mballoc.c 137.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
 * Written by Alex Tomas <alex@clusterfs.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public Licens
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 */


/*
 * mballoc.c contains the multiblocks allocation routines
 */

B
Bobi Jam 已提交
24
#include "ext4_jbd2.h"
25
#include "mballoc.h"
26
#include <linux/debugfs.h>
27
#include <linux/log2.h>
28
#include <linux/slab.h>
29 30
#include <trace/events/ext4.h>

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/*
 * MUSTDO:
 *   - test ext4_ext_search_left() and ext4_ext_search_right()
 *   - search for metadata in few groups
 *
 * TODO v4:
 *   - normalization should take into account whether file is still open
 *   - discard preallocations if no free space left (policy?)
 *   - don't normalize tails
 *   - quota
 *   - reservation for superuser
 *
 * TODO v3:
 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
 *   - track min/max extents in each group for better group selection
 *   - mb_mark_used() may allocate chunk right after splitting buddy
 *   - tree of groups sorted by number of free blocks
 *   - error handling
 */

/*
 * The allocation request involve request for multiple number of blocks
 * near to the goal(block) value specified.
 *
T
Theodore Ts'o 已提交
55 56 57 58 59 60 61 62 63
 * During initialization phase of the allocator we decide to use the
 * group preallocation or inode preallocation depending on the size of
 * the file. The size of the file could be the resulting file size we
 * would have after allocation, or the current file size, which ever
 * is larger. If the size is less than sbi->s_mb_stream_request we
 * select to use the group preallocation. The default value of
 * s_mb_stream_request is 16 blocks. This can also be tuned via
 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
 * terms of number of blocks.
64 65
 *
 * The main motivation for having small file use group preallocation is to
T
Theodore Ts'o 已提交
66
 * ensure that we have small files closer together on the disk.
67
 *
T
Theodore Ts'o 已提交
68 69 70 71
 * First stage the allocator looks at the inode prealloc list,
 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
 * spaces for this particular inode. The inode prealloc space is
 * represented as:
72 73 74
 *
 * pa_lstart -> the logical start block for this prealloc space
 * pa_pstart -> the physical start block for this prealloc space
75 76
 * pa_len    -> length for this prealloc space (in clusters)
 * pa_free   ->  free space available in this prealloc space (in clusters)
77 78 79
 *
 * The inode preallocation space is used looking at the _logical_ start
 * block. If only the logical file block falls within the range of prealloc
80 81
 * space we will consume the particular prealloc space. This makes sure that
 * we have contiguous physical blocks representing the file blocks
82 83 84 85 86 87 88
 *
 * The important thing to be noted in case of inode prealloc space is that
 * we don't modify the values associated to inode prealloc space except
 * pa_free.
 *
 * If we are not able to find blocks in the inode prealloc space and if we
 * have the group allocation flag set then we look at the locality group
89
 * prealloc space. These are per CPU prealloc list represented as
90 91 92 93 94 95 96
 *
 * ext4_sb_info.s_locality_groups[smp_processor_id()]
 *
 * The reason for having a per cpu locality group is to reduce the contention
 * between CPUs. It is possible to get scheduled at this point.
 *
 * The locality group prealloc space is used looking at whether we have
L
Lucas De Marchi 已提交
97
 * enough free space (pa_free) within the prealloc space.
98 99 100 101 102 103 104 105 106 107 108 109
 *
 * If we can't allocate blocks via inode prealloc or/and locality group
 * prealloc then we look at the buddy cache. The buddy cache is represented
 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
 * mapped to the buddy and bitmap information regarding different
 * groups. The buddy information is attached to buddy cache inode so that
 * we can access them through the page cache. The information regarding
 * each group is loaded via ext4_mb_load_buddy.  The information involve
 * block bitmap and buddy information. The information are stored in the
 * inode as:
 *
 *  {                        page                        }
110
 *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
 *
 *
 * one block each for bitmap and buddy information.  So for each group we
 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
 * blocksize) blocks.  So it can have information regarding groups_per_page
 * which is blocks_per_page/2
 *
 * The buddy cache inode is not stored on disk. The inode is thrown
 * away when the filesystem is unmounted.
 *
 * We look for count number of blocks in the buddy cache. If we were able
 * to locate that many free blocks we return with additional information
 * regarding rest of the contiguous physical block available
 *
 * Before allocating blocks via buddy cache we normalize the request
 * blocks. This ensure we ask for more blocks that we needed. The extra
 * blocks that we get after allocation is added to the respective prealloc
 * list. In case of inode preallocation we follow a list of heuristics
 * based on file size. This can be found in ext4_mb_normalize_request. If
 * we are doing a group prealloc we try to normalize the request to
131 132
 * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
 * dependent on the cluster size; for non-bigalloc file systems, it is
133
 * 512 blocks. This can be tuned via
134
 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
135 136
 * terms of number of blocks. If we have mounted the file system with -O
 * stripe=<value> option the group prealloc request is normalized to the
137 138
 * the smallest multiple of the stripe value (sbi->s_stripe) which is
 * greater than the default mb_group_prealloc.
139
 *
140
 * The regular allocator (using the buddy cache) supports a few tunables.
141
 *
T
Theodore Ts'o 已提交
142 143 144
 * /sys/fs/ext4/<partition>/mb_min_to_scan
 * /sys/fs/ext4/<partition>/mb_max_to_scan
 * /sys/fs/ext4/<partition>/mb_order2_req
145
 *
T
Theodore Ts'o 已提交
146
 * The regular allocator uses buddy scan only if the request len is power of
147 148
 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 * value of s_mb_order2_reqs can be tuned via
T
Theodore Ts'o 已提交
149
 * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
150
 * stripe size (sbi->s_stripe), we try to search for contiguous block in
T
Theodore Ts'o 已提交
151 152 153
 * stripe size. This should result in better allocation on RAID setups. If
 * not, we search in the specific group using bitmap for best extents. The
 * tunable min_to_scan and max_to_scan control the behaviour here.
154
 * min_to_scan indicate how long the mballoc __must__ look for a best
T
Theodore Ts'o 已提交
155
 * extent and max_to_scan indicates how long the mballoc __can__ look for a
156 157 158
 * best extent in the found extents. Searching for the blocks starts with
 * the group specified as the goal value in allocation context via
 * ac_g_ex. Each group is first checked based on the criteria whether it
159
 * can be used for allocation. ext4_mb_good_group explains how the groups are
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
 * checked.
 *
 * Both the prealloc space are getting populated as above. So for the first
 * request we will hit the buddy cache which will result in this prealloc
 * space getting filled. The prealloc space is then later used for the
 * subsequent request.
 */

/*
 * mballoc operates on the following data:
 *  - on-disk bitmap
 *  - in-core buddy (actually includes buddy and bitmap)
 *  - preallocation descriptors (PAs)
 *
 * there are two types of preallocations:
 *  - inode
 *    assiged to specific inode and can be used for this inode only.
 *    it describes part of inode's space preallocated to specific
 *    physical blocks. any block from that preallocated can be used
 *    independent. the descriptor just tracks number of blocks left
 *    unused. so, before taking some block from descriptor, one must
 *    make sure corresponded logical block isn't allocated yet. this
 *    also means that freeing any block within descriptor's range
 *    must discard all preallocated blocks.
 *  - locality group
 *    assigned to specific locality group which does not translate to
 *    permanent set of inodes: inode can join and leave group. space
 *    from this type of preallocation can be used for any inode. thus
 *    it's consumed from the beginning to the end.
 *
 * relation between them can be expressed as:
 *    in-core buddy = on-disk bitmap + preallocation descriptors
 *
 * this mean blocks mballoc considers used are:
 *  - allocated blocks (persistent)
 *  - preallocated blocks (non-persistent)
 *
 * consistency in mballoc world means that at any time a block is either
 * free or used in ALL structures. notice: "any time" should not be read
 * literally -- time is discrete and delimited by locks.
 *
 *  to keep it simple, we don't use block numbers, instead we count number of
 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 *
 * all operations can be expressed as:
 *  - init buddy:			buddy = on-disk + PAs
 *  - new PA:				buddy += N; PA = N
 *  - use inode PA:			on-disk += N; PA -= N
 *  - discard inode PA			buddy -= on-disk - PA; PA = 0
 *  - use locality group PA		on-disk += N; PA -= N
 *  - discard locality group PA		buddy -= PA; PA = 0
 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 *        is used in real operation because we can't know actual used
 *        bits from PA, only from on-disk bitmap
 *
 * if we follow this strict logic, then all operations above should be atomic.
 * given some of them can block, we'd have to use something like semaphores
 * killing performance on high-end SMP hardware. let's try to relax it using
 * the following knowledge:
 *  1) if buddy is referenced, it's already initialized
 *  2) while block is used in buddy and the buddy is referenced,
 *     nobody can re-allocate that block
 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 *     block
 *
 * so, now we're building a concurrency table:
 *  - init buddy vs.
 *    - new PA
 *      blocks for PA are allocated in the buddy, buddy must be referenced
 *      until PA is linked to allocation group to avoid concurrent buddy init
 *    - use inode PA
 *      we need to make sure that either on-disk bitmap or PA has uptodate data
 *      given (3) we care that PA-=N operation doesn't interfere with init
 *    - discard inode PA
 *      the simplest way would be to have buddy initialized by the discard
 *    - use locality group PA
 *      again PA-=N must be serialized with init
 *    - discard locality group PA
 *      the simplest way would be to have buddy initialized by the discard
 *  - new PA vs.
 *    - use inode PA
 *      i_data_sem serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      some mutex should serialize them
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *  - use inode PA
 *    - use inode PA
 *      i_data_sem or another mutex should serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      nothing wrong here -- they're different PAs covering different blocks
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *
 * now we're ready to make few consequences:
 *  - PA is referenced and while it is no discard is possible
 *  - PA is referenced until block isn't marked in on-disk bitmap
 *  - PA changes only after on-disk bitmap
 *  - discard must not compete with init. either init is done before
 *    any discard or they're serialized somehow
 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 *
 * a special case when we've used PA to emptiness. no need to modify buddy
 * in this case, but we should care about concurrent init
 *
 */

 /*
 * Logic in few words:
 *
 *  - allocation:
 *    load group
 *    find blocks
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - use preallocation:
 *    find proper PA (per-inode or group)
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *    release PA
 *
 *  - free:
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - discard preallocations in group:
 *    mark PAs deleted
 *    move them onto local list
 *    load on-disk bitmap
 *    load group
 *    remove PA from object (inode or locality group)
 *    mark free blocks in-core
 *
 *  - discard inode's preallocations:
 */

/*
 * Locking rules
 *
 * Locks:
 *  - bitlock on a group	(group)
 *  - object (inode/locality)	(object)
 *  - per-pa lock		(pa)
 *
 * Paths:
 *  - new pa
 *    object
 *    group
 *
 *  - find and use pa:
 *    pa
 *
 *  - release consumed pa:
 *    pa
 *    group
 *    object
 *
 *  - generate in-core bitmap:
 *    group
 *        pa
 *
 *  - discard all for given object (inode, locality group):
 *    object
 *        pa
 *    group
 *
 *  - discard all for given group:
 *    group
 *        pa
 *    group
 *        object
 *
 */
342 343
static struct kmem_cache *ext4_pspace_cachep;
static struct kmem_cache *ext4_ac_cachep;
B
Bobi Jam 已提交
344
static struct kmem_cache *ext4_free_data_cachep;
345 346 347 348

/* We create slab caches for groupinfo data structures based on the
 * superblock block size.  There will be one per mounted filesystem for
 * each unique s_blocksize_bits */
349
#define NR_GRPINFO_CACHES 8
350 351
static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];

352 353 354 355 356 357
static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
};

358 359
static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
					ext4_group_t group);
360 361
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group);
B
Bobi Jam 已提交
362 363
static void ext4_free_data_callback(struct super_block *sb,
				struct ext4_journal_cb_entry *jce, int rc);
364

365 366
static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
{
367
#if BITS_PER_LONG == 64
368 369
	*bit += ((unsigned long) addr & 7UL) << 3;
	addr = (void *) ((unsigned long) addr & ~7UL);
370
#elif BITS_PER_LONG == 32
371 372
	*bit += ((unsigned long) addr & 3UL) << 3;
	addr = (void *) ((unsigned long) addr & ~3UL);
373 374 375
#else
#error "how many bits you are?!"
#endif
376 377
	return addr;
}
378 379 380 381 382 383 384

static inline int mb_test_bit(int bit, void *addr)
{
	/*
	 * ext4_test_bit on architecture like powerpc
	 * needs unsigned long aligned address
	 */
385
	addr = mb_correct_addr_and_bit(&bit, addr);
386 387 388 389 390
	return ext4_test_bit(bit, addr);
}

static inline void mb_set_bit(int bit, void *addr)
{
391
	addr = mb_correct_addr_and_bit(&bit, addr);
392 393 394 395 396
	ext4_set_bit(bit, addr);
}

static inline void mb_clear_bit(int bit, void *addr)
{
397
	addr = mb_correct_addr_and_bit(&bit, addr);
398 399 400
	ext4_clear_bit(bit, addr);
}

401 402
static inline int mb_find_next_zero_bit(void *addr, int max, int start)
{
403
	int fix = 0, ret, tmpmax;
404
	addr = mb_correct_addr_and_bit(&fix, addr);
405
	tmpmax = max + fix;
406 407
	start += fix;

408 409 410 411
	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
412 413 414 415
}

static inline int mb_find_next_bit(void *addr, int max, int start)
{
416
	int fix = 0, ret, tmpmax;
417
	addr = mb_correct_addr_and_bit(&fix, addr);
418
	tmpmax = max + fix;
419 420
	start += fix;

421 422 423 424
	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
425 426
}

427 428 429 430
static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
{
	char *bb;

431
	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
432 433 434 435 436 437 438 439
	BUG_ON(max == NULL);

	if (order > e4b->bd_blkbits + 1) {
		*max = 0;
		return NULL;
	}

	/* at order 0 we see each particular block */
C
Coly Li 已提交
440 441
	if (order == 0) {
		*max = 1 << (e4b->bd_blkbits + 3);
442
		return e4b->bd_bitmap;
C
Coly Li 已提交
443
	}
444

445
	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
446 447 448 449 450 451 452 453 454 455 456 457 458 459
	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];

	return bb;
}

#ifdef DOUBLE_CHECK
static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
			   int first, int count)
{
	int i;
	struct super_block *sb = e4b->bd_sb;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
460
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
461 462 463
	for (i = 0; i < count; i++) {
		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
			ext4_fsblk_t blocknr;
464 465

			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
466
			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
467
			ext4_grp_locked_error(sb, e4b->bd_group,
468 469 470 471 472
					      inode ? inode->i_ino : 0,
					      blocknr,
					      "freeing block already freed "
					      "(bit %u)",
					      first + i);
473 474 475 476 477 478 479 480 481 482 483
		}
		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
{
	int i;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
484
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	for (i = 0; i < count; i++) {
		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
		unsigned char *b1, *b2;
		int i;
		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
		b2 = (unsigned char *) bitmap;
		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
			if (b1[i] != b2[i]) {
500 501 502 503 504
				ext4_msg(e4b->bd_sb, KERN_ERR,
					 "corruption in group %u "
					 "at byte %u(%u): %x in copy != %x "
					 "on disk/prealloc",
					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
				BUG();
			}
		}
	}
}

#else
static inline void mb_free_blocks_double(struct inode *inode,
				struct ext4_buddy *e4b, int first, int count)
{
	return;
}
static inline void mb_mark_used_double(struct ext4_buddy *e4b,
						int first, int count)
{
	return;
}
static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	return;
}
#endif

#ifdef AGGRESSIVE_CHECK

#define MB_CHECK_ASSERT(assert)						\
do {									\
	if (!(assert)) {						\
		printk(KERN_EMERG					\
			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
			function, file, line, # assert);		\
		BUG();							\
	}								\
} while (0)

static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
				const char *function, int line)
{
	struct super_block *sb = e4b->bd_sb;
	int order = e4b->bd_blkbits + 1;
	int max;
	int max2;
	int i;
	int j;
	int k;
	int count;
	struct ext4_group_info *grp;
	int fragments = 0;
	int fstart;
	struct list_head *cur;
	void *buddy;
	void *buddy2;

	{
		static int mb_check_counter;
		if (mb_check_counter++ % 100 != 0)
			return 0;
	}

	while (order > 1) {
		buddy = mb_find_buddy(e4b, order, &max);
		MB_CHECK_ASSERT(buddy);
		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
		MB_CHECK_ASSERT(buddy2);
		MB_CHECK_ASSERT(buddy != buddy2);
		MB_CHECK_ASSERT(max * 2 == max2);

		count = 0;
		for (i = 0; i < max; i++) {

			if (mb_test_bit(i, buddy)) {
				/* only single bit in buddy2 may be 1 */
				if (!mb_test_bit(i << 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit((i<<1)+1, buddy2));
				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit(i << 1, buddy2));
				}
				continue;
			}

587
			/* both bits in buddy2 must be 1 */
588 589 590 591 592 593
			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));

			for (j = 0; j < (1 << order); j++) {
				k = (i * (1 << order)) + j;
				MB_CHECK_ASSERT(
594
					!mb_test_bit(k, e4b->bd_bitmap));
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
			}
			count++;
		}
		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
		order--;
	}

	fstart = -1;
	buddy = mb_find_buddy(e4b, 0, &max);
	for (i = 0; i < max; i++) {
		if (!mb_test_bit(i, buddy)) {
			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
			if (fstart == -1) {
				fragments++;
				fstart = i;
			}
			continue;
		}
		fstart = -1;
		/* check used bits only */
		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
			buddy2 = mb_find_buddy(e4b, j, &max2);
			k = i >> j;
			MB_CHECK_ASSERT(k < max2);
			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
		}
	}
	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);

	grp = ext4_get_group_info(sb, e4b->bd_group);
	list_for_each(cur, &grp->bb_prealloc_list) {
		ext4_group_t groupnr;
		struct ext4_prealloc_space *pa;
629 630
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
631
		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
632
		for (i = 0; i < pa->pa_len; i++)
633 634 635 636 637 638
			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
	}
	return 0;
}
#undef MB_CHECK_ASSERT
#define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
639
					__FILE__, __func__, __LINE__)
640 641 642 643
#else
#define mb_check_buddy(e4b)
#endif

644 645 646 647 648 649
/*
 * Divide blocks started from @first with length @len into
 * smaller chunks with power of 2 blocks.
 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
 * then increase bb_counters[] for corresponded chunk size.
 */
650
static void ext4_mb_mark_free_simple(struct super_block *sb,
651
				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
652 653 654
					struct ext4_group_info *grp)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
655 656 657
	ext4_grpblk_t min;
	ext4_grpblk_t max;
	ext4_grpblk_t chunk;
658 659
	unsigned short border;

660
	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

	border = 2 << sb->s_blocksize_bits;

	while (len > 0) {
		/* find how many blocks can be covered since this position */
		max = ffs(first | border) - 1;

		/* find how many blocks of power 2 we need to mark */
		min = fls(len) - 1;

		if (max < min)
			min = max;
		chunk = 1 << min;

		/* mark multiblock chunks only */
		grp->bb_counters[min]++;
		if (min > 0)
			mb_clear_bit(first >> min,
				     buddy + sbi->s_mb_offsets[min]);

		len -= chunk;
		first += chunk;
	}
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
/*
 * Cache the order of the largest free extent we have available in this block
 * group.
 */
static void
mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
{
	int i;
	int bits;

	grp->bb_largest_free_order = -1; /* uninit */

	bits = sb->s_blocksize_bits + 1;
	for (i = bits; i >= 0; i--) {
		if (grp->bb_counters[i] > 0) {
			grp->bb_largest_free_order = i;
			break;
		}
	}
}

707 708
static noinline_for_stack
void ext4_mb_generate_buddy(struct super_block *sb,
709 710 711
				void *buddy, void *bitmap, ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
712
	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
713 714 715
	ext4_grpblk_t i = 0;
	ext4_grpblk_t first;
	ext4_grpblk_t len;
716 717 718 719 720 721
	unsigned free = 0;
	unsigned fragments = 0;
	unsigned long long period = get_cycles();

	/* initialize buddy from bitmap which is aggregation
	 * of on-disk bitmap and preallocations */
722
	i = mb_find_next_zero_bit(bitmap, max, 0);
723 724 725 726
	grp->bb_first_free = i;
	while (i < max) {
		fragments++;
		first = i;
727
		i = mb_find_next_bit(bitmap, max, i);
728 729 730 731 732 733 734
		len = i - first;
		free += len;
		if (len > 1)
			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
		else
			grp->bb_counters[0]++;
		if (i < max)
735
			i = mb_find_next_zero_bit(bitmap, max, i);
736 737 738 739
	}
	grp->bb_fragments = fragments;

	if (free != grp->bb_free) {
740
		ext4_grp_locked_error(sb, group, 0, 0,
741
				      "%u clusters in bitmap, %u in gd",
742
				      free, grp->bb_free);
743 744 745 746
		/*
		 * If we intent to continue, we consider group descritor
		 * corrupt and update bb_free using bitmap value
		 */
747 748
		grp->bb_free = free;
	}
749
	mb_set_largest_free_order(sb, grp);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));

	period = get_cycles() - period;
	spin_lock(&EXT4_SB(sb)->s_bal_lock);
	EXT4_SB(sb)->s_mb_buddies_generated++;
	EXT4_SB(sb)->s_mb_generation_time += period;
	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
}

/* The buddy information is attached the buddy cache inode
 * for convenience. The information regarding each group
 * is loaded via ext4_mb_load_buddy. The information involve
 * block bitmap and buddy information. The information are
 * stored in the inode as
 *
 * {                        page                        }
767
 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
768 769 770 771 772 773 774
 *
 *
 * one block each for bitmap and buddy information.
 * So for each group we take up 2 blocks. A page can
 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
 * So it can have information regarding groups_per_page which
 * is blocks_per_page/2
775 776 777
 *
 * Locking note:  This routine takes the block group lock of all groups
 * for this page; do not hold this lock when calling this routine!
778 779 780 781
 */

static int ext4_mb_init_cache(struct page *page, char *incore)
{
782
	ext4_group_t ngroups;
783 784 785 786 787
	int blocksize;
	int blocks_per_page;
	int groups_per_page;
	int err = 0;
	int i;
788
	ext4_group_t first_group, group;
789 790 791
	int first_block;
	struct super_block *sb;
	struct buffer_head *bhs;
792
	struct buffer_head **bh = NULL;
793 794 795
	struct inode *inode;
	char *data;
	char *bitmap;
796
	struct ext4_group_info *grinfo;
797

798
	mb_debug(1, "init page %lu\n", page->index);
799 800 801

	inode = page->mapping->host;
	sb = inode->i_sb;
802
	ngroups = ext4_get_groups_count(sb);
803 804 805 806 807 808 809 810 811 812 813
	blocksize = 1 << inode->i_blkbits;
	blocks_per_page = PAGE_CACHE_SIZE / blocksize;

	groups_per_page = blocks_per_page >> 1;
	if (groups_per_page == 0)
		groups_per_page = 1;

	/* allocate buffer_heads to read bitmaps */
	if (groups_per_page > 1) {
		i = sizeof(struct buffer_head *) * groups_per_page;
		bh = kzalloc(i, GFP_NOFS);
814 815
		if (bh == NULL) {
			err = -ENOMEM;
816
			goto out;
817
		}
818 819 820 821 822 823
	} else
		bh = &bhs;

	first_group = page->index * blocks_per_page / 2;

	/* read all groups the page covers into the cache */
824 825
	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
		if (group >= ngroups)
826 827
			break;

828
		grinfo = ext4_get_group_info(sb, group);
829 830 831 832 833 834 835 836 837 838
		/*
		 * If page is uptodate then we came here after online resize
		 * which added some new uninitialized group info structs, so
		 * we must skip all initialized uptodate buddies on the page,
		 * which may be currently in use by an allocating task.
		 */
		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
			bh[i] = NULL;
			continue;
		}
839 840
		if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
			err = -ENOMEM;
841
			goto out;
842
		}
843
		mb_debug(1, "read bitmap for group %u\n", group);
844 845 846
	}

	/* wait for I/O completion */
847 848 849
	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
		if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
			err = -EIO;
850
			goto out;
851 852
		}
	}
853 854 855 856 857 858

	first_block = page->index * blocks_per_page;
	for (i = 0; i < blocks_per_page; i++) {
		int group;

		group = (first_block + i) >> 1;
859
		if (group >= ngroups)
860 861
			break;

862 863 864 865
		if (!bh[group - first_group])
			/* skip initialized uptodate buddy */
			continue;

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
		/*
		 * data carry information regarding this
		 * particular group in the format specified
		 * above
		 *
		 */
		data = page_address(page) + (i * blocksize);
		bitmap = bh[group - first_group]->b_data;

		/*
		 * We place the buddy block and bitmap block
		 * close together
		 */
		if ((first_block + i) & 1) {
			/* this is block of buddy */
			BUG_ON(incore == NULL);
882
			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
883
				group, page->index, i * blocksize);
884
			trace_ext4_mb_buddy_bitmap_load(sb, group);
885 886 887
			grinfo = ext4_get_group_info(sb, group);
			grinfo->bb_fragments = 0;
			memset(grinfo->bb_counters, 0,
888 889
			       sizeof(*grinfo->bb_counters) *
				(sb->s_blocksize_bits+2));
890 891 892
			/*
			 * incore got set to the group block bitmap below
			 */
893
			ext4_lock_group(sb, group);
894 895
			/* init the buddy */
			memset(data, 0xff, blocksize);
896
			ext4_mb_generate_buddy(sb, data, incore, group);
897
			ext4_unlock_group(sb, group);
898 899 900 901
			incore = NULL;
		} else {
			/* this is block of bitmap */
			BUG_ON(incore != NULL);
902
			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
903
				group, page->index, i * blocksize);
904
			trace_ext4_mb_bitmap_load(sb, group);
905 906 907 908 909 910 911

			/* see comments in ext4_mb_put_pa() */
			ext4_lock_group(sb, group);
			memcpy(data, bitmap, blocksize);

			/* mark all preallocated blks used in in-core bitmap */
			ext4_mb_generate_from_pa(sb, data, group);
912
			ext4_mb_generate_from_freelist(sb, data, group);
913 914 915 916 917 918 919 920 921 922 923 924
			ext4_unlock_group(sb, group);

			/* set incore so that the buddy information can be
			 * generated using this
			 */
			incore = data;
		}
	}
	SetPageUptodate(page);

out:
	if (bh) {
925
		for (i = 0; i < groups_per_page; i++)
926 927 928 929 930 931 932
			brelse(bh[i]);
		if (bh != &bhs)
			kfree(bh);
	}
	return err;
}

933
/*
934 935 936 937
 * Lock the buddy and bitmap pages. This make sure other parallel init_group
 * on the same buddy page doesn't happen whild holding the buddy page lock.
 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
938
 */
939 940
static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
		ext4_group_t group, struct ext4_buddy *e4b)
941
{
942 943
	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
	int block, pnum, poff;
944
	int blocks_per_page;
945 946 947 948
	struct page *page;

	e4b->bd_buddy_page = NULL;
	e4b->bd_bitmap_page = NULL;
949 950 951 952 953 954 955 956 957

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
958 959 960 961 962 963 964 965 966 967 968
	poff = block % blocks_per_page;
	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
	if (!page)
		return -EIO;
	BUG_ON(page->mapping != inode->i_mapping);
	e4b->bd_bitmap_page = page;
	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);

	if (blocks_per_page >= 2) {
		/* buddy and bitmap are on the same page */
		return 0;
969
	}
970 971 972 973 974 975 976 977 978

	block++;
	pnum = block / blocks_per_page;
	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
	if (!page)
		return -EIO;
	BUG_ON(page->mapping != inode->i_mapping);
	e4b->bd_buddy_page = page;
	return 0;
979 980
}

981
static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
982
{
983 984 985 986 987 988 989
	if (e4b->bd_bitmap_page) {
		unlock_page(e4b->bd_bitmap_page);
		page_cache_release(e4b->bd_bitmap_page);
	}
	if (e4b->bd_buddy_page) {
		unlock_page(e4b->bd_buddy_page);
		page_cache_release(e4b->bd_buddy_page);
990 991 992
	}
}

993 994 995 996 997
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
998 999 1000 1001 1002
static noinline_for_stack
int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
{

	struct ext4_group_info *this_grp;
1003 1004 1005
	struct ext4_buddy e4b;
	struct page *page;
	int ret = 0;
1006 1007 1008 1009

	mb_debug(1, "init group %u\n", group);
	this_grp = ext4_get_group_info(sb, group);
	/*
1010 1011 1012 1013
	 * This ensures that we don't reinit the buddy cache
	 * page which map to the group from which we are already
	 * allocating. If we are looking at the buddy cache we would
	 * have taken a reference using ext4_mb_load_buddy and that
1014
	 * would have pinned buddy page to page cache.
1015
	 */
1016 1017
	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1018 1019 1020 1021 1022 1023
		/*
		 * somebody initialized the group
		 * return without doing anything
		 */
		goto err;
	}
1024 1025 1026 1027 1028 1029

	page = e4b.bd_bitmap_page;
	ret = ext4_mb_init_cache(page, NULL);
	if (ret)
		goto err;
	if (!PageUptodate(page)) {
1030 1031 1032 1033 1034
		ret = -EIO;
		goto err;
	}
	mark_page_accessed(page);

1035
	if (e4b.bd_buddy_page == NULL) {
1036 1037 1038 1039 1040
		/*
		 * If both the bitmap and buddy are in
		 * the same page we don't need to force
		 * init the buddy
		 */
1041 1042
		ret = 0;
		goto err;
1043
	}
1044 1045 1046 1047 1048 1049
	/* init buddy cache */
	page = e4b.bd_buddy_page;
	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
	if (ret)
		goto err;
	if (!PageUptodate(page)) {
1050 1051 1052 1053 1054
		ret = -EIO;
		goto err;
	}
	mark_page_accessed(page);
err:
1055
	ext4_mb_put_buddy_page_lock(&e4b);
1056 1057 1058
	return ret;
}

1059 1060 1061 1062 1063
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
1064 1065 1066
static noinline_for_stack int
ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
					struct ext4_buddy *e4b)
1067 1068 1069 1070 1071 1072
{
	int blocks_per_page;
	int block;
	int pnum;
	int poff;
	struct page *page;
1073
	int ret;
1074 1075 1076
	struct ext4_group_info *grp;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct inode *inode = sbi->s_buddy_cache;
1077

1078
	mb_debug(1, "load group %u\n", group);
1079 1080

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1081
	grp = ext4_get_group_info(sb, group);
1082 1083

	e4b->bd_blkbits = sb->s_blocksize_bits;
1084
	e4b->bd_info = grp;
1085 1086 1087 1088 1089
	e4b->bd_sb = sb;
	e4b->bd_group = group;
	e4b->bd_buddy_page = NULL;
	e4b->bd_bitmap_page = NULL;

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
		/*
		 * we need full data about the group
		 * to make a good selection
		 */
		ret = ext4_mb_init_group(sb, group);
		if (ret)
			return ret;
	}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	/* we could use find_or_create_page(), but it locks page
	 * what we'd like to avoid in fast path ... */
	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
1114 1115 1116 1117 1118 1119 1120 1121
			/*
			 * drop the page reference and try
			 * to get the page with lock. If we
			 * are not uptodate that implies
			 * somebody just created the page but
			 * is yet to initialize the same. So
			 * wait for it to initialize.
			 */
1122 1123 1124 1125 1126
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
			if (!PageUptodate(page)) {
1127 1128 1129 1130 1131
				ret = ext4_mb_init_cache(page, NULL);
				if (ret) {
					unlock_page(page);
					goto err;
				}
1132 1133 1134 1135 1136 1137
				mb_cmp_bitmaps(e4b, page_address(page) +
					       (poff * sb->s_blocksize));
			}
			unlock_page(page);
		}
	}
1138 1139
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
1140
		goto err;
1141
	}
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	e4b->bd_bitmap_page = page;
	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	block++;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
1157 1158 1159 1160 1161 1162 1163
			if (!PageUptodate(page)) {
				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
				if (ret) {
					unlock_page(page);
					goto err;
				}
			}
1164 1165 1166
			unlock_page(page);
		}
	}
1167 1168
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
1169
		goto err;
1170
	}
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	e4b->bd_buddy_page = page;
	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

	return 0;

err:
1181 1182
	if (page)
		page_cache_release(page);
1183 1184 1185 1186 1187 1188
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
	e4b->bd_buddy = NULL;
	e4b->bd_bitmap = NULL;
1189
	return ret;
1190 1191
}

1192
static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
{
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
}


static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
{
	int order = 1;
	void *bb;

1206
	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1207 1208
	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));

1209
	bb = e4b->bd_buddy;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	while (order <= e4b->bd_blkbits + 1) {
		block = block >> 1;
		if (!mb_test_bit(block, bb)) {
			/* this block is part of buddy of order 'order' */
			return order;
		}
		bb += 1 << (e4b->bd_blkbits - order);
		order++;
	}
	return 0;
}

1222
static void mb_clear_bits(void *bm, int cur, int len)
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: clear whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0;
			cur += 32;
			continue;
		}
1235
		mb_clear_bit(cur, bm);
1236 1237 1238 1239
		cur++;
	}
}

1240
void ext4_set_bits(void *bm, int cur, int len)
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: set whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0xffffffff;
			cur += 32;
			continue;
		}
1253
		mb_set_bit(cur, bm);
1254 1255 1256 1257
		cur++;
	}
}

1258
static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
			  int first, int count)
{
	int block = 0;
	int max = 0;
	int order;
	void *buddy;
	void *buddy2;
	struct super_block *sb = e4b->bd_sb;

	BUG_ON(first + count > (sb->s_blocksize << 3));
1269
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1270 1271 1272 1273 1274 1275 1276 1277 1278
	mb_check_buddy(e4b);
	mb_free_blocks_double(inode, e4b, first, count);

	e4b->bd_info->bb_free += count;
	if (first < e4b->bd_info->bb_first_free)
		e4b->bd_info->bb_first_free = first;

	/* let's maintain fragments counter */
	if (first != 0)
1279
		block = !mb_test_bit(first - 1, e4b->bd_bitmap);
1280
	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1281
		max = !mb_test_bit(first + count, e4b->bd_bitmap);
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	if (block && max)
		e4b->bd_info->bb_fragments--;
	else if (!block && !max)
		e4b->bd_info->bb_fragments++;

	/* let's maintain buddy itself */
	while (count-- > 0) {
		block = first++;
		order = 0;

1292
		if (!mb_test_bit(block, e4b->bd_bitmap)) {
1293
			ext4_fsblk_t blocknr;
1294 1295

			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1296
			blocknr += EXT4_C2B(EXT4_SB(sb), block);
1297
			ext4_grp_locked_error(sb, e4b->bd_group,
1298 1299 1300 1301
					      inode ? inode->i_ino : 0,
					      blocknr,
					      "freeing already freed block "
					      "(bit %u)", block);
1302
		}
1303
		mb_clear_bit(block, e4b->bd_bitmap);
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
		e4b->bd_info->bb_counters[order]++;

		/* start of the buddy */
		buddy = mb_find_buddy(e4b, order, &max);

		do {
			block &= ~1UL;
			if (mb_test_bit(block, buddy) ||
					mb_test_bit(block + 1, buddy))
				break;

			/* both the buddies are free, try to coalesce them */
			buddy2 = mb_find_buddy(e4b, order + 1, &max);

			if (!buddy2)
				break;

			if (order > 0) {
				/* for special purposes, we don't set
				 * free bits in bitmap */
				mb_set_bit(block, buddy);
				mb_set_bit(block + 1, buddy);
			}
			e4b->bd_info->bb_counters[order]--;
			e4b->bd_info->bb_counters[order]--;

			block = block >> 1;
			order++;
			e4b->bd_info->bb_counters[order]++;

			mb_clear_bit(block, buddy2);
			buddy = buddy2;
		} while (1);
	}
1338
	mb_set_largest_free_order(sb, e4b->bd_info);
1339 1340 1341
	mb_check_buddy(e4b);
}

1342
static int mb_find_extent(struct ext4_buddy *e4b, int block,
1343 1344 1345
				int needed, struct ext4_free_extent *ex)
{
	int next = block;
1346
	int max, order;
1347 1348
	void *buddy;

1349
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1350 1351
	BUG_ON(ex == NULL);

1352
	buddy = mb_find_buddy(e4b, 0, &max);
1353 1354 1355 1356 1357 1358 1359 1360 1361
	BUG_ON(buddy == NULL);
	BUG_ON(block >= max);
	if (mb_test_bit(block, buddy)) {
		ex->fe_len = 0;
		ex->fe_start = 0;
		ex->fe_group = 0;
		return 0;
	}

1362 1363 1364
	/* find actual order */
	order = mb_find_order_for_block(e4b, block);
	block = block >> order;
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

	ex->fe_len = 1 << order;
	ex->fe_start = block << order;
	ex->fe_group = e4b->bd_group;

	/* calc difference from given start */
	next = next - ex->fe_start;
	ex->fe_len -= next;
	ex->fe_start += next;

	while (needed > ex->fe_len &&
	       (buddy = mb_find_buddy(e4b, order, &max))) {

		if (block + 1 >= max)
			break;

		next = (block + 1) * (1 << order);
1382
		if (mb_test_bit(next, e4b->bd_bitmap))
1383 1384
			break;

1385
		order = mb_find_order_for_block(e4b, next);
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

		block = next >> order;
		ex->fe_len += 1 << order;
	}

	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
	return ex->fe_len;
}

static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
{
	int ord;
	int mlen = 0;
	int max = 0;
	int cur;
	int start = ex->fe_start;
	int len = ex->fe_len;
	unsigned ret = 0;
	int len0 = len;
	void *buddy;

	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
	BUG_ON(e4b->bd_group != ex->fe_group);
1409
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1410 1411 1412 1413 1414 1415 1416 1417 1418
	mb_check_buddy(e4b);
	mb_mark_used_double(e4b, start, len);

	e4b->bd_info->bb_free -= len;
	if (e4b->bd_info->bb_first_free == start)
		e4b->bd_info->bb_first_free += len;

	/* let's maintain fragments counter */
	if (start != 0)
1419
		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1420
	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1421
		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	if (mlen && max)
		e4b->bd_info->bb_fragments++;
	else if (!mlen && !max)
		e4b->bd_info->bb_fragments--;

	/* let's maintain buddy itself */
	while (len) {
		ord = mb_find_order_for_block(e4b, start);

		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
			/* the whole chunk may be allocated at once! */
			mlen = 1 << ord;
			buddy = mb_find_buddy(e4b, ord, &max);
			BUG_ON((start >> ord) >= max);
			mb_set_bit(start >> ord, buddy);
			e4b->bd_info->bb_counters[ord]--;
			start += mlen;
			len -= mlen;
			BUG_ON(len < 0);
			continue;
		}

		/* store for history */
		if (ret == 0)
			ret = len | (ord << 16);

		/* we have to split large buddy */
		BUG_ON(ord <= 0);
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_set_bit(start >> ord, buddy);
		e4b->bd_info->bb_counters[ord]--;

		ord--;
		cur = (start >> ord) & ~1U;
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_clear_bit(cur, buddy);
		mb_clear_bit(cur + 1, buddy);
		e4b->bd_info->bb_counters[ord]++;
		e4b->bd_info->bb_counters[ord]++;
	}
1462
	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1463

1464
	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	mb_check_buddy(e4b);

	return ret;
}

/*
 * Must be called under group lock!
 */
static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int ret;

	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
	ret = mb_mark_used(e4b, &ac->ac_b_ex);

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_tail = ret & 0xffff;
	ac->ac_buddy = ret >> 16;

1494 1495 1496 1497 1498 1499 1500
	/*
	 * take the page reference. We want the page to be pinned
	 * so that we don't get a ext4_mb_init_cache_call for this
	 * group until we update the bitmap. That would mean we
	 * double allocate blocks. The reference is dropped
	 * in ext4_mb_release_context
	 */
1501 1502 1503 1504 1505
	ac->ac_bitmap_page = e4b->bd_bitmap_page;
	get_page(ac->ac_bitmap_page);
	ac->ac_buddy_page = e4b->bd_buddy_page;
	get_page(ac->ac_buddy_page);
	/* store last allocated for subsequent stream allocation */
1506
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
		spin_lock(&sbi->s_md_lock);
		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
		spin_unlock(&sbi->s_md_lock);
	}
}

/*
 * regular allocator, for general purposes allocation
 */

static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b,
					int finish_group)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;
	struct ext4_free_extent ex;
	int max;

1528 1529
	if (ac->ac_status == AC_STATUS_FOUND)
		return;
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	/*
	 * We don't want to scan for a whole year
	 */
	if (ac->ac_found > sbi->s_mb_max_to_scan &&
			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		ac->ac_status = AC_STATUS_BREAK;
		return;
	}

	/*
	 * Haven't found good chunk so far, let's continue
	 */
	if (bex->fe_len < gex->fe_len)
		return;

	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
			&& bex->fe_group == e4b->bd_group) {
		/* recheck chunk's availability - we don't know
		 * when it was found (within this lock-unlock
		 * period or not) */
1550
		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
		if (max >= gex->fe_len) {
			ext4_mb_use_best_found(ac, e4b);
			return;
		}
	}
}

/*
 * The routine checks whether found extent is good enough. If it is,
 * then the extent gets marked used and flag is set to the context
 * to stop scanning. Otherwise, the extent is compared with the
 * previous found extent and if new one is better, then it's stored
 * in the context. Later, the best found extent will be used, if
 * mballoc can't find good enough extent.
 *
 * FIXME: real allocation policy is to be designed yet!
 */
static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
					struct ext4_free_extent *ex,
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;

	BUG_ON(ex->fe_len <= 0);
1576 1577
	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);

	ac->ac_found++;

	/*
	 * The special case - take what you catch first
	 */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * Let's check whether the chuck is good enough
	 */
	if (ex->fe_len == gex->fe_len) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * If this is first found extent, just store it in the context
	 */
	if (bex->fe_len == 0) {
		*bex = *ex;
		return;
	}

	/*
	 * If new found extent is better, store it in the context
	 */
	if (bex->fe_len < gex->fe_len) {
		/* if the request isn't satisfied, any found extent
		 * larger than previous best one is better */
		if (ex->fe_len > bex->fe_len)
			*bex = *ex;
	} else if (ex->fe_len > gex->fe_len) {
		/* if the request is satisfied, then we try to find
		 * an extent that still satisfy the request, but is
		 * smaller than previous one */
		if (ex->fe_len < bex->fe_len)
			*bex = *ex;
	}

	ext4_mb_check_limits(ac, e4b, 0);
}

1627 1628
static noinline_for_stack
int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent ex = ac->ac_b_ex;
	ext4_group_t group = ex.fe_group;
	int max;
	int err;

	BUG_ON(ex.fe_len <= 0);
	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
1642
	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1643 1644 1645 1646 1647 1648 1649

	if (max > 0) {
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}

	ext4_unlock_group(ac->ac_sb, group);
1650
	ext4_mb_unload_buddy(e4b);
1651 1652 1653 1654

	return 0;
}

1655 1656
static noinline_for_stack
int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1657 1658 1659 1660 1661 1662
				struct ext4_buddy *e4b)
{
	ext4_group_t group = ac->ac_g_ex.fe_group;
	int max;
	int err;
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1663
	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1664 1665 1666 1667
	struct ext4_free_extent ex;

	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
		return 0;
1668 1669
	if (grp->bb_free == 0)
		return 0;
1670 1671 1672 1673 1674 1675

	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
1676
	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1677 1678 1679 1680 1681
			     ac->ac_g_ex.fe_len, &ex);

	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
		ext4_fsblk_t start;

1682 1683
		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
			ex.fe_start;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		/* use do_div to get remainder (would be 64-bit modulo) */
		if (do_div(start, sbi->s_stripe) == 0) {
			ac->ac_found++;
			ac->ac_b_ex = ex;
			ext4_mb_use_best_found(ac, e4b);
		}
	} else if (max >= ac->ac_g_ex.fe_len) {
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
		/* Sometimes, caller may want to merge even small
		 * number of blocks to an existing extent */
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}
	ext4_unlock_group(ac->ac_sb, group);
1708
	ext4_mb_unload_buddy(e4b);
1709 1710 1711 1712 1713 1714 1715 1716

	return 0;
}

/*
 * The routine scans buddy structures (not bitmap!) from given order
 * to max order and tries to find big enough chunk to satisfy the req
 */
1717 1718
static noinline_for_stack
void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_group_info *grp = e4b->bd_info;
	void *buddy;
	int i;
	int k;
	int max;

	BUG_ON(ac->ac_2order <= 0);
	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
		if (grp->bb_counters[i] == 0)
			continue;

		buddy = mb_find_buddy(e4b, i, &max);
		BUG_ON(buddy == NULL);

1736
		k = mb_find_next_zero_bit(buddy, max, 0);
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
		BUG_ON(k >= max);

		ac->ac_found++;

		ac->ac_b_ex.fe_len = 1 << i;
		ac->ac_b_ex.fe_start = k << i;
		ac->ac_b_ex.fe_group = e4b->bd_group;

		ext4_mb_use_best_found(ac, e4b);

		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);

		if (EXT4_SB(sb)->s_mb_stats)
			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);

		break;
	}
}

/*
 * The routine scans the group and measures all found extents.
 * In order to optimize scanning, caller must pass number of
 * free blocks in the group, so the routine can know upper limit.
 */
1761 1762
static noinline_for_stack
void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1763 1764 1765
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
1766
	void *bitmap = e4b->bd_bitmap;
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	struct ext4_free_extent ex;
	int i;
	int free;

	free = e4b->bd_info->bb_free;
	BUG_ON(free <= 0);

	i = e4b->bd_info->bb_first_free;

	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1777
		i = mb_find_next_zero_bit(bitmap,
1778 1779
						EXT4_CLUSTERS_PER_GROUP(sb), i);
		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1780
			/*
1781
			 * IF we have corrupt bitmap, we won't find any
1782 1783 1784
			 * free blocks even though group info says we
			 * we have free blocks
			 */
1785
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1786
					"%d free clusters as per "
1787
					"group info. But bitmap says 0",
1788
					free);
1789 1790 1791
			break;
		}

1792
		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1793
		BUG_ON(ex.fe_len <= 0);
1794
		if (free < ex.fe_len) {
1795
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1796
					"%d free clusters as per "
1797
					"group info. But got %d blocks",
1798
					free, ex.fe_len);
1799 1800 1801 1802 1803 1804
			/*
			 * The number of free blocks differs. This mostly
			 * indicate that the bitmap is corrupt. So exit
			 * without claiming the space.
			 */
			break;
1805
		}
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

		ext4_mb_measure_extent(ac, &ex, e4b);

		i += ex.fe_len;
		free -= ex.fe_len;
	}

	ext4_mb_check_limits(ac, e4b, 1);
}

/*
 * This is a special case for storages like raid5
1818
 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1819
 */
1820 1821
static noinline_for_stack
void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1822 1823 1824 1825
				 struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
1826
	void *bitmap = e4b->bd_bitmap;
1827 1828 1829 1830 1831 1832 1833 1834 1835
	struct ext4_free_extent ex;
	ext4_fsblk_t first_group_block;
	ext4_fsblk_t a;
	ext4_grpblk_t i;
	int max;

	BUG_ON(sbi->s_stripe == 0);

	/* find first stripe-aligned block in group */
1836 1837
	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);

1838 1839 1840 1841
	a = first_group_block + sbi->s_stripe - 1;
	do_div(a, sbi->s_stripe);
	i = (a * sbi->s_stripe) - first_group_block;

1842
	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1843
		if (!mb_test_bit(i, bitmap)) {
1844
			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
			if (max >= sbi->s_stripe) {
				ac->ac_found++;
				ac->ac_b_ex = ex;
				ext4_mb_use_best_found(ac, e4b);
				break;
			}
		}
		i += sbi->s_stripe;
	}
}

1856
/* This is now called BEFORE we load the buddy bitmap. */
1857 1858 1859 1860
static int ext4_mb_good_group(struct ext4_allocation_context *ac,
				ext4_group_t group, int cr)
{
	unsigned free, fragments;
1861
	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1862 1863 1864
	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);

	BUG_ON(cr < 0 || cr >= 4);
1865

1866 1867 1868 1869 1870 1871
	free = grp->bb_free;
	if (free == 0)
		return 0;
	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
		return 0;

1872 1873 1874 1875 1876 1877
	/* We only do this if the grp has never been initialized */
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
		int ret = ext4_mb_init_group(ac->ac_sb, group);
		if (ret)
			return 0;
	}
1878 1879 1880 1881 1882 1883 1884 1885 1886

	fragments = grp->bb_fragments;
	if (fragments == 0)
		return 0;

	switch (cr) {
	case 0:
		BUG_ON(ac->ac_2order == 0);

1887 1888 1889
		if (grp->bb_largest_free_order < ac->ac_2order)
			return 0;

1890 1891 1892 1893 1894 1895
		/* Avoid using the first bg of a flexgroup for data files */
		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
		    ((group % flex_size) == 0))
			return 0;

1896
		return 1;
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	case 1:
		if ((free / fragments) >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 2:
		if (free >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 3:
		return 1;
	default:
		BUG();
	}

	return 0;
}

1914 1915
static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1916
{
1917
	ext4_group_t ngroups, group, i;
1918 1919 1920 1921 1922 1923 1924 1925
	int cr;
	int err = 0;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	struct ext4_buddy e4b;

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);
1926
	ngroups = ext4_get_groups_count(sb);
1927
	/* non-extent files are limited to low blocks/groups */
1928
	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1929 1930
		ngroups = sbi->s_blockfile_groups;

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	/* first, try the goal */
	err = ext4_mb_find_by_goal(ac, &e4b);
	if (err || ac->ac_status == AC_STATUS_FOUND)
		goto out;

	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		goto out;

	/*
	 * ac->ac2_order is set only if the fe_len is a power of 2
	 * if ac2_order is set we also set criteria to 0 so that we
	 * try exact allocation using buddy.
	 */
	i = fls(ac->ac_g_ex.fe_len);
	ac->ac_2order = 0;
	/*
	 * We search using buddy data only if the order of the request
	 * is greater than equal to the sbi_s_mb_order2_reqs
T
Theodore Ts'o 已提交
1951
	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1952 1953 1954 1955 1956 1957 1958 1959 1960
	 */
	if (i >= sbi->s_mb_order2_reqs) {
		/*
		 * This should tell if fe_len is exactly power of 2
		 */
		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
			ac->ac_2order = i - 1;
	}

1961 1962
	/* if stream allocation is enabled, use global goal */
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1963 1964 1965 1966 1967 1968
		/* TBD: may be hot point */
		spin_lock(&sbi->s_md_lock);
		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
		spin_unlock(&sbi->s_md_lock);
	}
1969

1970 1971 1972 1973 1974 1975 1976 1977 1978
	/* Let's just scan groups to find more-less suitable blocks */
	cr = ac->ac_2order ? 0 : 1;
	/*
	 * cr == 0 try to get exact allocation,
	 * cr == 3  try to get anything
	 */
repeat:
	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
		ac->ac_criteria = cr;
1979 1980 1981 1982 1983 1984
		/*
		 * searching for the right group start
		 * from the goal value specified
		 */
		group = ac->ac_g_ex.fe_group;

1985 1986
		for (i = 0; i < ngroups; group++, i++) {
			if (group == ngroups)
1987 1988
				group = 0;

1989 1990
			/* This now checks without needing the buddy page */
			if (!ext4_mb_good_group(ac, group, cr))
1991 1992 1993 1994 1995 1996 1997
				continue;

			err = ext4_mb_load_buddy(sb, group, &e4b);
			if (err)
				goto out;

			ext4_lock_group(sb, group);
1998 1999 2000 2001 2002

			/*
			 * We need to check again after locking the
			 * block group
			 */
2003 2004
			if (!ext4_mb_good_group(ac, group, cr)) {
				ext4_unlock_group(sb, group);
2005
				ext4_mb_unload_buddy(&e4b);
2006 2007 2008 2009
				continue;
			}

			ac->ac_groups_scanned++;
2010
			if (cr == 0)
2011
				ext4_mb_simple_scan_group(ac, &e4b);
2012 2013
			else if (cr == 1 && sbi->s_stripe &&
					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2014 2015 2016 2017 2018
				ext4_mb_scan_aligned(ac, &e4b);
			else
				ext4_mb_complex_scan_group(ac, &e4b);

			ext4_unlock_group(sb, group);
2019
			ext4_mb_unload_buddy(&e4b);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

			if (ac->ac_status != AC_STATUS_CONTINUE)
				break;
		}
	}

	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		/*
		 * We've been searching too long. Let's try to allocate
		 * the best chunk we've found so far
		 */

		ext4_mb_try_best_found(ac, &e4b);
		if (ac->ac_status != AC_STATUS_FOUND) {
			/*
			 * Someone more lucky has already allocated it.
			 * The only thing we can do is just take first
			 * found block(s)
			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
			 */
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			ac->ac_flags |= EXT4_MB_HINT_FIRST;
			cr = 3;
			atomic_inc(&sbi->s_mb_lost_chunks);
			goto repeat;
		}
	}
out:
	return err;
}

static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

2060
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2061 2062
		return NULL;
	group = *pos + 1;
2063
	return (void *) ((unsigned long) group);
2064 2065 2066 2067 2068 2069 2070 2071
}

static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

	++*pos;
2072
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2073 2074
		return NULL;
	group = *pos + 1;
2075
	return (void *) ((unsigned long) group);
2076 2077 2078 2079 2080
}

static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
{
	struct super_block *sb = seq->private;
2081
	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2082
	int i;
2083
	int err, buddy_loaded = 0;
2084
	struct ext4_buddy e4b;
2085
	struct ext4_group_info *grinfo;
2086 2087
	struct sg {
		struct ext4_group_info info;
2088
		ext4_grpblk_t counters[16];
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	} sg;

	group--;
	if (group == 0)
		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
			   "group", "free", "frags", "first",
			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");

	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
		sizeof(struct ext4_group_info);
2102 2103 2104 2105 2106 2107 2108 2109 2110
	grinfo = ext4_get_group_info(sb, group);
	/* Load the group info in memory only if not already loaded. */
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
		err = ext4_mb_load_buddy(sb, group, &e4b);
		if (err) {
			seq_printf(seq, "#%-5u: I/O error\n", group);
			return 0;
		}
		buddy_loaded = 1;
2111
	}
2112

2113
	memcpy(&sg, ext4_get_group_info(sb, group), i);
2114 2115 2116

	if (buddy_loaded)
		ext4_mb_unload_buddy(&e4b);
2117

2118
	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
			sg.info.bb_fragments, sg.info.bb_first_free);
	for (i = 0; i <= 13; i++)
		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
				sg.info.bb_counters[i] : 0);
	seq_printf(seq, " ]\n");

	return 0;
}

static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
{
}

2132
static const struct seq_operations ext4_mb_seq_groups_ops = {
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	.start  = ext4_mb_seq_groups_start,
	.next   = ext4_mb_seq_groups_next,
	.stop   = ext4_mb_seq_groups_stop,
	.show   = ext4_mb_seq_groups_show,
};

static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
{
	struct super_block *sb = PDE(inode)->data;
	int rc;

	rc = seq_open(file, &ext4_mb_seq_groups_ops);
	if (rc == 0) {
2146
		struct seq_file *m = file->private_data;
2147 2148 2149 2150 2151 2152
		m->private = sb;
	}
	return rc;

}

2153
static const struct file_operations ext4_mb_seq_groups_fops = {
2154 2155 2156 2157 2158 2159 2160
	.owner		= THIS_MODULE,
	.open		= ext4_mb_seq_groups_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

2161 2162 2163 2164 2165 2166 2167 2168
static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
{
	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];

	BUG_ON(!cachep);
	return cachep;
}
2169

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
/*
 * Allocate the top-level s_group_info array for the specified number
 * of groups
 */
int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	unsigned size;
	struct ext4_group_info ***new_groupinfo;

	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
		EXT4_DESC_PER_BLOCK_BITS(sb);
	if (size <= sbi->s_group_info_size)
		return 0;

	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
	if (!new_groupinfo) {
		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
		return -ENOMEM;
	}
	if (sbi->s_group_info) {
		memcpy(new_groupinfo, sbi->s_group_info,
		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
		ext4_kvfree(sbi->s_group_info);
	}
	sbi->s_group_info = new_groupinfo;
	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 
		   sbi->s_group_info_size);
	return 0;
}

2203
/* Create and initialize ext4_group_info data for the given group. */
2204
int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2205 2206
			  struct ext4_group_desc *desc)
{
2207
	int i;
2208 2209 2210
	int metalen = 0;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_group_info **meta_group_info;
2211
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222

	/*
	 * First check if this group is the first of a reserved block.
	 * If it's true, we have to allocate a new table of pointers
	 * to ext4_group_info structures
	 */
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
		metalen = sizeof(*meta_group_info) <<
			EXT4_DESC_PER_BLOCK_BITS(sb);
		meta_group_info = kmalloc(metalen, GFP_KERNEL);
		if (meta_group_info == NULL) {
2223
			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2224
				 "for a buddy group");
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
			goto exit_meta_group_info;
		}
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
			meta_group_info;
	}

	meta_group_info =
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);

2235
	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2236
	if (meta_group_info[i] == NULL) {
2237
		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
		goto exit_group_info;
	}
	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
		&(meta_group_info[i]->bb_state));

	/*
	 * initialize bb_free to be able to skip
	 * empty groups without initialization
	 */
	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		meta_group_info[i]->bb_free =
2249
			ext4_free_clusters_after_init(sb, group, desc);
2250 2251
	} else {
		meta_group_info[i]->bb_free =
2252
			ext4_free_group_clusters(sb, desc);
2253 2254 2255
	}

	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2256
	init_rwsem(&meta_group_info[i]->alloc_sem);
2257
	meta_group_info[i]->bb_free_root = RB_ROOT;
2258
	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

#ifdef DOUBLE_CHECK
	{
		struct buffer_head *bh;
		meta_group_info[i]->bb_bitmap =
			kmalloc(sb->s_blocksize, GFP_KERNEL);
		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
		bh = ext4_read_block_bitmap(sb, group);
		BUG_ON(bh == NULL);
		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
			sb->s_blocksize);
		put_bh(bh);
	}
#endif

	return 0;

exit_group_info:
	/* If a meta_group_info table has been allocated, release it now */
2278
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2279
		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2280 2281
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
	}
2282 2283 2284 2285
exit_meta_group_info:
	return -ENOMEM;
} /* ext4_mb_add_groupinfo */

2286 2287
static int ext4_mb_init_backend(struct super_block *sb)
{
2288
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2289 2290
	ext4_group_t i;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2291
	int err;
2292
	struct ext4_group_desc *desc;
2293
	struct kmem_cache *cachep;
2294

2295 2296 2297
	err = ext4_mb_alloc_groupinfo(sb, ngroups);
	if (err)
		return err;
2298 2299 2300

	sbi->s_buddy_cache = new_inode(sb);
	if (sbi->s_buddy_cache == NULL) {
2301
		ext4_msg(sb, KERN_ERR, "can't get new inode");
2302 2303
		goto err_freesgi;
	}
2304 2305 2306 2307 2308
	/* To avoid potentially colliding with an valid on-disk inode number,
	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
	 * not in the inode hash, so it should never be found by iget(), but
	 * this will avoid confusion if it ever shows up during debugging. */
	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2309
	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2310
	for (i = 0; i < ngroups; i++) {
2311 2312
		desc = ext4_get_group_desc(sb, i, NULL);
		if (desc == NULL) {
2313
			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2314 2315
			goto err_freebuddy;
		}
2316 2317
		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
			goto err_freebuddy;
2318 2319 2320 2321 2322
	}

	return 0;

err_freebuddy:
2323
	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2324
	while (i-- > 0)
2325
		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2326
	i = sbi->s_group_info_size;
2327
	while (i-- > 0)
2328 2329 2330
		kfree(sbi->s_group_info[i]);
	iput(sbi->s_buddy_cache);
err_freesgi:
2331
	ext4_kvfree(sbi->s_group_info);
2332 2333 2334
	return -ENOMEM;
}

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
static void ext4_groupinfo_destroy_slabs(void)
{
	int i;

	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
		if (ext4_groupinfo_caches[i])
			kmem_cache_destroy(ext4_groupinfo_caches[i]);
		ext4_groupinfo_caches[i] = NULL;
	}
}

static int ext4_groupinfo_create_slab(size_t size)
{
	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
	int slab_size;
	int blocksize_bits = order_base_2(size);
	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	struct kmem_cache *cachep;

	if (cache_index >= NR_GRPINFO_CACHES)
		return -EINVAL;

	if (unlikely(cache_index < 0))
		cache_index = 0;

	mutex_lock(&ext4_grpinfo_slab_create_mutex);
	if (ext4_groupinfo_caches[cache_index]) {
		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
		return 0;	/* Already created */
	}

	slab_size = offsetof(struct ext4_group_info,
				bb_counters[blocksize_bits + 2]);

	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
					NULL);

2373 2374
	ext4_groupinfo_caches[cache_index] = cachep;

2375 2376
	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
	if (!cachep) {
2377 2378
		printk(KERN_EMERG
		       "EXT4-fs: no memory for groupinfo slab cache\n");
2379 2380 2381 2382 2383 2384
		return -ENOMEM;
	}

	return 0;
}

2385
int ext4_mb_init(struct super_block *sb)
2386 2387
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2388
	unsigned i, j;
2389 2390
	unsigned offset;
	unsigned max;
2391
	int ret;
2392

2393
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2394 2395 2396

	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_offsets == NULL) {
2397 2398
		ret = -ENOMEM;
		goto out;
2399
	}
2400

2401
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2402 2403
	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_maxs == NULL) {
2404 2405 2406 2407
		ret = -ENOMEM;
		goto out;
	}

2408 2409 2410
	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
	if (ret < 0)
		goto out;
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434

	/* order 0 is regular bitmap */
	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
	sbi->s_mb_offsets[0] = 0;

	i = 1;
	offset = 0;
	max = sb->s_blocksize << 2;
	do {
		sbi->s_mb_offsets[i] = offset;
		sbi->s_mb_maxs[i] = max;
		offset += 1 << (sb->s_blocksize_bits - i);
		max = max >> 1;
		i++;
	} while (i <= sb->s_blocksize_bits + 1);

	spin_lock_init(&sbi->s_md_lock);
	spin_lock_init(&sbi->s_bal_lock);

	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
	sbi->s_mb_stats = MB_DEFAULT_STATS;
	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	/*
	 * The default group preallocation is 512, which for 4k block
	 * sizes translates to 2 megabytes.  However for bigalloc file
	 * systems, this is probably too big (i.e, if the cluster size
	 * is 1 megabyte, then group preallocation size becomes half a
	 * gigabyte!).  As a default, we will keep a two megabyte
	 * group pralloc size for cluster sizes up to 64k, and after
	 * that, we will force a minimum group preallocation size of
	 * 32 clusters.  This translates to 8 megs when the cluster
	 * size is 256k, and 32 megs when the cluster size is 1 meg,
	 * which seems reasonable as a default.
	 */
	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
				       sbi->s_cluster_bits, 32);
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	/*
	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
	 * to the lowest multiple of s_stripe which is bigger than
	 * the s_mb_group_prealloc as determined above. We want
	 * the preallocation size to be an exact multiple of the
	 * RAID stripe size so that preallocations don't fragment
	 * the stripes.
	 */
	if (sbi->s_stripe > 1) {
		sbi->s_mb_group_prealloc = roundup(
			sbi->s_mb_group_prealloc, sbi->s_stripe);
	}
2461

2462
	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2463
	if (sbi->s_locality_groups == NULL) {
2464
		ret = -ENOMEM;
2465
		goto out_free_groupinfo_slab;
2466
	}
2467
	for_each_possible_cpu(i) {
2468
		struct ext4_locality_group *lg;
2469
		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2470
		mutex_init(&lg->lg_mutex);
2471 2472
		for (j = 0; j < PREALLOC_TB_SIZE; j++)
			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2473 2474 2475
		spin_lock_init(&lg->lg_prealloc_lock);
	}

2476 2477
	/* init file for buddy data */
	ret = ext4_mb_init_backend(sb);
2478 2479
	if (ret != 0)
		goto out_free_locality_groups;
2480

2481 2482 2483
	if (sbi->s_proc)
		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
				 &ext4_mb_seq_groups_fops, sb);
2484

2485 2486 2487 2488 2489 2490 2491
	return 0;

out_free_locality_groups:
	free_percpu(sbi->s_locality_groups);
	sbi->s_locality_groups = NULL;
out_free_groupinfo_slab:
	ext4_groupinfo_destroy_slabs();
2492
out:
2493 2494 2495 2496
	kfree(sbi->s_mb_offsets);
	sbi->s_mb_offsets = NULL;
	kfree(sbi->s_mb_maxs);
	sbi->s_mb_maxs = NULL;
2497
	return ret;
2498 2499
}

2500
/* need to called with the ext4 group lock held */
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
{
	struct ext4_prealloc_space *pa;
	struct list_head *cur, *tmp;
	int count = 0;

	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		list_del(&pa->pa_group_list);
		count++;
2511
		kmem_cache_free(ext4_pspace_cachep, pa);
2512 2513
	}
	if (count)
2514
		mb_debug(1, "mballoc: %u PAs left\n", count);
2515 2516 2517 2518 2519

}

int ext4_mb_release(struct super_block *sb)
{
2520
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2521 2522 2523 2524
	ext4_group_t i;
	int num_meta_group_infos;
	struct ext4_group_info *grinfo;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2525
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2526

2527 2528 2529
	if (sbi->s_proc)
		remove_proc_entry("mb_groups", sbi->s_proc);

2530
	if (sbi->s_group_info) {
2531
		for (i = 0; i < ngroups; i++) {
2532 2533 2534 2535 2536 2537 2538
			grinfo = ext4_get_group_info(sb, i);
#ifdef DOUBLE_CHECK
			kfree(grinfo->bb_bitmap);
#endif
			ext4_lock_group(sb, i);
			ext4_mb_cleanup_pa(grinfo);
			ext4_unlock_group(sb, i);
2539
			kmem_cache_free(cachep, grinfo);
2540
		}
2541
		num_meta_group_infos = (ngroups +
2542 2543 2544 2545
				EXT4_DESC_PER_BLOCK(sb) - 1) >>
			EXT4_DESC_PER_BLOCK_BITS(sb);
		for (i = 0; i < num_meta_group_infos; i++)
			kfree(sbi->s_group_info[i]);
2546
		ext4_kvfree(sbi->s_group_info);
2547 2548 2549 2550 2551 2552
	}
	kfree(sbi->s_mb_offsets);
	kfree(sbi->s_mb_maxs);
	if (sbi->s_buddy_cache)
		iput(sbi->s_buddy_cache);
	if (sbi->s_mb_stats) {
2553 2554
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %u blocks %u reqs (%u success)",
2555 2556 2557
				atomic_read(&sbi->s_bal_allocated),
				atomic_read(&sbi->s_bal_reqs),
				atomic_read(&sbi->s_bal_success));
2558 2559 2560
		ext4_msg(sb, KERN_INFO,
		      "mballoc: %u extents scanned, %u goal hits, "
				"%u 2^N hits, %u breaks, %u lost",
2561 2562 2563 2564 2565
				atomic_read(&sbi->s_bal_ex_scanned),
				atomic_read(&sbi->s_bal_goals),
				atomic_read(&sbi->s_bal_2orders),
				atomic_read(&sbi->s_bal_breaks),
				atomic_read(&sbi->s_mb_lost_chunks));
2566 2567
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %lu generated and it took %Lu",
2568
				sbi->s_mb_buddies_generated,
2569
				sbi->s_mb_generation_time);
2570 2571
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %u preallocated, %u discarded",
2572 2573 2574 2575
				atomic_read(&sbi->s_mb_preallocated),
				atomic_read(&sbi->s_mb_discarded));
	}

2576
	free_percpu(sbi->s_locality_groups);
2577 2578 2579 2580

	return 0;
}

2581
static inline int ext4_issue_discard(struct super_block *sb,
2582
		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2583 2584 2585
{
	ext4_fsblk_t discard_block;

2586 2587 2588
	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
			 ext4_group_first_block_no(sb, block_group));
	count = EXT4_C2B(EXT4_SB(sb), count);
2589 2590
	trace_ext4_discard_blocks(sb,
			(unsigned long long) discard_block, count);
2591
	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2592 2593
}

2594 2595 2596 2597
/*
 * This function is called by the jbd2 layer once the commit has finished,
 * so we know we can free the blocks that were released with that commit.
 */
B
Bobi Jam 已提交
2598 2599 2600
static void ext4_free_data_callback(struct super_block *sb,
				    struct ext4_journal_cb_entry *jce,
				    int rc)
2601
{
B
Bobi Jam 已提交
2602
	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2603
	struct ext4_buddy e4b;
2604
	struct ext4_group_info *db;
2605
	int err, count = 0, count2 = 0;
2606

B
Bobi Jam 已提交
2607 2608
	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
		 entry->efd_count, entry->efd_group, entry);
2609

B
Bobi Jam 已提交
2610 2611 2612
	if (test_opt(sb, DISCARD))
		ext4_issue_discard(sb, entry->efd_group,
				   entry->efd_start_cluster, entry->efd_count);
2613

B
Bobi Jam 已提交
2614 2615 2616
	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
	/* we expect to find existing buddy because it's pinned */
	BUG_ON(err != 0);
2617

2618

B
Bobi Jam 已提交
2619 2620 2621 2622 2623 2624 2625 2626
	db = e4b.bd_info;
	/* there are blocks to put in buddy to make them really free */
	count += entry->efd_count;
	count2++;
	ext4_lock_group(sb, entry->efd_group);
	/* Take it out of per group rb tree */
	rb_erase(&entry->efd_node, &(db->bb_free_root));
	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2627

B
Bobi Jam 已提交
2628 2629 2630 2631 2632 2633 2634 2635
	/*
	 * Clear the trimmed flag for the group so that the next
	 * ext4_trim_fs can trim it.
	 * If the volume is mounted with -o discard, online discard
	 * is supported and the free blocks will be trimmed online.
	 */
	if (!test_opt(sb, DISCARD))
		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2636

B
Bobi Jam 已提交
2637 2638 2639 2640 2641 2642
	if (!db->bb_free_root.rb_node) {
		/* No more items in the per group rb tree
		 * balance refcounts from ext4_mb_free_metadata()
		 */
		page_cache_release(e4b.bd_buddy_page);
		page_cache_release(e4b.bd_bitmap_page);
2643
	}
B
Bobi Jam 已提交
2644 2645 2646
	ext4_unlock_group(sb, entry->efd_group);
	kmem_cache_free(ext4_free_data_cachep, entry);
	ext4_mb_unload_buddy(&e4b);
2647

2648
	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2649 2650
}

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
#ifdef CONFIG_EXT4_DEBUG
u8 mb_enable_debug __read_mostly;

static struct dentry *debugfs_dir;
static struct dentry *debugfs_debug;

static void __init ext4_create_debugfs_entry(void)
{
	debugfs_dir = debugfs_create_dir("ext4", NULL);
	if (debugfs_dir)
		debugfs_debug = debugfs_create_u8("mballoc-debug",
						  S_IRUGO | S_IWUSR,
						  debugfs_dir,
						  &mb_enable_debug);
}

static void ext4_remove_debugfs_entry(void)
{
	debugfs_remove(debugfs_debug);
	debugfs_remove(debugfs_dir);
}

#else

static void __init ext4_create_debugfs_entry(void)
{
}

static void ext4_remove_debugfs_entry(void)
{
}

#endif

2685
int __init ext4_init_mballoc(void)
2686
{
2687 2688
	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
					SLAB_RECLAIM_ACCOUNT);
2689 2690 2691
	if (ext4_pspace_cachep == NULL)
		return -ENOMEM;

2692 2693
	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
				    SLAB_RECLAIM_ACCOUNT);
2694 2695 2696 2697
	if (ext4_ac_cachep == NULL) {
		kmem_cache_destroy(ext4_pspace_cachep);
		return -ENOMEM;
	}
2698

B
Bobi Jam 已提交
2699 2700 2701
	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
					   SLAB_RECLAIM_ACCOUNT);
	if (ext4_free_data_cachep == NULL) {
2702 2703 2704 2705
		kmem_cache_destroy(ext4_pspace_cachep);
		kmem_cache_destroy(ext4_ac_cachep);
		return -ENOMEM;
	}
2706
	ext4_create_debugfs_entry();
2707 2708 2709
	return 0;
}

2710
void ext4_exit_mballoc(void)
2711
{
2712
	/*
2713 2714 2715 2716
	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
	 * before destroying the slab cache.
	 */
	rcu_barrier();
2717
	kmem_cache_destroy(ext4_pspace_cachep);
2718
	kmem_cache_destroy(ext4_ac_cachep);
B
Bobi Jam 已提交
2719
	kmem_cache_destroy(ext4_free_data_cachep);
2720
	ext4_groupinfo_destroy_slabs();
2721
	ext4_remove_debugfs_entry();
2722 2723 2724 2725
}


/*
2726
 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2727 2728
 * Returns 0 if success or error code
 */
2729 2730
static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2731
				handle_t *handle, unsigned int reserv_clstrs)
2732 2733 2734 2735 2736 2737 2738
{
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_group_desc *gdp;
	struct buffer_head *gdp_bh;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block;
2739
	int err, len;
2740 2741 2742 2743 2744 2745 2746 2747

	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(ac->ac_b_ex.fe_len <= 0);

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);

	err = -EIO;
2748
	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
	if (!bitmap_bh)
		goto out_err;

	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto out_err;

	err = -EIO;
	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
	if (!gdp)
		goto out_err;

2761
	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2762
			ext4_free_group_clusters(sb, gdp));
2763

2764 2765 2766 2767
	err = ext4_journal_get_write_access(handle, gdp_bh);
	if (err)
		goto out_err;

2768
	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2769

2770
	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2771
	if (!ext4_data_block_valid(sbi, block, len)) {
2772
		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2773
			   "fs metadata", block, block+len);
2774 2775 2776 2777
		/* File system mounted not to panic on error
		 * Fix the bitmap and repeat the block allocation
		 * We leak some of the blocks here.
		 */
2778
		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2779 2780
		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
			      ac->ac_b_ex.fe_len);
2781
		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2782
		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2783 2784 2785
		if (!err)
			err = -EAGAIN;
		goto out_err;
2786
	}
2787 2788

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2789 2790 2791 2792 2793 2794 2795 2796 2797
#ifdef AGGRESSIVE_CHECK
	{
		int i;
		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
						bitmap_bh->b_data));
		}
	}
#endif
2798 2799
	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
		      ac->ac_b_ex.fe_len);
2800 2801
	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2802
		ext4_free_group_clusters_set(sb, gdp,
2803
					     ext4_free_clusters_after_init(sb,
2804
						ac->ac_b_ex.fe_group, gdp));
2805
	}
2806 2807
	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
	ext4_free_group_clusters_set(sb, gdp, len);
2808
	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2809
	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2810 2811

	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2812
	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2813
	/*
2814
	 * Now reduce the dirty block count also. Should not go negative
2815
	 */
2816 2817
	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
		/* release all the reserved blocks if non delalloc */
2818 2819
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
				   reserv_clstrs);
2820

2821 2822 2823
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi,
							  ac->ac_b_ex.fe_group);
2824
		atomic_sub(ac->ac_b_ex.fe_len,
2825
			   &sbi->s_flex_groups[flex_group].free_clusters);
2826 2827
	}

2828
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2829 2830
	if (err)
		goto out_err;
2831
	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2832 2833

out_err:
2834
	brelse(bitmap_bh);
2835 2836 2837 2838 2839
	return err;
}

/*
 * here we normalize request for locality group
2840 2841 2842
 * Group request are normalized to s_mb_group_prealloc, which goes to
 * s_strip if we set the same via mount option.
 * s_mb_group_prealloc can be configured via
T
Theodore Ts'o 已提交
2843
 * /sys/fs/ext4/<partition>/mb_group_prealloc
2844 2845 2846 2847 2848 2849 2850 2851 2852
 *
 * XXX: should we try to preallocate more than the group has now?
 */
static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;

	BUG_ON(lg == NULL);
2853
	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2854
	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2855 2856 2857 2858 2859 2860 2861
		current->pid, ac->ac_g_ex.fe_len);
}

/*
 * Normalization means making request better in terms of
 * size and alignment
 */
2862 2863
static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2864 2865
				struct ext4_allocation_request *ar)
{
2866
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2867 2868
	int bsbits, max;
	ext4_lblk_t end;
2869 2870
	loff_t size, start_off;
	loff_t orig_size __maybe_unused;
2871
	ext4_lblk_t start;
2872
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2873
	struct ext4_prealloc_space *pa;
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897

	/* do normalize only data requests, metadata requests
	   do not need preallocation */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

	/* sometime caller may want exact blocks */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

	/* caller may indicate that preallocation isn't
	 * required (it's a tail, for example) */
	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
		return;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
		ext4_mb_normalize_group_request(ac);
		return ;
	}

	bsbits = ac->ac_sb->s_blocksize_bits;

	/* first, let's learn actual file size
	 * given current request is allocated */
2898
	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2899 2900 2901
	size = size << bsbits;
	if (size < i_size_read(ac->ac_inode))
		size = i_size_read(ac->ac_inode);
2902
	orig_size = size;
2903

2904 2905
	/* max size of free chunks */
	max = 2 << bsbits;
2906

2907 2908
#define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
		(req <= (size) || max <= (chunk_size))
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926

	/* first, try to predict filesize */
	/* XXX: should this table be tunable? */
	start_off = 0;
	if (size <= 16 * 1024) {
		size = 16 * 1024;
	} else if (size <= 32 * 1024) {
		size = 32 * 1024;
	} else if (size <= 64 * 1024) {
		size = 64 * 1024;
	} else if (size <= 128 * 1024) {
		size = 128 * 1024;
	} else if (size <= 256 * 1024) {
		size = 256 * 1024;
	} else if (size <= 512 * 1024) {
		size = 512 * 1024;
	} else if (size <= 1024 * 1024) {
		size = 1024 * 1024;
2927
	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2928
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2929 2930 2931
						(21 - bsbits)) << 21;
		size = 2 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2932 2933 2934 2935
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(22 - bsbits)) << 22;
		size = 4 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2936
					(8<<20)>>bsbits, max, 8 * 1024)) {
2937 2938 2939 2940 2941 2942 2943
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(23 - bsbits)) << 23;
		size = 8 * 1024 * 1024;
	} else {
		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
		size	  = ac->ac_o_ex.fe_len << bsbits;
	}
2944 2945
	size = size >> bsbits;
	start = start_off >> bsbits;
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958

	/* don't cover already allocated blocks in selected range */
	if (ar->pleft && start <= ar->lleft) {
		size -= ar->lleft + 1 - start;
		start = ar->lleft + 1;
	}
	if (ar->pright && start + size - 1 >= ar->lright)
		size -= start + size - ar->lright;

	end = start + size;

	/* check we don't cross already preallocated blocks */
	rcu_read_lock();
2959
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2960
		ext4_lblk_t pa_end;
2961 2962 2963 2964 2965 2966 2967 2968 2969

		if (pa->pa_deleted)
			continue;
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

2970 2971
		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
						  pa->pa_len);
2972 2973 2974 2975 2976

		/* PA must not overlap original request */
		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
			ac->ac_o_ex.fe_logical < pa->pa_lstart));

2977 2978
		/* skip PAs this normalized request doesn't overlap with */
		if (pa->pa_lstart >= end || pa_end <= start) {
2979 2980 2981 2982 2983
			spin_unlock(&pa->pa_lock);
			continue;
		}
		BUG_ON(pa->pa_lstart <= start && pa_end >= end);

2984
		/* adjust start or end to be adjacent to this pa */
2985 2986 2987
		if (pa_end <= ac->ac_o_ex.fe_logical) {
			BUG_ON(pa_end < start);
			start = pa_end;
2988
		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
			BUG_ON(pa->pa_lstart > end);
			end = pa->pa_lstart;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();
	size = end - start;

	/* XXX: extra loop to check we really don't overlap preallocations */
	rcu_read_lock();
2999
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3000
		ext4_lblk_t pa_end;
3001

3002 3003
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0) {
3004 3005
			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
							  pa->pa_len);
3006 3007 3008 3009 3010 3011 3012 3013
			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	if (start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical) {
3014 3015 3016 3017
		ext4_msg(ac->ac_sb, KERN_ERR,
			 "start %lu, size %lu, fe_logical %lu",
			 (unsigned long) start, (unsigned long) size,
			 (unsigned long) ac->ac_o_ex.fe_logical);
3018 3019 3020
	}
	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical);
3021
	BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3022 3023 3024 3025 3026 3027

	/* now prepare goal request */

	/* XXX: is it better to align blocks WRT to logical
	 * placement or satisfy big request as is */
	ac->ac_g_ex.fe_logical = start;
3028
	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045

	/* define goal start in order to merge */
	if (ar->pright && (ar->lright == (start + size))) {
		/* merge to the right */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}
	if (ar->pleft && (ar->lleft + 1 == start)) {
		/* merge to the left */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}

3046
	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
		(unsigned) orig_size, (unsigned) start);
}

static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);

	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
		atomic_inc(&sbi->s_bal_reqs);
		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3057
		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3058 3059 3060 3061 3062 3063 3064 3065 3066
			atomic_inc(&sbi->s_bal_success);
		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
			atomic_inc(&sbi->s_bal_goals);
		if (ac->ac_found > sbi->s_mb_max_to_scan)
			atomic_inc(&sbi->s_bal_breaks);
	}

3067 3068 3069 3070
	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
		trace_ext4_mballoc_alloc(ac);
	else
		trace_ext4_mballoc_prealloc(ac);
3071 3072
}

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
/*
 * Called on failure; free up any blocks from the inode PA for this
 * context.  We don't need this for MB_GROUP_PA because we only change
 * pa_free in ext4_mb_release_context(), but on failure, we've already
 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
 */
static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
{
	struct ext4_prealloc_space *pa = ac->ac_pa;

3083 3084
	if (pa && pa->pa_type == MB_INODE_PA)
		pa->pa_free += ac->ac_b_ex.fe_len;
3085 3086
}

3087 3088 3089 3090 3091 3092
/*
 * use blocks preallocated to inode
 */
static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
3093
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3094 3095 3096 3097 3098 3099
	ext4_fsblk_t start;
	ext4_fsblk_t end;
	int len;

	/* found preallocated blocks, use them */
	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3100 3101 3102
	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
	len = EXT4_NUM_B2C(sbi, end - start);
3103 3104 3105 3106 3107 3108 3109
	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	BUG_ON(start < pa->pa_pstart);
3110
	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3111 3112 3113
	BUG_ON(pa->pa_free < len);
	pa->pa_free -= len;

3114
	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3115 3116 3117 3118 3119 3120 3121 3122
}

/*
 * use blocks preallocated to locality group
 */
static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
3123
	unsigned int len = ac->ac_o_ex.fe_len;
3124

3125 3126 3127 3128 3129 3130 3131 3132
	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
					&ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	/* we don't correct pa_pstart or pa_plen here to avoid
3133
	 * possible race when the group is being loaded concurrently
3134
	 * instead we correct pa later, after blocks are marked
3135 3136
	 * in on-disk bitmap -- see ext4_mb_release_context()
	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3137
	 */
3138
	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3139 3140
}

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
/*
 * Return the prealloc space that have minimal distance
 * from the goal block. @cpa is the prealloc
 * space that is having currently known minimal distance
 * from the goal block.
 */
static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
			struct ext4_prealloc_space *pa,
			struct ext4_prealloc_space *cpa)
{
	ext4_fsblk_t cur_distance, new_distance;

	if (cpa == NULL) {
		atomic_inc(&pa->pa_count);
		return pa;
	}
	cur_distance = abs(goal_block - cpa->pa_pstart);
	new_distance = abs(goal_block - pa->pa_pstart);

3161
	if (cur_distance <= new_distance)
3162 3163 3164 3165 3166 3167 3168 3169
		return cpa;

	/* drop the previous reference */
	atomic_dec(&cpa->pa_count);
	atomic_inc(&pa->pa_count);
	return pa;
}

3170 3171 3172
/*
 * search goal blocks in preallocated space
 */
3173 3174
static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3175
{
3176
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3177
	int order, i;
3178 3179
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
	struct ext4_locality_group *lg;
3180 3181
	struct ext4_prealloc_space *pa, *cpa = NULL;
	ext4_fsblk_t goal_block;
3182 3183 3184 3185 3186 3187 3188

	/* only data can be preallocated */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return 0;

	/* first, try per-file preallocation */
	rcu_read_lock();
3189
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3190 3191 3192 3193

		/* all fields in this condition don't change,
		 * so we can skip locking for them */
		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3194 3195
		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
					       EXT4_C2B(sbi, pa->pa_len)))
3196 3197
			continue;

3198
		/* non-extent files can't have physical blocks past 2^32 */
3199
		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3200 3201
		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
		     EXT4_MAX_BLOCK_FILE_PHYS))
3202 3203
			continue;

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
		/* found preallocated blocks, use them */
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0 && pa->pa_free) {
			atomic_inc(&pa->pa_count);
			ext4_mb_use_inode_pa(ac, pa);
			spin_unlock(&pa->pa_lock);
			ac->ac_criteria = 10;
			rcu_read_unlock();
			return 1;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	/* can we use group allocation? */
	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
		return 0;

	/* inode may have no locality group for some reason */
	lg = ac->ac_lg;
	if (lg == NULL)
		return 0;
3226 3227 3228 3229 3230
	order  = fls(ac->ac_o_ex.fe_len) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;

3231
	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3232 3233 3234 3235
	/*
	 * search for the prealloc space that is having
	 * minimal distance from the goal block.
	 */
3236 3237 3238 3239 3240 3241 3242
	for (i = order; i < PREALLOC_TB_SIZE; i++) {
		rcu_read_lock();
		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
					pa_inode_list) {
			spin_lock(&pa->pa_lock);
			if (pa->pa_deleted == 0 &&
					pa->pa_free >= ac->ac_o_ex.fe_len) {
3243 3244 3245

				cpa = ext4_mb_check_group_pa(goal_block,
								pa, cpa);
3246
			}
3247 3248
			spin_unlock(&pa->pa_lock);
		}
3249
		rcu_read_unlock();
3250
	}
3251 3252 3253 3254 3255
	if (cpa) {
		ext4_mb_use_group_pa(ac, cpa);
		ac->ac_criteria = 20;
		return 1;
	}
3256 3257 3258
	return 0;
}

3259 3260 3261 3262
/*
 * the function goes through all block freed in the group
 * but not yet committed and marks them used in in-core bitmap.
 * buddy must be generated from this bitmap
3263
 * Need to be called with the ext4 group lock held
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
 */
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group)
{
	struct rb_node *n;
	struct ext4_group_info *grp;
	struct ext4_free_data *entry;

	grp = ext4_get_group_info(sb, group);
	n = rb_first(&(grp->bb_free_root));

	while (n) {
B
Bobi Jam 已提交
3276 3277
		entry = rb_entry(n, struct ext4_free_data, efd_node);
		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3278 3279 3280 3281 3282
		n = rb_next(n);
	}
	return;
}

3283 3284 3285
/*
 * the function goes through all preallocation in this group and marks them
 * used in in-core bitmap. buddy must be generated from this bitmap
3286
 * Need to be called with ext4 group lock held
3287
 */
3288 3289
static noinline_for_stack
void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
					ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct ext4_prealloc_space *pa;
	struct list_head *cur;
	ext4_group_t groupnr;
	ext4_grpblk_t start;
	int preallocated = 0;
	int len;

	/* all form of preallocation discards first load group,
	 * so the only competing code is preallocation use.
	 * we don't need any locking here
	 * notice we do NOT ignore preallocations with pa_deleted
	 * otherwise we could leave used blocks available for
	 * allocation in buddy when concurrent ext4_mb_put_pa()
	 * is dropping preallocation
	 */
	list_for_each(cur, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		spin_lock(&pa->pa_lock);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
					     &groupnr, &start);
		len = pa->pa_len;
		spin_unlock(&pa->pa_lock);
		if (unlikely(len == 0))
			continue;
		BUG_ON(groupnr != group);
3318
		ext4_set_bits(bitmap, start, len);
3319 3320
		preallocated += len;
	}
3321
	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
}

static void ext4_mb_pa_callback(struct rcu_head *head)
{
	struct ext4_prealloc_space *pa;
	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
	kmem_cache_free(ext4_pspace_cachep, pa);
}

/*
 * drops a reference to preallocated space descriptor
 * if this was the last reference and the space is consumed
 */
static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
			struct super_block *sb, struct ext4_prealloc_space *pa)
{
3338
	ext4_group_t grp;
3339
	ext4_fsblk_t grp_blk;
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353

	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
		return;

	/* in this short window concurrent discard can set pa_deleted */
	spin_lock(&pa->pa_lock);
	if (pa->pa_deleted == 1) {
		spin_unlock(&pa->pa_lock);
		return;
	}

	pa->pa_deleted = 1;
	spin_unlock(&pa->pa_lock);

3354
	grp_blk = pa->pa_pstart;
3355
	/*
3356 3357 3358 3359
	 * If doing group-based preallocation, pa_pstart may be in the
	 * next group when pa is used up
	 */
	if (pa->pa_type == MB_GROUP_PA)
3360 3361 3362
		grp_blk--;

	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

	/*
	 * possible race:
	 *
	 *  P1 (buddy init)			P2 (regular allocation)
	 *					find block B in PA
	 *  copy on-disk bitmap to buddy
	 *  					mark B in on-disk bitmap
	 *					drop PA from group
	 *  mark all PAs in buddy
	 *
	 * thus, P1 initializes buddy with B available. to prevent this
	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
	 * against that pair
	 */
	ext4_lock_group(sb, grp);
	list_del(&pa->pa_group_list);
	ext4_unlock_group(sb, grp);

	spin_lock(pa->pa_obj_lock);
	list_del_rcu(&pa->pa_inode_list);
	spin_unlock(pa->pa_obj_lock);

	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
}

/*
 * creates new preallocated space for given inode
 */
3392 3393
static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3394 3395
{
	struct super_block *sb = ac->ac_sb;
3396
	struct ext4_sb_info *sbi = EXT4_SB(sb);
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;
	struct ext4_inode_info *ei;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
		int winl;
		int wins;
		int win;
		int offs;

		/* we can't allocate as much as normalizer wants.
		 * so, found space must get proper lstart
		 * to cover original request */
		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);

		/* we're limited by original request in that
		 * logical block must be covered any way
		 * winl is window we can move our chunk within */
		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;

		/* also, we should cover whole original request */
3428
		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3429 3430 3431 3432

		/* the smallest one defines real window */
		win = min(winl, wins);

3433 3434
		offs = ac->ac_o_ex.fe_logical %
			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3435 3436 3437
		if (offs && offs < win)
			win = offs;

3438 3439
		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
			EXT4_B2C(sbi, win);
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
	}

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_lstart = ac->ac_b_ex.fe_logical;
	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3454 3455
	INIT_LIST_HEAD(&pa->pa_inode_list);
	INIT_LIST_HEAD(&pa->pa_group_list);
3456
	pa->pa_deleted = 0;
3457
	pa->pa_type = MB_INODE_PA;
3458

3459
	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3460
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3461
	trace_ext4_mb_new_inode_pa(ac, pa);
3462 3463

	ext4_mb_use_inode_pa(ac, pa);
3464
	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485

	ei = EXT4_I(ac->ac_inode);
	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);

	pa->pa_obj_lock = &ei->i_prealloc_lock;
	pa->pa_inode = ac->ac_inode;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

	spin_lock(pa->pa_obj_lock);
	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
	spin_unlock(pa->pa_obj_lock);

	return 0;
}

/*
 * creates new preallocated space for locality group inodes belongs to
 */
3486 3487
static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg;
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	BUG_ON(ext4_pspace_cachep == NULL);
	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_lstart = pa->pa_pstart;
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3514
	INIT_LIST_HEAD(&pa->pa_inode_list);
3515
	INIT_LIST_HEAD(&pa->pa_group_list);
3516
	pa->pa_deleted = 0;
3517
	pa->pa_type = MB_GROUP_PA;
3518

3519
	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3520 3521
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
	trace_ext4_mb_new_group_pa(ac, pa);
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536

	ext4_mb_use_group_pa(ac, pa);
	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);

	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
	lg = ac->ac_lg;
	BUG_ON(lg == NULL);

	pa->pa_obj_lock = &lg->lg_prealloc_lock;
	pa->pa_inode = NULL;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

3537 3538 3539 3540
	/*
	 * We will later add the new pa to the right bucket
	 * after updating the pa_free in ext4_mb_release_context
	 */
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
	return 0;
}

static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
{
	int err;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		err = ext4_mb_new_group_pa(ac);
	else
		err = ext4_mb_new_inode_pa(ac);
	return err;
}

/*
 * finds all unused blocks in on-disk bitmap, frees them in
 * in-core bitmap and buddy.
 * @pa must be unlinked from inode and group lists, so that
 * nobody else can find/use it.
 * the caller MUST hold group/inode locks.
 * TODO: optimize the case when there are no in-core structures yet
 */
3563 3564
static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3565
			struct ext4_prealloc_space *pa)
3566 3567 3568
{
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
3569 3570
	unsigned int end;
	unsigned int next;
3571 3572
	ext4_group_t group;
	ext4_grpblk_t bit;
3573
	unsigned long long grp_blk_start;
3574 3575 3576 3577 3578
	int err = 0;
	int free = 0;

	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3579
	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3580 3581 3582 3583
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	end = bit + pa->pa_len;

	while (bit < end) {
3584
		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3585 3586
		if (bit >= end)
			break;
3587
		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3588
		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3589 3590
			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
			 (unsigned) next - bit, (unsigned) group);
3591 3592
		free += next - bit;

3593
		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3594 3595
		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
						    EXT4_C2B(sbi, bit)),
L
Lukas Czerner 已提交
3596
					       next - bit);
3597 3598 3599 3600
		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
		bit = next + 1;
	}
	if (free != pa->pa_free) {
3601 3602 3603 3604 3605
		ext4_msg(e4b->bd_sb, KERN_CRIT,
			 "pa %p: logic %lu, phys. %lu, len %lu",
			 pa, (unsigned long) pa->pa_lstart,
			 (unsigned long) pa->pa_pstart,
			 (unsigned long) pa->pa_len);
3606
		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3607
					free, pa->pa_free);
3608 3609 3610 3611
		/*
		 * pa is already deleted so we use the value obtained
		 * from the bitmap and continue.
		 */
3612 3613 3614 3615 3616 3617
	}
	atomic_add(free, &sbi->s_mb_discarded);

	return err;
}

3618 3619
static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3620
				struct ext4_prealloc_space *pa)
3621 3622 3623 3624 3625
{
	struct super_block *sb = e4b->bd_sb;
	ext4_group_t group;
	ext4_grpblk_t bit;

3626
	trace_ext4_mb_release_group_pa(sb, pa);
3627 3628 3629 3630 3631
	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3632
	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645

	return 0;
}

/*
 * releases all preallocations in given group
 *
 * first, we need to decide discard policy:
 * - when do we discard
 *   1) ENOSPC
 * - how many do we discard
 *   1) how many requested
 */
3646 3647
static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block *sb,
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
					ext4_group_t group, int needed)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;
	int busy = 0;
	int free = 0;

3659
	mb_debug(1, "discard preallocation for group %u\n", group);
3660 3661 3662 3663

	if (list_empty(&grp->bb_prealloc_list))
		return 0;

3664
	bitmap_bh = ext4_read_block_bitmap(sb, group);
3665
	if (bitmap_bh == NULL) {
3666
		ext4_error(sb, "Error reading block bitmap for %u", group);
3667
		return 0;
3668 3669 3670
	}

	err = ext4_mb_load_buddy(sb, group, &e4b);
3671
	if (err) {
3672
		ext4_error(sb, "Error loading buddy information for %u", group);
3673 3674 3675
		put_bh(bitmap_bh);
		return 0;
	}
3676 3677

	if (needed == 0)
3678
		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733

	INIT_LIST_HEAD(&list);
repeat:
	ext4_lock_group(sb, group);
	list_for_each_entry_safe(pa, tmp,
				&grp->bb_prealloc_list, pa_group_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			spin_unlock(&pa->pa_lock);
			busy = 1;
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;

		/* we can trust pa_free ... */
		free += pa->pa_free;

		spin_unlock(&pa->pa_lock);

		list_del(&pa->pa_group_list);
		list_add(&pa->u.pa_tmp_list, &list);
	}

	/* if we still need more blocks and some PAs were used, try again */
	if (free < needed && busy) {
		busy = 0;
		ext4_unlock_group(sb, group);
		/*
		 * Yield the CPU here so that we don't get soft lockup
		 * in non preempt case.
		 */
		yield();
		goto repeat;
	}

	/* found anything to free? */
	if (list_empty(&list)) {
		BUG_ON(free != 0);
		goto out;
	}

	/* now free all selected PAs */
	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {

		/* remove from object (inode or locality group) */
		spin_lock(pa->pa_obj_lock);
		list_del_rcu(&pa->pa_inode_list);
		spin_unlock(pa->pa_obj_lock);

3734
		if (pa->pa_type == MB_GROUP_PA)
3735
			ext4_mb_release_group_pa(&e4b, pa);
3736
		else
3737
			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3738 3739 3740 3741 3742 3743 3744

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}

out:
	ext4_unlock_group(sb, group);
3745
	ext4_mb_unload_buddy(&e4b);
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	put_bh(bitmap_bh);
	return free;
}

/*
 * releases all non-used preallocated blocks for given inode
 *
 * It's important to discard preallocations under i_data_sem
 * We don't want another block to be served from the prealloc
 * space when we are discarding the inode prealloc space.
 *
 * FIXME!! Make sure it is valid at all the call sites
 */
3759
void ext4_discard_preallocations(struct inode *inode)
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
{
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct super_block *sb = inode->i_sb;
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	ext4_group_t group = 0;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;

3770
	if (!S_ISREG(inode->i_mode)) {
3771 3772 3773 3774
		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
		return;
	}

3775
	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3776
	trace_ext4_discard_preallocations(inode);
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792

	INIT_LIST_HEAD(&list);

repeat:
	/* first, collect all pa's in the inode */
	spin_lock(&ei->i_prealloc_lock);
	while (!list_empty(&ei->i_prealloc_list)) {
		pa = list_entry(ei->i_prealloc_list.next,
				struct ext4_prealloc_space, pa_inode_list);
		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/* this shouldn't happen often - nobody should
			 * use preallocation while we're discarding it */
			spin_unlock(&pa->pa_lock);
			spin_unlock(&ei->i_prealloc_lock);
3793 3794
			ext4_msg(sb, KERN_ERR,
				 "uh-oh! used pa while discarding");
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
			WARN_ON(1);
			schedule_timeout_uninterruptible(HZ);
			goto repeat;

		}
		if (pa->pa_deleted == 0) {
			pa->pa_deleted = 1;
			spin_unlock(&pa->pa_lock);
			list_del_rcu(&pa->pa_inode_list);
			list_add(&pa->u.pa_tmp_list, &list);
			continue;
		}

		/* someone is deleting pa right now */
		spin_unlock(&pa->pa_lock);
		spin_unlock(&ei->i_prealloc_lock);

		/* we have to wait here because pa_deleted
		 * doesn't mean pa is already unlinked from
		 * the list. as we might be called from
		 * ->clear_inode() the inode will get freed
		 * and concurrent thread which is unlinking
		 * pa from inode's list may access already
		 * freed memory, bad-bad-bad */

		/* XXX: if this happens too often, we can
		 * add a flag to force wait only in case
		 * of ->clear_inode(), but not in case of
		 * regular truncate */
		schedule_timeout_uninterruptible(HZ);
		goto repeat;
	}
	spin_unlock(&ei->i_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3830
		BUG_ON(pa->pa_type != MB_INODE_PA);
3831 3832 3833
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);

		err = ext4_mb_load_buddy(sb, group, &e4b);
3834
		if (err) {
3835 3836
			ext4_error(sb, "Error loading buddy information for %u",
					group);
3837 3838
			continue;
		}
3839

3840
		bitmap_bh = ext4_read_block_bitmap(sb, group);
3841
		if (bitmap_bh == NULL) {
3842 3843
			ext4_error(sb, "Error reading block bitmap for %u",
					group);
3844
			ext4_mb_unload_buddy(&e4b);
3845
			continue;
3846 3847 3848 3849
		}

		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
3850
		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3851 3852
		ext4_unlock_group(sb, group);

3853
		ext4_mb_unload_buddy(&e4b);
3854 3855 3856 3857 3858 3859 3860
		put_bh(bitmap_bh);

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

3861
#ifdef CONFIG_EXT4_DEBUG
3862 3863 3864
static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
3865
	ext4_group_t ngroups, i;
3866

3867 3868
	if (!mb_enable_debug ||
	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3869 3870
		return;

3871
	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3872
			" Allocation context details:");
3873
	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3874
			ac->ac_status, ac->ac_flags);
3875
	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3876 3877
		 	"goal %lu/%lu/%lu@%lu, "
			"best %lu/%lu/%lu@%lu cr %d",
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
			(unsigned long)ac->ac_o_ex.fe_group,
			(unsigned long)ac->ac_o_ex.fe_start,
			(unsigned long)ac->ac_o_ex.fe_len,
			(unsigned long)ac->ac_o_ex.fe_logical,
			(unsigned long)ac->ac_g_ex.fe_group,
			(unsigned long)ac->ac_g_ex.fe_start,
			(unsigned long)ac->ac_g_ex.fe_len,
			(unsigned long)ac->ac_g_ex.fe_logical,
			(unsigned long)ac->ac_b_ex.fe_group,
			(unsigned long)ac->ac_b_ex.fe_start,
			(unsigned long)ac->ac_b_ex.fe_len,
			(unsigned long)ac->ac_b_ex.fe_logical,
			(int)ac->ac_criteria);
3891
	ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
3892
		 ac->ac_ex_scanned, ac->ac_found);
3893
	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
3894 3895
	ngroups = ext4_get_groups_count(sb);
	for (i = 0; i < ngroups; i++) {
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
		struct ext4_prealloc_space *pa;
		ext4_grpblk_t start;
		struct list_head *cur;
		ext4_lock_group(sb, i);
		list_for_each(cur, &grp->bb_prealloc_list) {
			pa = list_entry(cur, struct ext4_prealloc_space,
					pa_group_list);
			spin_lock(&pa->pa_lock);
			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
						     NULL, &start);
			spin_unlock(&pa->pa_lock);
3908 3909
			printk(KERN_ERR "PA:%u:%d:%u \n", i,
			       start, pa->pa_len);
3910
		}
3911
		ext4_unlock_group(sb, i);
3912 3913 3914

		if (grp->bb_free == 0)
			continue;
3915
		printk(KERN_ERR "%u: %d/%d \n",
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
		       i, grp->bb_free, grp->bb_fragments);
	}
	printk(KERN_ERR "\n");
}
#else
static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	return;
}
#endif

/*
 * We use locality group preallocation for small size file. The size of the
 * file is determined by the current size or the resulting size after
 * allocation which ever is larger
 *
T
Theodore Ts'o 已提交
3932
 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
 */
static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int bsbits = ac->ac_sb->s_blocksize_bits;
	loff_t size, isize;

	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

3943 3944 3945
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

3946
	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3947 3948
	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
		>> bsbits;
3949

3950 3951 3952 3953 3954 3955 3956
	if ((size == isize) &&
	    !ext4_fs_is_busy(sbi) &&
	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
		return;
	}

3957 3958 3959 3960 3961
	if (sbi->s_mb_group_prealloc <= 0) {
		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
		return;
	}

3962
	/* don't use group allocation for large files */
3963
	size = max(size, isize);
3964
	if (size > sbi->s_mb_stream_request) {
3965
		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3966
		return;
3967
	}
3968 3969 3970 3971 3972 3973 3974

	BUG_ON(ac->ac_lg != NULL);
	/*
	 * locality group prealloc space are per cpu. The reason for having
	 * per cpu locality group is to reduce the contention between block
	 * request from multiple CPUs.
	 */
3975
	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3976 3977 3978 3979 3980 3981 3982 3983

	/* we're going to use group allocation */
	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;

	/* serialize all allocations in the group */
	mutex_lock(&ac->ac_lg->lg_mutex);
}

3984 3985
static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3986 3987 3988 3989 3990 3991
				struct ext4_allocation_request *ar)
{
	struct super_block *sb = ar->inode->i_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_super_block *es = sbi->s_es;
	ext4_group_t group;
3992 3993
	unsigned int len;
	ext4_fsblk_t goal;
3994 3995 3996 3997 3998 3999
	ext4_grpblk_t block;

	/* we can't allocate > group size */
	len = ar->len;

	/* just a dirty hack to filter too big requests  */
4000 4001
	if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10)
		len = EXT4_CLUSTERS_PER_GROUP(sb) - 10;
4002 4003 4004 4005 4006 4007 4008 4009 4010

	/* start searching from the goal */
	goal = ar->goal;
	if (goal < le32_to_cpu(es->s_first_data_block) ||
			goal >= ext4_blocks_count(es))
		goal = le32_to_cpu(es->s_first_data_block);
	ext4_get_group_no_and_offset(sb, goal, &group, &block);

	/* set up allocation goals */
4011
	ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4012 4013 4014
	ac->ac_status = AC_STATUS_CONTINUE;
	ac->ac_sb = sb;
	ac->ac_inode = ar->inode;
4015
	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4016 4017 4018
	ac->ac_o_ex.fe_group = group;
	ac->ac_o_ex.fe_start = block;
	ac->ac_o_ex.fe_len = len;
4019
	ac->ac_g_ex = ac->ac_o_ex;
4020 4021 4022 4023 4024 4025
	ac->ac_flags = ar->flags;

	/* we have to define context: we'll we work with a file or
	 * locality group. this is a policy, actually */
	ext4_mb_group_or_file(ac);

4026
	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
			"left: %u/%u, right %u/%u to %swritable\n",
			(unsigned) ar->len, (unsigned) ar->logical,
			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
			(unsigned) ar->lleft, (unsigned) ar->pleft,
			(unsigned) ar->lright, (unsigned) ar->pright,
			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
	return 0;

}

4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block *sb,
					struct ext4_locality_group *lg,
					int order, int total_entries)
{
	ext4_group_t group = 0;
	struct ext4_buddy e4b;
	struct list_head discard_list;
	struct ext4_prealloc_space *pa, *tmp;

4047
	mb_debug(1, "discard locality group preallocation\n");
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068

	INIT_LIST_HEAD(&discard_list);

	spin_lock(&lg->lg_prealloc_lock);
	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/*
			 * This is the pa that we just used
			 * for block allocation. So don't
			 * free that
			 */
			spin_unlock(&pa->pa_lock);
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}
		/* only lg prealloc space */
4069
		BUG_ON(pa->pa_type != MB_GROUP_PA);
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;
		spin_unlock(&pa->pa_lock);

		list_del_rcu(&pa->pa_inode_list);
		list_add(&pa->u.pa_tmp_list, &discard_list);

		total_entries--;
		if (total_entries <= 5) {
			/*
			 * we want to keep only 5 entries
			 * allowing it to grow to 8. This
			 * mak sure we don't call discard
			 * soon for this list.
			 */
			break;
		}
	}
	spin_unlock(&lg->lg_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {

		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4095 4096
			ext4_error(sb, "Error loading buddy information for %u",
					group);
4097 4098 4099 4100
			continue;
		}
		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
4101
		ext4_mb_release_group_pa(&e4b, pa);
4102 4103
		ext4_unlock_group(sb, group);

4104
		ext4_mb_unload_buddy(&e4b);
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

/*
 * We have incremented pa_count. So it cannot be freed at this
 * point. Also we hold lg_mutex. So no parallel allocation is
 * possible from this lg. That means pa_free cannot be updated.
 *
 * A parallel ext4_mb_discard_group_preallocations is possible.
 * which can cause the lg_prealloc_list to be updated.
 */

static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
{
	int order, added = 0, lg_prealloc_count = 1;
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;
	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;

	order = fls(pa->pa_free) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;
	/* Add the prealloc space to lg */
	rcu_read_lock();
	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&tmp_pa->pa_lock);
		if (tmp_pa->pa_deleted) {
4136
			spin_unlock(&tmp_pa->pa_lock);
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
			continue;
		}
		if (!added && pa->pa_free < tmp_pa->pa_free) {
			/* Add to the tail of the previous entry */
			list_add_tail_rcu(&pa->pa_inode_list,
						&tmp_pa->pa_inode_list);
			added = 1;
			/*
			 * we want to count the total
			 * number of entries in the list
			 */
		}
		spin_unlock(&tmp_pa->pa_lock);
		lg_prealloc_count++;
	}
	if (!added)
		list_add_tail_rcu(&pa->pa_inode_list,
					&lg->lg_prealloc_list[order]);
	rcu_read_unlock();

	/* Now trim the list to be not more than 8 elements */
	if (lg_prealloc_count > 8) {
		ext4_mb_discard_lg_preallocations(sb, lg,
						order, lg_prealloc_count);
		return;
	}
	return ;
}

4166 4167 4168 4169 4170
/*
 * release all resource we used in allocation
 */
static int ext4_mb_release_context(struct ext4_allocation_context *ac)
{
4171
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4172 4173
	struct ext4_prealloc_space *pa = ac->ac_pa;
	if (pa) {
4174
		if (pa->pa_type == MB_GROUP_PA) {
4175
			/* see comment in ext4_mb_use_group_pa() */
4176
			spin_lock(&pa->pa_lock);
4177 4178
			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4179 4180 4181
			pa->pa_free -= ac->ac_b_ex.fe_len;
			pa->pa_len -= ac->ac_b_ex.fe_len;
			spin_unlock(&pa->pa_lock);
4182 4183
		}
	}
A
Aneesh Kumar K.V 已提交
4184 4185 4186 4187 4188
	if (pa) {
		/*
		 * We want to add the pa to the right bucket.
		 * Remove it from the list and while adding
		 * make sure the list to which we are adding
A
Amir Goldstein 已提交
4189
		 * doesn't grow big.
A
Aneesh Kumar K.V 已提交
4190
		 */
4191
		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
A
Aneesh Kumar K.V 已提交
4192 4193 4194 4195 4196 4197 4198
			spin_lock(pa->pa_obj_lock);
			list_del_rcu(&pa->pa_inode_list);
			spin_unlock(pa->pa_obj_lock);
			ext4_mb_add_n_trim(ac);
		}
		ext4_mb_put_pa(ac, ac->ac_sb, pa);
	}
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
	if (ac->ac_bitmap_page)
		page_cache_release(ac->ac_bitmap_page);
	if (ac->ac_buddy_page)
		page_cache_release(ac->ac_buddy_page);
	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		mutex_unlock(&ac->ac_lg->lg_mutex);
	ext4_mb_collect_stats(ac);
	return 0;
}

static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
{
4211
	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4212 4213 4214
	int ret;
	int freed = 0;

4215
	trace_ext4_mb_discard_preallocations(sb, needed);
4216
	for (i = 0; i < ngroups && needed > 0; i++) {
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
		freed += ret;
		needed -= ret;
	}

	return freed;
}

/*
 * Main entry point into mballoc to allocate blocks
 * it tries to use preallocation first, then falls back
 * to usual allocation
 */
ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4231
				struct ext4_allocation_request *ar, int *errp)
4232
{
4233
	int freed;
4234
	struct ext4_allocation_context *ac = NULL;
4235 4236 4237
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block = 0;
4238
	unsigned int inquota = 0;
4239
	unsigned int reserv_clstrs = 0;
4240 4241 4242 4243

	sb = ar->inode->i_sb;
	sbi = EXT4_SB(sb);

4244
	trace_ext4_request_blocks(ar);
4245

4246 4247 4248 4249
	/* Allow to use superuser reservation for quota file */
	if (IS_NOQUOTA(ar->inode))
		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;

4250 4251 4252 4253 4254
	/*
	 * For delayed allocation, we could skip the ENOSPC and
	 * EDQUOT check, as blocks and quotas have been already
	 * reserved when data being copied into pagecache.
	 */
4255
	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4256 4257 4258 4259 4260
		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
	else {
		/* Without delayed allocation we need to verify
		 * there is enough free blocks to do block allocation
		 * and verify allocation doesn't exceed the quota limits.
4261
		 */
4262
		while (ar->len &&
4263
			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4264

A
Aneesh Kumar K.V 已提交
4265 4266 4267 4268 4269
			/* let others to free the space */
			yield();
			ar->len = ar->len >> 1;
		}
		if (!ar->len) {
4270 4271 4272
			*errp = -ENOSPC;
			return 0;
		}
4273
		reserv_clstrs = ar->len;
4274
		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4275 4276
			dquot_alloc_block_nofail(ar->inode,
						 EXT4_C2B(sbi, ar->len));
4277 4278
		} else {
			while (ar->len &&
4279 4280
				dquot_alloc_block(ar->inode,
						  EXT4_C2B(sbi, ar->len))) {
4281 4282 4283 4284

				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
				ar->len--;
			}
4285 4286 4287 4288
		}
		inquota = ar->len;
		if (ar->len == 0) {
			*errp = -EDQUOT;
4289
			goto out;
4290
		}
4291
	}
4292

4293
	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4294
	if (!ac) {
4295
		ar->len = 0;
4296
		*errp = -ENOMEM;
4297
		goto out;
4298 4299 4300
	}

	*errp = ext4_mb_initialize_context(ac, ar);
4301 4302
	if (*errp) {
		ar->len = 0;
4303
		goto out;
4304 4305
	}

4306 4307 4308 4309
	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
	if (!ext4_mb_use_preallocated(ac)) {
		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
		ext4_mb_normalize_request(ac, ar);
4310 4311
repeat:
		/* allocate space in core */
4312 4313 4314
		*errp = ext4_mb_regular_allocator(ac);
		if (*errp)
			goto errout;
4315 4316 4317 4318

		/* as we've just preallocated more space than
		 * user requested orinally, we store allocated
		 * space in a special descriptor */
4319 4320 4321
		if (ac->ac_status == AC_STATUS_FOUND &&
				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
			ext4_mb_new_preallocation(ac);
4322
	}
4323
	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4324
		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4325
		if (*errp == -EAGAIN) {
4326 4327 4328 4329 4330
			/*
			 * drop the reference that we took
			 * in ext4_mb_use_best_found
			 */
			ext4_mb_release_context(ac);
4331 4332 4333 4334 4335
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			goto repeat;
4336 4337
		} else if (*errp)
		errout:
4338
			ext4_discard_allocated_blocks(ac);
4339
		else {
4340 4341 4342
			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
			ar->len = ac->ac_b_ex.fe_len;
		}
4343
	} else {
4344
		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4345 4346 4347
		if (freed)
			goto repeat;
		*errp = -ENOSPC;
4348 4349 4350
	}

	if (*errp) {
4351
		ac->ac_b_ex.fe_len = 0;
4352
		ar->len = 0;
4353
		ext4_mb_show_ac(ac);
4354
	}
4355
	ext4_mb_release_context(ac);
4356 4357 4358
out:
	if (ac)
		kmem_cache_free(ext4_ac_cachep, ac);
4359
	if (inquota && ar->len < inquota)
4360
		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4361
	if (!ar->len) {
4362 4363
		if (!ext4_test_inode_state(ar->inode,
					   EXT4_STATE_DELALLOC_RESERVED))
4364
			/* release all the reserved blocks if non delalloc */
4365
			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4366
						reserv_clstrs);
4367
	}
4368

4369
	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4370

4371 4372 4373
	return block;
}

4374 4375 4376 4377 4378 4379 4380 4381
/*
 * We can merge two free data extents only if the physical blocks
 * are contiguous, AND the extents were freed by the same transaction,
 * AND the blocks are associated with the same group.
 */
static int can_merge(struct ext4_free_data *entry1,
			struct ext4_free_data *entry2)
{
B
Bobi Jam 已提交
4382 4383 4384
	if ((entry1->efd_tid == entry2->efd_tid) &&
	    (entry1->efd_group == entry2->efd_group) &&
	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4385 4386 4387 4388
		return 1;
	return 0;
}

4389 4390
static noinline_for_stack int
ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4391
		      struct ext4_free_data *new_entry)
4392
{
4393
	ext4_group_t group = e4b->bd_group;
4394
	ext4_grpblk_t cluster;
4395
	struct ext4_free_data *entry;
4396 4397 4398
	struct ext4_group_info *db = e4b->bd_info;
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
4399 4400 4401
	struct rb_node **n = &db->bb_free_root.rb_node, *node;
	struct rb_node *parent = NULL, *new_node;

4402
	BUG_ON(!ext4_handle_valid(handle));
4403 4404 4405
	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

B
Bobi Jam 已提交
4406 4407
	new_node = &new_entry->efd_node;
	cluster = new_entry->efd_start_cluster;
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419

	if (!*n) {
		/* first free block exent. We need to
		   protect buddy cache from being freed,
		 * otherwise we'll refresh it from
		 * on-disk bitmap and lose not-yet-available
		 * blocks */
		page_cache_get(e4b->bd_buddy_page);
		page_cache_get(e4b->bd_bitmap_page);
	}
	while (*n) {
		parent = *n;
B
Bobi Jam 已提交
4420 4421
		entry = rb_entry(parent, struct ext4_free_data, efd_node);
		if (cluster < entry->efd_start_cluster)
4422
			n = &(*n)->rb_left;
B
Bobi Jam 已提交
4423
		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4424 4425
			n = &(*n)->rb_right;
		else {
4426
			ext4_grp_locked_error(sb, group, 0,
4427 4428
				ext4_group_first_block_no(sb, group) +
				EXT4_C2B(sbi, cluster),
4429
				"Block already on to-be-freed list");
4430
			return 0;
4431
		}
4432
	}
4433

4434 4435 4436 4437 4438 4439
	rb_link_node(new_node, parent, n);
	rb_insert_color(new_node, &db->bb_free_root);

	/* Now try to see the extent can be merged to left and right */
	node = rb_prev(new_node);
	if (node) {
B
Bobi Jam 已提交
4440
		entry = rb_entry(node, struct ext4_free_data, efd_node);
4441
		if (can_merge(entry, new_entry)) {
B
Bobi Jam 已提交
4442 4443
			new_entry->efd_start_cluster = entry->efd_start_cluster;
			new_entry->efd_count += entry->efd_count;
4444
			rb_erase(node, &(db->bb_free_root));
B
Bobi Jam 已提交
4445 4446
			ext4_journal_callback_del(handle, &entry->efd_jce);
			kmem_cache_free(ext4_free_data_cachep, entry);
4447
		}
4448
	}
4449

4450 4451
	node = rb_next(new_node);
	if (node) {
B
Bobi Jam 已提交
4452
		entry = rb_entry(node, struct ext4_free_data, efd_node);
4453
		if (can_merge(new_entry, entry)) {
B
Bobi Jam 已提交
4454
			new_entry->efd_count += entry->efd_count;
4455
			rb_erase(node, &(db->bb_free_root));
B
Bobi Jam 已提交
4456 4457
			ext4_journal_callback_del(handle, &entry->efd_jce);
			kmem_cache_free(ext4_free_data_cachep, entry);
4458 4459
		}
	}
4460
	/* Add the extent to transaction's private list */
B
Bobi Jam 已提交
4461 4462
	ext4_journal_callback_add(handle, ext4_free_data_callback,
				  &new_entry->efd_jce);
4463 4464 4465
	return 0;
}

4466 4467 4468 4469 4470 4471
/**
 * ext4_free_blocks() -- Free given blocks and update quota
 * @handle:		handle for this transaction
 * @inode:		inode
 * @block:		start physical block to free
 * @count:		number of blocks to count
4472
 * @flags:		flags used by ext4_free_blocks
4473
 */
4474
void ext4_free_blocks(handle_t *handle, struct inode *inode,
4475 4476
		      struct buffer_head *bh, ext4_fsblk_t block,
		      unsigned long count, int flags)
4477
{
4478
	struct buffer_head *bitmap_bh = NULL;
4479 4480
	struct super_block *sb = inode->i_sb;
	struct ext4_group_desc *gdp;
4481
	unsigned long freed = 0;
4482
	unsigned int overflow;
4483 4484 4485 4486 4487
	ext4_grpblk_t bit;
	struct buffer_head *gd_bh;
	ext4_group_t block_group;
	struct ext4_sb_info *sbi;
	struct ext4_buddy e4b;
4488
	unsigned int count_clusters;
4489 4490 4491
	int err = 0;
	int ret;

4492 4493 4494 4495 4496 4497
	if (bh) {
		if (block)
			BUG_ON(block != bh->b_blocknr);
		else
			block = bh->b_blocknr;
	}
4498 4499

	sbi = EXT4_SB(sb);
4500 4501
	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
	    !ext4_data_block_valid(sbi, block, count)) {
4502
		ext4_error(sb, "Freeing blocks not in datazone - "
4503
			   "block = %llu, count = %lu", block, count);
4504 4505 4506
		goto error_return;
	}

4507
	ext4_debug("freeing block %llu\n", block);
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
	trace_ext4_free_blocks(inode, block, count, flags);

	if (flags & EXT4_FREE_BLOCKS_FORGET) {
		struct buffer_head *tbh = bh;
		int i;

		BUG_ON(bh && (count > 1));

		for (i = 0; i < count; i++) {
			if (!bh)
				tbh = sb_find_get_block(inode->i_sb,
							block + i);
4520 4521
			if (unlikely(!tbh))
				continue;
4522
			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4523 4524 4525 4526
				    inode, tbh, block + i);
		}
	}

4527
	/*
4528 4529 4530 4531 4532 4533 4534 4535
	 * We need to make sure we don't reuse the freed block until
	 * after the transaction is committed, which we can do by
	 * treating the block as metadata, below.  We make an
	 * exception if the inode is to be written in writeback mode
	 * since writeback mode has weak data consistency guarantees.
	 */
	if (!ext4_should_writeback_data(inode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4536

4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
	/*
	 * If the extent to be freed does not begin on a cluster
	 * boundary, we need to deal with partial clusters at the
	 * beginning and end of the extent.  Normally we will free
	 * blocks at the beginning or the end unless we are explicitly
	 * requested to avoid doing so.
	 */
	overflow = block & (sbi->s_cluster_ratio - 1);
	if (overflow) {
		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
			overflow = sbi->s_cluster_ratio - overflow;
			block += overflow;
			if (count > overflow)
				count -= overflow;
			else
				return;
		} else {
			block -= overflow;
			count += overflow;
		}
	}
	overflow = count & (sbi->s_cluster_ratio - 1);
	if (overflow) {
		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
			if (count > overflow)
				count -= overflow;
			else
				return;
		} else
			count += sbi->s_cluster_ratio - overflow;
	}

4569 4570 4571 4572 4573 4574 4575 4576
do_more:
	overflow = 0;
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);

	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
4577 4578 4579
	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		overflow = EXT4_C2B(sbi, bit) + count -
			EXT4_BLOCKS_PER_GROUP(sb);
4580 4581
		count -= overflow;
	}
4582
	count_clusters = EXT4_B2C(sbi, count);
4583
	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4584 4585
	if (!bitmap_bh) {
		err = -EIO;
4586
		goto error_return;
4587
	}
4588
	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4589 4590
	if (!gdp) {
		err = -EIO;
4591
		goto error_return;
4592
	}
4593 4594 4595 4596

	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
	    in_range(block, ext4_inode_table(sb, gdp),
4597
		     EXT4_SB(sb)->s_itb_per_group) ||
4598
	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4599
		     EXT4_SB(sb)->s_itb_per_group)) {
4600

4601
		ext4_error(sb, "Freeing blocks in system zone - "
4602
			   "Block = %llu, count = %lu", block, count);
4603 4604
		/* err = 0. ext4_std_error should be a no op */
		goto error_return;
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
	}

	BUFFER_TRACE(bitmap_bh, "getting write access");
	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
	err = ext4_journal_get_write_access(handle, gd_bh);
	if (err)
		goto error_return;
#ifdef AGGRESSIVE_CHECK
	{
		int i;
4624
		for (i = 0; i < count_clusters; i++)
4625 4626 4627
			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
	}
#endif
4628
	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4629

4630 4631 4632
	err = ext4_mb_load_buddy(sb, block_group, &e4b);
	if (err)
		goto error_return;
4633 4634

	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4635 4636 4637 4638 4639
		struct ext4_free_data *new_entry;
		/*
		 * blocks being freed are metadata. these blocks shouldn't
		 * be used until this transaction is committed
		 */
B
Bobi Jam 已提交
4640
		new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4641
		if (!new_entry) {
4642
			ext4_mb_unload_buddy(&e4b);
4643 4644 4645
			err = -ENOMEM;
			goto error_return;
		}
B
Bobi Jam 已提交
4646 4647 4648 4649
		new_entry->efd_start_cluster = bit;
		new_entry->efd_group = block_group;
		new_entry->efd_count = count_clusters;
		new_entry->efd_tid = handle->h_transaction->t_tid;
4650

4651
		ext4_lock_group(sb, block_group);
4652
		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4653
		ext4_mb_free_metadata(handle, &e4b, new_entry);
4654
	} else {
4655 4656 4657 4658
		/* need to update group_info->bb_free and bitmap
		 * with group lock held. generate_buddy look at
		 * them with group lock_held
		 */
4659 4660
		if (test_opt(sb, DISCARD))
			ext4_issue_discard(sb, block_group, bit, count);
4661
		ext4_lock_group(sb, block_group);
4662 4663
		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
		mb_free_blocks(inode, &e4b, bit, count_clusters);
4664 4665
	}

4666 4667
	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
	ext4_free_group_clusters_set(sb, gdp, ret);
4668
	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4669
	ext4_group_desc_csum_set(sb, block_group, gdp);
4670
	ext4_unlock_group(sb, block_group);
4671
	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4672

4673 4674
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4675 4676
		atomic_add(count_clusters,
			   &sbi->s_flex_groups[flex_group].free_clusters);
4677 4678
	}

4679
	ext4_mb_unload_buddy(&e4b);
4680

4681
	freed += count;
4682

4683 4684 4685
	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));

4686 4687 4688 4689
	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);

4690 4691
	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4692
	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
	if (!err)
		err = ret;

	if (overflow && !err) {
		block += count;
		count = overflow;
		put_bh(bitmap_bh);
		goto do_more;
	}
error_return:
	brelse(bitmap_bh);
	ext4_std_error(sb, err);
	return;
}
4707

4708
/**
4709
 * ext4_group_add_blocks() -- Add given blocks to an existing group
4710 4711
 * @handle:			handle to this transaction
 * @sb:				super block
4712
 * @block:			start physical block to add to the block group
4713 4714
 * @count:			number of blocks to free
 *
4715
 * This marks the blocks as free in the bitmap and buddy.
4716
 */
4717
int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4718 4719 4720 4721 4722 4723 4724 4725 4726
			 ext4_fsblk_t block, unsigned long count)
{
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *gd_bh;
	ext4_group_t block_group;
	ext4_grpblk_t bit;
	unsigned int i;
	struct ext4_group_desc *desc;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
4727
	struct ext4_buddy e4b;
4728 4729 4730 4731 4732
	int err = 0, ret, blk_free_count;
	ext4_grpblk_t blocks_freed;

	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);

4733 4734 4735
	if (count == 0)
		return 0;

4736 4737 4738 4739 4740
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
4741 4742 4743 4744
	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		ext4_warning(sb, "too much blocks added to group %u\n",
			     block_group);
		err = -EINVAL;
4745
		goto error_return;
4746
	}
4747

4748
	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4749 4750
	if (!bitmap_bh) {
		err = -EIO;
4751
		goto error_return;
4752 4753
	}

4754
	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4755 4756
	if (!desc) {
		err = -EIO;
4757
		goto error_return;
4758
	}
4759 4760 4761 4762 4763 4764 4765 4766 4767

	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
	    in_range(block + count - 1, ext4_inode_table(sb, desc),
		     sbi->s_itb_per_group)) {
		ext4_error(sb, "Adding blocks in system zones - "
			   "Block = %llu, count = %lu",
			   block, count);
4768
		err = -EINVAL;
4769 4770 4771
		goto error_return;
	}

4772 4773
	BUFFER_TRACE(bitmap_bh, "getting write access");
	err = ext4_journal_get_write_access(handle, bitmap_bh);
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
	err = ext4_journal_get_write_access(handle, gd_bh);
	if (err)
		goto error_return;
4786

4787 4788
	for (i = 0, blocks_freed = 0; i < count; i++) {
		BUFFER_TRACE(bitmap_bh, "clear bit");
4789
		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4790 4791 4792 4793 4794 4795 4796
			ext4_error(sb, "bit already cleared for block %llu",
				   (ext4_fsblk_t)(block + i));
			BUFFER_TRACE(bitmap_bh, "bit already cleared");
		} else {
			blocks_freed++;
		}
	}
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806

	err = ext4_mb_load_buddy(sb, block_group, &e4b);
	if (err)
		goto error_return;

	/*
	 * need to update group_info->bb_free and bitmap
	 * with group lock held. generate_buddy look at
	 * them with group lock_held
	 */
4807
	ext4_lock_group(sb, block_group);
4808 4809
	mb_clear_bits(bitmap_bh->b_data, bit, count);
	mb_free_blocks(NULL, &e4b, bit, count);
4810 4811
	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4812
	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4813
	ext4_group_desc_csum_set(sb, block_group, desc);
4814
	ext4_unlock_group(sb, block_group);
4815 4816
	percpu_counter_add(&sbi->s_freeclusters_counter,
			   EXT4_B2C(sbi, blocks_freed));
4817 4818 4819

	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4820 4821
		atomic_add(EXT4_B2C(sbi, blocks_freed),
			   &sbi->s_flex_groups[flex_group].free_clusters);
4822
	}
4823 4824

	ext4_mb_unload_buddy(&e4b);
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838

	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);

	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
	if (!err)
		err = ret;

error_return:
	brelse(bitmap_bh);
	ext4_std_error(sb, err);
4839
	return err;
4840 4841
}

4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
/**
 * ext4_trim_extent -- function to TRIM one single free extent in the group
 * @sb:		super block for the file system
 * @start:	starting block of the free extent in the alloc. group
 * @count:	number of blocks to TRIM
 * @group:	alloc. group we are working with
 * @e4b:	ext4 buddy for the group
 *
 * Trim "count" blocks starting at "start" in the "group". To assure that no
 * one will allocate those blocks, mark it as used in buddy bitmap. This must
 * be called with under the group lock.
 */
4854 4855
static void ext4_trim_extent(struct super_block *sb, int start, int count,
			     ext4_group_t group, struct ext4_buddy *e4b)
4856 4857 4858
{
	struct ext4_free_extent ex;

T
Tao Ma 已提交
4859 4860
	trace_ext4_trim_extent(sb, group, start, count);

4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
	assert_spin_locked(ext4_group_lock_ptr(sb, group));

	ex.fe_start = start;
	ex.fe_group = group;
	ex.fe_len = count;

	/*
	 * Mark blocks used, so no one can reuse them while
	 * being trimmed.
	 */
	mb_mark_used(e4b, &ex);
	ext4_unlock_group(sb, group);
4873
	ext4_issue_discard(sb, group, start, count);
4874 4875 4876 4877 4878 4879 4880
	ext4_lock_group(sb, group);
	mb_free_blocks(NULL, e4b, start, ex.fe_len);
}

/**
 * ext4_trim_all_free -- function to trim all free space in alloc. group
 * @sb:			super block for file system
4881
 * @group:		group to be trimmed
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
 * @start:		first group block to examine
 * @max:		last group block to examine
 * @minblocks:		minimum extent block count
 *
 * ext4_trim_all_free walks through group's buddy bitmap searching for free
 * extents. When the free block is found, ext4_trim_extent is called to TRIM
 * the extent.
 *
 *
 * ext4_trim_all_free walks through group's block bitmap searching for free
 * extents. When the free extent is found, mark it as used in group buddy
 * bitmap. Then issue a TRIM command on this extent and free the extent in
 * the group buddy bitmap. This is done until whole group is scanned.
 */
4896
static ext4_grpblk_t
4897 4898 4899
ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
		   ext4_grpblk_t start, ext4_grpblk_t max,
		   ext4_grpblk_t minblocks)
4900 4901
{
	void *bitmap;
4902
	ext4_grpblk_t next, count = 0, free_count = 0;
4903 4904
	struct ext4_buddy e4b;
	int ret;
4905

T
Tao Ma 已提交
4906 4907
	trace_ext4_trim_all_free(sb, group, start, max);

4908 4909 4910 4911 4912 4913 4914
	ret = ext4_mb_load_buddy(sb, group, &e4b);
	if (ret) {
		ext4_error(sb, "Error in loading buddy "
				"information for %u", group);
		return ret;
	}
	bitmap = e4b.bd_bitmap;
4915 4916

	ext4_lock_group(sb, group);
4917 4918 4919 4920
	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
		goto out;

4921 4922
	start = (e4b.bd_info->bb_first_free > start) ?
		e4b.bd_info->bb_first_free : start;
4923

4924 4925 4926
	while (start <= max) {
		start = mb_find_next_zero_bit(bitmap, max + 1, start);
		if (start > max)
4927
			break;
4928
		next = mb_find_next_bit(bitmap, max + 1, start);
4929 4930

		if ((next - start) >= minblocks) {
4931
			ext4_trim_extent(sb, start,
4932
					 next - start, group, &e4b);
4933 4934
			count += next - start;
		}
4935
		free_count += next - start;
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
		start = next + 1;

		if (fatal_signal_pending(current)) {
			count = -ERESTARTSYS;
			break;
		}

		if (need_resched()) {
			ext4_unlock_group(sb, group);
			cond_resched();
			ext4_lock_group(sb, group);
		}

4949
		if ((e4b.bd_info->bb_free - free_count) < minblocks)
4950 4951
			break;
	}
4952 4953 4954 4955

	if (!ret)
		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
out:
4956
	ext4_unlock_group(sb, group);
4957
	ext4_mb_unload_buddy(&e4b);
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978

	ext4_debug("trimmed %d blocks in the group %d\n",
		count, group);

	return count;
}

/**
 * ext4_trim_fs() -- trim ioctl handle function
 * @sb:			superblock for filesystem
 * @range:		fstrim_range structure
 *
 * start:	First Byte to trim
 * len:		number of Bytes to trim from start
 * minlen:	minimum extent length in Bytes
 * ext4_trim_fs goes through all allocation groups containing Bytes from
 * start to start+len. For each such a group ext4_trim_all_free function
 * is invoked to trim all free space.
 */
int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
{
4979
	struct ext4_group_info *grp;
4980
	ext4_group_t group, first_group, last_group;
4981
	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
4982
	uint64_t start, end, minlen, trimmed = 0;
4983 4984
	ext4_fsblk_t first_data_blk =
			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4985
	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
4986 4987 4988
	int ret = 0;

	start = range->start >> sb->s_blocksize_bits;
4989
	end = start + (range->len >> sb->s_blocksize_bits) - 1;
4990 4991
	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
			      range->minlen >> sb->s_blocksize_bits);
4992

4993 4994 4995
	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
	    start >= max_blks ||
	    range->len < sb->s_blocksize)
4996
		return -EINVAL;
4997 4998 4999
	if (end >= max_blks)
		end = max_blks - 1;
	if (end <= first_data_blk)
5000
		goto out;
5001
	if (start < first_data_blk)
5002
		start = first_data_blk;
5003

5004
	/* Determine first and last group to examine based on start and end */
5005
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5006
				     &first_group, &first_cluster);
5007
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5008
				     &last_group, &last_cluster);
5009

5010 5011
	/* end now represents the last cluster to discard in this group */
	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5012 5013

	for (group = first_group; group <= last_group; group++) {
5014 5015 5016 5017 5018 5019
		grp = ext4_get_group_info(sb, group);
		/* We only do this if the grp has never been initialized */
		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
			ret = ext4_mb_init_group(sb, group);
			if (ret)
				break;
5020 5021
		}

5022
		/*
5023 5024 5025 5026
		 * For all the groups except the last one, last cluster will
		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
		 * change it for the last group, note that last_cluster is
		 * already computed earlier by ext4_get_group_no_and_offset()
5027
		 */
5028 5029
		if (group == last_group)
			end = last_cluster;
5030

5031
		if (grp->bb_free >= minlen) {
5032
			cnt = ext4_trim_all_free(sb, group, first_cluster,
5033
						end, minlen);
5034 5035 5036 5037
			if (cnt < 0) {
				ret = cnt;
				break;
			}
5038
			trimmed += cnt;
5039
		}
5040 5041 5042 5043 5044

		/*
		 * For every group except the first one, we are sure
		 * that the first cluster to discard will be cluster #0.
		 */
5045
		first_cluster = 0;
5046 5047
	}

5048 5049 5050
	if (!ret)
		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);

5051
out:
5052
	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5053 5054
	return ret;
}