perf_counter.c 20.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Performance counter support - powerpc architecture code
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/perf_counter.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <asm/reg.h>
#include <asm/pmc.h>
18
#include <asm/machdep.h>
19
#include <asm/firmware.h>
20 21 22 23 24 25 26 27 28

struct cpu_hw_counters {
	int n_counters;
	int n_percpu;
	int disabled;
	int n_added;
	struct perf_counter *counter[MAX_HWCOUNTERS];
	unsigned int events[MAX_HWCOUNTERS];
	u64 mmcr[3];
29
	u8 pmcs_enabled;
30 31 32 33 34
};
DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);

struct power_pmu *ppmu;

35 36 37 38 39 40 41 42 43
/*
 * Normally, to ignore kernel events we set the FCS (freeze counters
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
static unsigned int freeze_counters_kernel = MMCR0_FCS;

44 45
static void perf_counter_interrupt(struct pt_regs *regs);

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
void perf_counter_print_debug(void)
{
}

/*
 * Read one performance monitor counter (PMC).
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
 * The feasible set is returned in event[].
 */
static int power_check_constraints(unsigned int event[], int n_ev)
{
	u64 mask, value, nv;
	unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
	u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
	u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
	u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
	int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
	int i, j;
	u64 addf = ppmu->add_fields;
	u64 tadd = ppmu->test_adder;

	if (n_ev > ppmu->n_counter)
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
		alternatives[i][0] = event[i];
		if (ppmu->get_constraint(event[i], &amasks[i][0],
					 &avalues[i][0]))
			return -1;
		choice[i] = 0;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
		nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
		if ((((nv + tadd) ^ value) & mask) != 0 ||
		    (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
			break;
		value = nv;
		mask |= amasks[i][0];
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
		n_alt[i] = ppmu->get_alternatives(event[i], alternatives[i]);
		for (j = 1; j < n_alt[i]; ++j)
			ppmu->get_constraint(alternatives[i][j],
					     &amasks[i][j], &avalues[i][j]);
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
		 * See if any alternative k for event i,
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
			nv = (value | avalues[i][j]) +
				(value & avalues[i][j] & addf);
			if ((((nv + tadd) ^ value) & mask) == 0 &&
			    (((nv + tadd) ^ avalues[i][j])
			     & amasks[i][j]) == 0)
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
			 * to event i-1 and continue enumerating its
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
			 * Found a feasible alternative for event i,
			 * remember where we got up to with this event,
			 * go on to the next event, and start with
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
			mask |= amasks[i][j];
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
		event[i] = alternatives[i][choice[i]];
	return 0;
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
/*
 * Check if newly-added counters have consistent settings for
 * exclude_{user,kernel,hv} with each other and any previously
 * added counters.
 */
static int check_excludes(struct perf_counter **ctrs, int n_prev, int n_new)
{
	int eu, ek, eh;
	int i, n;
	struct perf_counter *counter;

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

	eu = ctrs[0]->hw_event.exclude_user;
	ek = ctrs[0]->hw_event.exclude_kernel;
	eh = ctrs[0]->hw_event.exclude_hv;
	if (n_prev == 0)
		n_prev = 1;
	for (i = n_prev; i < n; ++i) {
		counter = ctrs[i];
		if (counter->hw_event.exclude_user != eu ||
		    counter->hw_event.exclude_kernel != ek ||
		    counter->hw_event.exclude_hv != eh)
			return -EAGAIN;
	}
	return 0;
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static void power_perf_read(struct perf_counter *counter)
{
	long val, delta, prev;

	if (!counter->hw.idx)
		return;
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
		prev = atomic64_read(&counter->hw.prev_count);
		barrier();
		val = read_pmc(counter->hw.idx);
	} while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);

	/* The counters are only 32 bits wide */
	delta = (val - prev) & 0xfffffffful;
	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &counter->hw.period_left);
}

/*
 * Disable all counters to prevent PMU interrupts and to allow
 * counters to be added or removed.
 */
u64 hw_perf_save_disable(void)
{
	struct cpu_hw_counters *cpuhw;
	unsigned long ret;
	unsigned long flags;

	local_irq_save(flags);
	cpuhw = &__get_cpu_var(cpu_hw_counters);

	ret = cpuhw->disabled;
	if (!ret) {
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;

300 301 302 303 304 305 306 307 308
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
			if (ppc_md.enable_pmcs)
				ppc_md.enable_pmcs();
			cpuhw->pmcs_enabled = 1;
		}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
		/*
		 * Set the 'freeze counters' bit.
		 * The barrier is to make sure the mtspr has been
		 * executed and the PMU has frozen the counters
		 * before we return.
		 */
		mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC);
		mb();
	}
	local_irq_restore(flags);
	return ret;
}

/*
 * Re-enable all counters if disable == 0.
 * If we were previously disabled and counters were added, then
 * put the new config on the PMU.
 */
void hw_perf_restore(u64 disable)
{
	struct perf_counter *counter;
	struct cpu_hw_counters *cpuhw;
	unsigned long flags;
	long i;
	unsigned long val;
	s64 left;
	unsigned int hwc_index[MAX_HWCOUNTERS];

	if (disable)
		return;
	local_irq_save(flags);
	cpuhw = &__get_cpu_var(cpu_hw_counters);
	cpuhw->disabled = 0;

	/*
	 * If we didn't change anything, or only removed counters,
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
	 * (possibly updated for removal of counters).
	 */
	if (!cpuhw->n_added) {
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
		mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
353 354
		if (cpuhw->n_counters == 0)
			get_lppaca()->pmcregs_in_use = 0;
355 356 357 358 359 360 361 362 363 364 365 366 367
		goto out;
	}

	/*
	 * Compute MMCR* values for the new set of counters
	 */
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
			       cpuhw->mmcr)) {
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

368 369 370 371 372 373 374 375 376 377
	/*
	 * Add in MMCR0 freeze bits corresponding to the
	 * hw_event.exclude_* bits for the first counter.
	 * We have already checked that all counters have the
	 * same values for these bits as the first counter.
	 */
	counter = cpuhw->counter[0];
	if (counter->hw_event.exclude_user)
		cpuhw->mmcr[0] |= MMCR0_FCP;
	if (counter->hw_event.exclude_kernel)
378
		cpuhw->mmcr[0] |= freeze_counters_kernel;
379 380 381
	if (counter->hw_event.exclude_hv)
		cpuhw->mmcr[0] |= MMCR0_FCHV;

382 383 384 385 386
	/*
	 * Write the new configuration to MMCR* with the freeze
	 * bit set and set the hardware counters to their initial values.
	 * Then unfreeze the counters.
	 */
387
	get_lppaca()->pmcregs_in_use = 1;
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);

	/*
	 * Read off any pre-existing counters that need to move
	 * to another PMC.
	 */
	for (i = 0; i < cpuhw->n_counters; ++i) {
		counter = cpuhw->counter[i];
		if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
			power_perf_read(counter);
			write_pmc(counter->hw.idx, 0);
			counter->hw.idx = 0;
		}
	}

	/*
	 * Initialize the PMCs for all the new and moved counters.
	 */
	for (i = 0; i < cpuhw->n_counters; ++i) {
		counter = cpuhw->counter[i];
		if (counter->hw.idx)
			continue;
		val = 0;
		if (counter->hw_event.irq_period) {
			left = atomic64_read(&counter->hw.period_left);
			if (left < 0x80000000L)
				val = 0x80000000L - left;
		}
		atomic64_set(&counter->hw.prev_count, val);
		counter->hw.idx = hwc_index[i] + 1;
		write_pmc(counter->hw.idx, val);
422
		perf_counter_update_userpage(counter);
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	}
	mb();
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
	mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);

 out:
	local_irq_restore(flags);
}

static int collect_events(struct perf_counter *group, int max_count,
			  struct perf_counter *ctrs[], unsigned int *events)
{
	int n = 0;
	struct perf_counter *counter;

	if (!is_software_counter(group)) {
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
		events[n++] = group->hw.config;
	}
	list_for_each_entry(counter, &group->sibling_list, list_entry) {
		if (!is_software_counter(counter) &&
		    counter->state != PERF_COUNTER_STATE_OFF) {
			if (n >= max_count)
				return -1;
			ctrs[n] = counter;
			events[n++] = counter->hw.config;
		}
	}
	return n;
}

static void counter_sched_in(struct perf_counter *counter, int cpu)
{
	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;
460 461
	counter->tstamp_running += counter->ctx->time_now -
		counter->tstamp_stopped;
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	if (is_software_counter(counter))
		counter->hw_ops->enable(counter);
}

/*
 * Called to enable a whole group of counters.
 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
 * Assumes the caller has disabled interrupts and has
 * frozen the PMU with hw_perf_save_disable.
 */
int hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	struct cpu_hw_counters *cpuhw;
	long i, n, n0;
	struct perf_counter *sub;

	cpuhw = &__get_cpu_var(cpu_hw_counters);
	n0 = cpuhw->n_counters;
	n = collect_events(group_leader, ppmu->n_counter - n0,
			   &cpuhw->counter[n0], &cpuhw->events[n0]);
	if (n < 0)
		return -EAGAIN;
486 487
	if (check_excludes(cpuhw->counter, n0, n))
		return -EAGAIN;
488 489 490 491 492 493 494 495 496 497 498
	if (power_check_constraints(cpuhw->events, n + n0))
		return -EAGAIN;
	cpuhw->n_counters = n0 + n;
	cpuhw->n_added += n;

	/*
	 * OK, this group can go on; update counter states etc.,
	 * and enable any software counters
	 */
	for (i = n0; i < n0 + n; ++i)
		cpuhw->counter[i]->hw.config = cpuhw->events[i];
499
	cpuctx->active_oncpu += n;
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	n = 1;
	counter_sched_in(group_leader, cpu);
	list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
		if (sub->state != PERF_COUNTER_STATE_OFF) {
			counter_sched_in(sub, cpu);
			++n;
		}
	}
	ctx->nr_active += n;

	return 1;
}

/*
 * Add a counter to the PMU.
 * If all counters are not already frozen, then we disable and
 * re-enable the PMU in order to get hw_perf_restore to do the
 * actual work of reconfiguring the PMU.
 */
static int power_perf_enable(struct perf_counter *counter)
{
	struct cpu_hw_counters *cpuhw;
	unsigned long flags;
	u64 pmudis;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
	pmudis = hw_perf_save_disable();

	/*
	 * Add the counter to the list (if there is room)
	 * and check whether the total set is still feasible.
	 */
	cpuhw = &__get_cpu_var(cpu_hw_counters);
	n0 = cpuhw->n_counters;
	if (n0 >= ppmu->n_counter)
		goto out;
	cpuhw->counter[n0] = counter;
	cpuhw->events[n0] = counter->hw.config;
540 541
	if (check_excludes(cpuhw->counter, n0, 1))
		goto out;
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	if (power_check_constraints(cpuhw->events, n0 + 1))
		goto out;

	counter->hw.config = cpuhw->events[n0];
	++cpuhw->n_counters;
	++cpuhw->n_added;

	ret = 0;
 out:
	hw_perf_restore(pmudis);
	local_irq_restore(flags);
	return ret;
}

/*
 * Remove a counter from the PMU.
 */
static void power_perf_disable(struct perf_counter *counter)
{
	struct cpu_hw_counters *cpuhw;
	long i;
	u64 pmudis;
	unsigned long flags;

	local_irq_save(flags);
	pmudis = hw_perf_save_disable();

	power_perf_read(counter);

	cpuhw = &__get_cpu_var(cpu_hw_counters);
	for (i = 0; i < cpuhw->n_counters; ++i) {
		if (counter == cpuhw->counter[i]) {
			while (++i < cpuhw->n_counters)
				cpuhw->counter[i-1] = cpuhw->counter[i];
			--cpuhw->n_counters;
			ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
			write_pmc(counter->hw.idx, 0);
			counter->hw.idx = 0;
580
			perf_counter_update_userpage(counter);
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
			break;
		}
	}
	if (cpuhw->n_counters == 0) {
		/* disable exceptions if no counters are running */
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

	hw_perf_restore(pmudis);
	local_irq_restore(flags);
}

struct hw_perf_counter_ops power_perf_ops = {
	.enable = power_perf_enable,
	.disable = power_perf_disable,
	.read = power_perf_read
};

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
/* Number of perf_counters counting hardware events */
static atomic_t num_counters;
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
 * Release the PMU if this is the last perf_counter.
 */
static void hw_perf_counter_destroy(struct perf_counter *counter)
{
	if (!atomic_add_unless(&num_counters, -1, 1)) {
		mutex_lock(&pmc_reserve_mutex);
		if (atomic_dec_return(&num_counters) == 0)
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

617 618 619 620 621 622 623
const struct hw_perf_counter_ops *
hw_perf_counter_init(struct perf_counter *counter)
{
	unsigned long ev;
	struct perf_counter *ctrs[MAX_HWCOUNTERS];
	unsigned int events[MAX_HWCOUNTERS];
	int n;
624
	int err;
625 626

	if (!ppmu)
627
		return ERR_PTR(-ENXIO);
628
	if ((s64)counter->hw_event.irq_period < 0)
629
		return ERR_PTR(-EINVAL);
630 631
	if (!perf_event_raw(&counter->hw_event)) {
		ev = perf_event_id(&counter->hw_event);
632
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
633
			return ERR_PTR(-EOPNOTSUPP);
634
		ev = ppmu->generic_events[ev];
635
	} else {
636
		ev = perf_event_config(&counter->hw_event);
637 638 639 640
	}
	counter->hw.config_base = ev;
	counter->hw.idx = 0;

641 642 643
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
644
	 * the user set it to.
645 646 647 648
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
		counter->hw_event.exclude_hv = 0;
	
649 650 651 652 653 654 655 656 657 658
	/*
	 * If this is in a group, check if it can go on with all the
	 * other hardware counters in the group.  We assume the counter
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
	if (counter->group_leader != counter) {
		n = collect_events(counter->group_leader, ppmu->n_counter - 1,
				   ctrs, events);
		if (n < 0)
659
			return ERR_PTR(-EINVAL);
660
	}
661
	events[n] = ev;
662
	ctrs[n] = counter;
663
	if (check_excludes(ctrs, n, 1))
664
		return ERR_PTR(-EINVAL);
665
	if (power_check_constraints(events, n + 1))
666
		return ERR_PTR(-EINVAL);
667

668
	counter->hw.config = events[n];
669
	atomic64_set(&counter->hw.period_left, counter->hw_event.irq_period);
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689

	/*
	 * See if we need to reserve the PMU.
	 * If no counters are currently in use, then we have to take a
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
	if (!atomic_inc_not_zero(&num_counters)) {
		mutex_lock(&pmc_reserve_mutex);
		if (atomic_read(&num_counters) == 0 &&
		    reserve_pmc_hardware(perf_counter_interrupt))
			err = -EBUSY;
		else
			atomic_inc(&num_counters);
		mutex_unlock(&pmc_reserve_mutex);
	}
	counter->destroy = hw_perf_counter_destroy;

	if (err)
690
		return ERR_PTR(err);
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
	return &power_perf_ops;
}

/*
 * A counter has overflowed; update its count and record
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
static void record_and_restart(struct perf_counter *counter, long val,
			       struct pt_regs *regs)
{
	s64 prev, delta, left;
	int record = 0;

	/* we don't have to worry about interrupts here */
	prev = atomic64_read(&counter->hw.prev_count);
	delta = (val - prev) & 0xfffffffful;
	atomic64_add(delta, &counter->count);

	/*
	 * See if the total period for this counter has expired,
	 * and update for the next period.
	 */
	val = 0;
	left = atomic64_read(&counter->hw.period_left) - delta;
	if (counter->hw_event.irq_period) {
		if (left <= 0) {
			left += counter->hw_event.irq_period;
			if (left <= 0)
				left = counter->hw_event.irq_period;
			record = 1;
		}
		if (left < 0x80000000L)
			val = 0x80000000L - left;
	}
	write_pmc(counter->hw.idx, val);
	atomic64_set(&counter->hw.prev_count, val);
	atomic64_set(&counter->hw.period_left, left);
729
	perf_counter_update_userpage(counter);
730 731 732 733

	/*
	 * Finally record data if requested.
	 */
734 735
	if (record)
		perf_counter_output(counter, 1, regs);
736 737 738 739 740 741 742 743 744 745 746
}

/*
 * Performance monitor interrupt stuff
 */
static void perf_counter_interrupt(struct pt_regs *regs)
{
	int i;
	struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
	struct perf_counter *counter;
	long val;
747
	int found = 0;
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784

	for (i = 0; i < cpuhw->n_counters; ++i) {
		counter = cpuhw->counter[i];
		val = read_pmc(counter->hw.idx);
		if ((int)val < 0) {
			/* counter has overflowed */
			found = 1;
			record_and_restart(counter, val, regs);
		}
	}

	/*
	 * In case we didn't find and reset the counter that caused
	 * the interrupt, scan all counters and reset any that are
	 * negative, to avoid getting continual interrupts.
	 * Any that we processed in the previous loop will not be negative.
	 */
	if (!found) {
		for (i = 0; i < ppmu->n_counter; ++i) {
			val = read_pmc(i + 1);
			if ((int)val < 0)
				write_pmc(i + 1, 0);
		}
	}

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
	 * and thus allow interrupts to occur again.
	 * XXX might want to use MSR.PM to keep the counters frozen until
	 * we get back out of this interrupt.
	 */
	mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);

	/*
	 * If we need a wakeup, check whether interrupts were soft-enabled
	 * when we took the interrupt.  If they were, we can wake stuff up
785 786
	 * immediately; otherwise we'll have do the wakeup when interrupts
	 * get soft-enabled.
787
	 */
788
	if (test_perf_counter_pending() && regs->softe) {
789 790 791 792
		irq_enter();
		clear_perf_counter_pending();
		perf_counter_do_pending();
		irq_exit();
793 794 795
	}
}

796 797 798 799 800 801 802 803
void hw_perf_counter_setup(int cpu)
{
	struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);

	memset(cpuhw, 0, sizeof(*cpuhw));
	cpuhw->mmcr[0] = MMCR0_FC;
}

804
extern struct power_pmu power4_pmu;
805
extern struct power_pmu ppc970_pmu;
806
extern struct power_pmu power5_pmu;
807
extern struct power_pmu power5p_pmu;
808
extern struct power_pmu power6_pmu;
809

810 811
static int init_perf_counters(void)
{
812 813 814 815 816
	unsigned long pvr;

	/* XXX should get this from cputable */
	pvr = mfspr(SPRN_PVR);
	switch (PVR_VER(pvr)) {
817 818 819 820
	case PV_POWER4:
	case PV_POWER4p:
		ppmu = &power4_pmu;
		break;
821 822 823 824 825
	case PV_970:
	case PV_970FX:
	case PV_970MP:
		ppmu = &ppc970_pmu;
		break;
826 827 828
	case PV_POWER5:
		ppmu = &power5_pmu;
		break;
829 830 831
	case PV_POWER5p:
		ppmu = &power5p_pmu;
		break;
832 833 834
	case 0x3e:
		ppmu = &power6_pmu;
		break;
835
	}
836 837 838 839 840 841 842

	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
		freeze_counters_kernel = MMCR0_FCHV;

843 844 845 846
	return 0;
}

arch_initcall(init_perf_counters);