728 1729
	struct tvec_base *old_base;
	struct tvec_base *new_base;
L
Linus Torvalds 已提交
1730 1731 1732
	int i;

	BUG_ON(cpu_online(cpu));
1733 1734
	old_base = per_cpu(tvec_bases, cpu);
	new_base = get_cpu_var(tvec_bases);
1735 1736 1737 1738 1739
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
	spin_lock_irq(&new_base->lock);
1740
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1741 1742

	BUG_ON(old_base->running_timer);
L
Linus Torvalds 已提交
1743 1744

	for (i = 0; i < TVR_SIZE; i++)
1745 1746 1747 1748 1749 1750 1751 1752
		migrate_timer_list(new_base, old_base->tv1.vec + i);
	for (i = 0; i < TVN_SIZE; i++) {
		migrate_timer_list(new_base, old_base->tv2.vec + i);
		migrate_timer_list(new_base, old_base->tv3.vec + i);
		migrate_timer_list(new_base, old_base->tv4.vec + i);
		migrate_timer_list(new_base, old_base->tv5.vec + i);
	}

1753
	spin_unlock(&old_base->lock);
1754
	spin_unlock_irq(&new_base->lock);
L
Linus Torvalds 已提交
1755 1756 1757 1758
	put_cpu_var(tvec_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

1759
static int __cpuinit timer_cpu_notify(struct notifier_block *self,
L
Linus Torvalds 已提交
1760 1761 1762
				unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
1763 1764
	int err;

L
Linus Torvalds 已提交
1765 1766
	switch(action) {
	case CPU_UP_PREPARE:
1767
	case CPU_UP_PREPARE_FROZEN:
1768 1769 1770
		err = init_timers_cpu(cpu);
		if (err < 0)
			return notifier_from_errno(err);
L
Linus Torvalds 已提交
1771 1772 1773
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1774
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
1775 1776 1777 1778 1779 1780 1781 1782 1783
		migrate_timers(cpu);
		break;
#endif
	default:
		break;
	}
	return NOTIFY_OK;
}

1784
static struct notifier_block __cpuinitdata timers_nb = {
L
Linus Torvalds 已提交
1785 1786 1787 1788 1789 1790
	.notifier_call	= timer_cpu_notify,
};


void __init init_timers(void)
{
1791
	int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
L
Linus Torvalds 已提交
1792
				(void *)(long)smp_processor_id());
1793

1794 1795
	init_timer_stats();

1796
	BUG_ON(err != NOTIFY_OK);
L
Linus Torvalds 已提交
1797
	register_cpu_notifier(&timers_nb);
1798
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
L
Linus Torvalds 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
}

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1809 1810
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1811 1812 1813 1814 1815
}

EXPORT_SYMBOL(msleep);

/**
1816
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1817 1818 1819 1820 1821 1822
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1823 1824
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1825 1826 1827 1828
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

static int __sched do_usleep_range(unsigned long min, unsigned long max)
{
	ktime_t kmin;
	unsigned long delta;

	kmin = ktime_set(0, min * NSEC_PER_USEC);
	delta = (max - min) * NSEC_PER_USEC;
	return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
}

/**
 * usleep_range - Drop in replacement for udelay where wakeup is flexible
 * @min: Minimum time in usecs to sleep
 * @max: Maximum time in usecs to sleep
 */
void usleep_range(unsigned long min, unsigned long max)
{
	__set_current_state(TASK_UNINTERRUPTIBLE);
	do_usleep_range(min, max);
}
EXPORT_SYMBOL(usleep_range);