efx.c 81.2 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/cpu_rmap.h>
25
#include <linux/aer.h>
26
#include <linux/interrupt.h>
27 28
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
29
#include "nic.h"
30
#include "selftest.h"
31

32
#include "mcdi.h"
33
#include "workarounds.h"
34

35 36 37 38 39 40 41 42 43
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
44
const char *const efx_loopback_mode_names[] = {
45
	[LOOPBACK_NONE]		= "NONE",
46
	[LOOPBACK_DATA]		= "DATAPATH",
47 48 49
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
50 51 52
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
53 54 55 56 57 58
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
59 60
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
61 62
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
63 64
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
65
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
66 67
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
68
	[LOOPBACK_GMII_WS]	= "GMII_WS",
69 70
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
71
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
72 73 74
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
75
const char *const efx_reset_type_names[] = {
76 77 78 79 80 81 82 83 84 85 86 87 88
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH]      = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH]      = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
89 90
};

91 92 93 94 95 96
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

97 98 99 100 101 102 103 104 105
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
106 107
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
108
 *
109
 * This is only used in MSI-X interrupt mode
110
 */
111 112
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
113 114
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
115 116 117 118 119 120 121

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
122 123
 * monitor.
 * On Falcon-based NICs, this will:
124 125
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
126 127
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
128
 */
S
stephen hemminger 已提交
129
static unsigned int efx_monitor_interval = 1 * HZ;
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
162
 * The default (0) means to assign an interrupt to each core.
163 164 165 166 167
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

168 169
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
170 171
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

172
static unsigned irq_adapt_low_thresh = 8000;
173 174 175 176
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

177
static unsigned irq_adapt_high_thresh = 16000;
178 179 180 181
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

182 183 184 185 186 187 188
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

189 190 191 192 193
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
194

195 196 197
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_remove_channel(struct efx_channel *channel);
198
static void efx_remove_channels(struct efx_nic *efx);
199
static const struct efx_channel_type efx_default_channel_type;
200
static void efx_remove_port(struct efx_nic *efx);
201
static void efx_init_napi_channel(struct efx_channel *channel);
202
static void efx_fini_napi(struct efx_nic *efx);
203
static void efx_fini_napi_channel(struct efx_channel *channel);
204 205 206
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
207 208 209

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
210
		if ((efx->state == STATE_READY) ||	\
211
		    (efx->state == STATE_RECOVERY) ||	\
212
		    (efx->state == STATE_DISABLED))	\
213 214 215
			ASSERT_RTNL();			\
	} while (0)

216 217
static int efx_check_disabled(struct efx_nic *efx)
{
218
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
219 220 221 222 223 224 225
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

226 227 228 229 230 231 232 233 234 235 236 237 238
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
239
static int efx_process_channel(struct efx_channel *channel, int budget)
240
{
241
	int spent;
242

243
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
244
		return 0;
245

246
	spent = efx_nic_process_eventq(channel, budget);
247 248 249 250
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

251
		efx_rx_flush_packet(channel);
252
		if (rx_queue->enabled)
253
			efx_fast_push_rx_descriptors(rx_queue);
254 255
	}

256
	return spent;
257 258 259 260 261 262 263 264 265 266
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
267 268 269
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
270
	channel->work_pending = false;
271 272
	smp_wmb();

273
	efx_nic_eventq_read_ack(channel);
274 275 276 277 278 279 280 281 282 283 284
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
285
	struct efx_nic *efx = channel->efx;
286
	int spent;
287

288 289 290
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
291

292
	spent = efx_process_channel(channel, budget);
293

294
	if (spent < budget) {
295
		if (efx_channel_has_rx_queue(channel) &&
296 297 298 299
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
300 301
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
302
					efx->type->push_irq_moderation(channel);
303
				}
304 305
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
306 307 308
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
309
					efx->type->push_irq_moderation(channel);
310
				}
311 312 313 314 315
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

316 317
		efx_filter_rfs_expire(channel);

318
		/* There is no race here; although napi_disable() will
319
		 * only wait for napi_complete(), this isn't a problem
320 321 322
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
323
		napi_complete(napi);
324 325 326
		efx_channel_processed(channel);
	}

327
	return spent;
328 329 330 331 332 333 334 335
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
336 337
 * This is for use only during a loopback self-test.  It must not
 * deliver any packets up the stack as this can result in deadlock.
338 339 340 341 342
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

343
	BUG_ON(channel->channel >= efx->n_channels);
344
	BUG_ON(!channel->enabled);
345
	BUG_ON(!efx->loopback_selftest);
346 347

	/* Disable interrupts and wait for ISRs to complete */
348
	efx_nic_disable_interrupts(efx);
349
	if (efx->legacy_irq) {
350
		synchronize_irq(efx->legacy_irq);
351 352
		efx->legacy_irq_enabled = false;
	}
353
	if (channel->irq)
354 355 356 357 358 359
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
360
	efx_process_channel(channel, channel->eventq_mask + 1);
361 362 363 364 365 366

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
367 368
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
369
	efx_nic_enable_interrupts(efx);
370 371 372 373 374 375 376 377 378
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
379 380 381
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

382
	netif_dbg(efx, probe, efx->net_dev,
383
		  "chan %d create event queue\n", channel->channel);
384

385 386 387 388 389 390
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

391
	return efx_nic_probe_eventq(channel);
392 393 394
}

/* Prepare channel's event queue */
395
static void efx_init_eventq(struct efx_channel *channel)
396
{
397 398
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
399 400 401

	channel->eventq_read_ptr = 0;

402
	efx_nic_init_eventq(channel);
403 404
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set.
	 */
	channel->work_pending = false;
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

433 434
static void efx_fini_eventq(struct efx_channel *channel)
{
435 436
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
437

438
	efx_nic_fini_eventq(channel);
439 440 441 442
}

static void efx_remove_eventq(struct efx_channel *channel)
{
443 444
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
445

446
	efx_nic_remove_eventq(channel);
447 448 449 450 451 452 453 454
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

455
/* Allocate and initialise a channel structure. */
456 457 458 459 460 461 462 463
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

464 465 466
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
467

468 469 470
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
471

472 473 474 475 476 477
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
478

479 480 481 482
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
483

484 485 486 487 488 489 490 491 492 493 494 495 496
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
497

498 499 500 501 502 503 504 505
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
506

507 508 509
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
510
			tx_queue->channel = channel;
511 512
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
513 514 515
	}

	rx_queue = &channel->rx_queue;
516 517
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
518 519 520 521 522 523
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

524 525 526 527 528 529
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

530 531
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
532

533 534 535 536
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

537 538
	rc = efx_probe_eventq(channel);
	if (rc)
539
		goto fail;
540 541 542 543

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
544
			goto fail;
545 546 547 548 549
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
550
			goto fail;
551 552 553 554 555 556
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

557 558
fail:
	efx_remove_channel(channel);
559 560 561
	return rc;
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
580

581 582 583 584
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

585 586 587 588
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
					efx->channel_name[channel->channel],
					sizeof(efx->channel_name[0]));
589 590
}

591 592 593 594 595 596 597 598
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

599 600 601 602 603 604
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

622 623 624 625
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
626
static void efx_start_datapath(struct efx_nic *efx)
627
{
628
	bool old_rx_scatter = efx->rx_scatter;
629 630 631
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
632
	size_t rx_buf_len;
633

634 635 636 637
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
638 639 640
	efx->rx_dma_len = (efx->type->rx_buffer_hash_size +
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
641
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
642
		      NET_IP_ALIGN + efx->rx_dma_len);
643 644 645 646
	if (rx_buf_len <= PAGE_SIZE) {
		efx->rx_scatter = false;
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
647
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
648
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
649 650 651
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
652 653 654 655 656 657 658 659
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

660 661 662 663 664 665 666 667 668 669 670
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
671

672 673 674
	/* RX filters also have scatter-enabled flags */
	if (efx->rx_scatter != old_rx_scatter)
		efx_filter_update_rx_scatter(efx);
675

676 677 678 679 680 681 682 683 684 685
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

686 687
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
688 689
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
690

691
		efx_for_each_channel_rx_queue(rx_queue, channel) {
692
			efx_init_rx_queue(rx_queue);
693 694
			efx_nic_generate_fill_event(rx_queue);
		}
695

696
		WARN_ON(channel->rx_pkt_n_frags);
697 698
	}

699 700
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
701 702
}

703
static void efx_stop_datapath(struct efx_nic *efx)
704 705 706 707
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
708
	struct pci_dev *dev = efx->pci_dev;
709
	int rc;
710 711 712 713

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

714
	/* Only perform flush if dma is enabled */
715
	if (dev->is_busmaster && efx->state != STATE_RECOVERY) {
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
		rc = efx_nic_flush_queues(efx);

		if (rc && EFX_WORKAROUND_7803(efx)) {
			/* Schedule a reset to recover from the flush failure. The
			 * descriptor caches reference memory we're about to free,
			 * but falcon_reconfigure_mac_wrapper() won't reconnect
			 * the MACs because of the pending reset. */
			netif_err(efx, drv, efx->net_dev,
				  "Resetting to recover from flush failure\n");
			efx_schedule_reset(efx, RESET_TYPE_ALL);
		} else if (rc) {
			netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
		} else {
			netif_dbg(efx, drv, efx->net_dev,
				  "successfully flushed all queues\n");
		}
732
	}
733

734
	efx_for_each_channel(channel, efx) {
735 736 737 738 739 740 741 742 743 744
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
745 746 747

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
748
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
749 750 751 752 753 754 755 756 757
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

758 759
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
760 761 762

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
763
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
764 765
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
766
	channel->type->post_remove(channel);
767 768
}

769 770 771 772 773 774 775 776 777 778 779 780 781
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
782
	unsigned i, next_buffer_table = 0;
783 784 785 786 787
	int rc;

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
810

811
	efx_device_detach_sync(efx);
812
	efx_stop_all(efx);
813
	efx_stop_interrupts(efx, true);
814

815
	/* Clone channels (where possible) */
816 817
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
818 819 820
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

839 840
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
841 842

	for (i = 0; i < efx->n_channels; i++) {
843 844 845 846 847 848 849
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
850
	}
851

852
out:
853 854 855 856 857 858 859 860 861
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
862

863
	efx_start_interrupts(efx, true);
864
	efx_start_all(efx);
865
	netif_device_attach(efx->net_dev);
866 867 868 869 870 871 872 873 874 875 876 877 878 879
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

880
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
881
{
882
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
883 884
}

885 886
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
887
	.post_remove		= efx_channel_dummy_op_void,
888 889 890 891 892 893 894 895 896 897
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

898 899 900 901
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

902 903 904 905 906 907 908 909 910 911
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
912
void efx_link_status_changed(struct efx_nic *efx)
913
{
914 915
	struct efx_link_state *link_state = &efx->link_state;

916 917 918 919 920 921 922
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

923
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
924 925
		efx->n_link_state_changes++;

926
		if (link_state->up)
927 928 929 930 931 932
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
933
	if (link_state->up)
934 935 936 937 938
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
B
Ben Hutchings 已提交
939
	else
940
		netif_info(efx, link, efx->net_dev, "link down\n");
941 942
}

B
Ben Hutchings 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

956
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

971 972
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
973 974 975 976 977 978 979 980
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
981
{
B
Ben Hutchings 已提交
982 983
	enum efx_phy_mode phy_mode;
	int rc;
984

B
Ben Hutchings 已提交
985
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
986

987
	/* Serialise the promiscuous flag with efx_set_rx_mode. */
988 989
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
990

B
Ben Hutchings 已提交
991 992
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
993 994 995 996 997
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
998
	rc = efx->type->reconfigure_port(efx);
999

B
Ben Hutchings 已提交
1000 1001
	if (rc)
		efx->phy_mode = phy_mode;
1002

B
Ben Hutchings 已提交
1003
	return rc;
1004 1005 1006 1007
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
1008
int efx_reconfigure_port(struct efx_nic *efx)
1009
{
B
Ben Hutchings 已提交
1010 1011
	int rc;

1012 1013 1014
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
1015
	rc = __efx_reconfigure_port(efx);
1016
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
1017 1018

	return rc;
1019 1020
}

1021 1022 1023
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
1024 1025 1026 1027 1028
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
1029
	if (efx->port_enabled)
1030
		efx->type->reconfigure_mac(efx);
1031 1032 1033
	mutex_unlock(&efx->mac_lock);
}

1034 1035 1036 1037
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1038
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1039

1040 1041 1042
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1043 1044
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1045
	if (rc)
1046
		return rc;
1047

1048 1049
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1050 1051 1052 1053 1054 1055 1056 1057

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1058
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1059

1060 1061
	mutex_lock(&efx->mac_lock);

1062
	rc = efx->phy_op->init(efx);
1063
	if (rc)
1064
		goto fail1;
1065

1066
	efx->port_initialized = true;
1067

B
Ben Hutchings 已提交
1068 1069
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1070
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1071 1072 1073 1074 1075 1076

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1077
	mutex_unlock(&efx->mac_lock);
1078
	return 0;
1079

1080
fail2:
1081
	efx->phy_op->fini(efx);
1082 1083
fail1:
	mutex_unlock(&efx->mac_lock);
1084
	return rc;
1085 1086 1087 1088
}

static void efx_start_port(struct efx_nic *efx)
{
1089
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1090 1091 1092
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1093
	efx->port_enabled = true;
1094 1095 1096

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1097
	efx->type->reconfigure_mac(efx);
1098

1099 1100 1101
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1102
/* Prevent efx_mac_work() and efx_monitor() from working */
1103 1104
static void efx_stop_port(struct efx_nic *efx)
{
1105
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1106 1107

	mutex_lock(&efx->mac_lock);
1108
	efx->port_enabled = false;
1109 1110 1111
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1112 1113
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1114 1115 1116 1117
}

static void efx_fini_port(struct efx_nic *efx)
{
1118
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1119 1120 1121 1122

	if (!efx->port_initialized)
		return;

1123
	efx->phy_op->fini(efx);
1124
	efx->port_initialized = false;
1125

1126
	efx->link_state.up = false;
1127 1128 1129 1130 1131
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1132
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1133

1134
	efx->type->remove_port(efx);
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

1150
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1151 1152 1153

	rc = pci_enable_device(pci_dev);
	if (rc) {
1154 1155
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1167 1168
		if (dma_supported(&pci_dev->dev, dma_mask)) {
			rc = dma_set_mask(&pci_dev->dev, dma_mask);
1169 1170 1171
			if (rc == 0)
				break;
		}
1172 1173 1174
		dma_mask >>= 1;
	}
	if (rc) {
1175 1176
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1177 1178
		goto fail2;
	}
1179 1180
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1181
	rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
1182
	if (rc) {
1183 1184
		/* dma_set_coherent_mask() is not *allowed* to
		 * fail with a mask that dma_set_mask() accepted,
1185 1186
		 * but just in case...
		 */
1187 1188
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1189 1190 1191
		goto fail2;
	}

1192 1193
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1194
	if (rc) {
1195 1196
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1197 1198 1199
		rc = -EIO;
		goto fail3;
	}
1200 1201
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
1202
	if (!efx->membase) {
1203 1204 1205 1206
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1207 1208 1209
		rc = -ENOMEM;
		goto fail4;
	}
1210 1211 1212 1213
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1214 1215 1216 1217

	return 0;

 fail4:
1218
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1219
 fail3:
1220
	efx->membase_phys = 0;
1221 1222 1223 1224 1225 1226 1227 1228
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1229
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1230 1231 1232 1233 1234 1235 1236

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1237
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1238
		efx->membase_phys = 0;
1239 1240 1241 1242 1243
	}

	pci_disable_device(efx->pci_dev);
}

1244
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1245
{
1246
	cpumask_var_t thread_mask;
1247
	unsigned int count;
1248
	int cpu;
1249

1250 1251 1252 1253 1254 1255 1256 1257
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1269 1270
	}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1282 1283 1284 1285 1286
	}

	return count;
}

1287 1288 1289 1290
static int
efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
{
#ifdef CONFIG_RFS_ACCEL
1291 1292
	unsigned int i;
	int rc;
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
	if (!efx->net_dev->rx_cpu_rmap)
		return -ENOMEM;
	for (i = 0; i < efx->n_rx_channels; i++) {
		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
				      xentries[i].vector);
		if (rc) {
			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
			efx->net_dev->rx_cpu_rmap = NULL;
			return rc;
		}
	}
#endif
	return 0;
}

1310 1311 1312
/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1313
static int efx_probe_interrupts(struct efx_nic *efx)
1314
{
1315 1316
	unsigned int max_channels =
		min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1317 1318
	unsigned int extra_channels = 0;
	unsigned int i, j;
1319
	int rc;
1320

1321 1322 1323 1324
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1325
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1326
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1327
		unsigned int n_channels;
1328

1329
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1330 1331
		if (separate_tx_channels)
			n_channels *= 2;
1332
		n_channels += extra_channels;
B
Ben Hutchings 已提交
1333
		n_channels = min(n_channels, max_channels);
1334

B
Ben Hutchings 已提交
1335
		for (i = 0; i < n_channels; i++)
1336
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1337
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1338
		if (rc > 0) {
1339 1340
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1341
				  " available (%d < %u).\n", rc, n_channels);
1342 1343
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1344 1345
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1346
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1347
					     n_channels);
1348 1349 1350
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1351
			efx->n_channels = n_channels;
1352 1353
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1354
			if (separate_tx_channels) {
1355 1356 1357 1358
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1359
			} else {
1360 1361
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1362
			}
1363 1364 1365 1366 1367
			rc = efx_init_rx_cpu_rmap(efx, xentries);
			if (rc) {
				pci_disable_msix(efx->pci_dev);
				return rc;
			}
1368
			for (i = 0; i < efx->n_channels; i++)
1369 1370
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1371 1372 1373
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1374 1375
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1376 1377 1378 1379 1380
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1381
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1382 1383
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1384 1385
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1386
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1387
		} else {
1388 1389
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1390 1391 1392 1393 1394 1395
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1396
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1397 1398
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1399 1400
		efx->legacy_irq = efx->pci_dev->irq;
	}
1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1417
	/* RSS might be usable on VFs even if it is disabled on the PF */
1418
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1419 1420
			   efx->n_rx_channels : efx_vf_size(efx));

1421
	return 0;
1422 1423
}

1424
/* Enable interrupts, then probe and start the event queues */
1425
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1426 1427 1428
{
	struct efx_channel *channel;

1429 1430
	BUG_ON(efx->state == STATE_DISABLED);

1431 1432 1433 1434
	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}
1435 1436 1437 1438 1439
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
	efx_nic_enable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
1440 1441
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_init_eventq(channel);
1442 1443 1444 1445 1446 1447
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
}

1448
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1449 1450 1451
{
	struct efx_channel *channel;

1452 1453 1454
	if (efx->state == STATE_DISABLED)
		return;

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	efx_mcdi_mode_poll(efx);

	efx_nic_disable_interrupts(efx);
	if (efx->legacy_irq) {
		synchronize_irq(efx->legacy_irq);
		efx->legacy_irq_enabled = false;
	}

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
1468 1469
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_fini_eventq(channel);
1470 1471 1472
	}
}

1473 1474 1475 1476 1477
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1478
	efx_for_each_channel(channel, efx)
1479 1480 1481 1482 1483 1484 1485 1486
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1487
static void efx_set_channels(struct efx_nic *efx)
1488
{
1489 1490 1491
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1492
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1493
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1494

1495 1496
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1497 1498 1499
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1500 1501 1502 1503 1504
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1505 1506 1507 1508
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1509 1510 1511 1512
}

static int efx_probe_nic(struct efx_nic *efx)
{
1513
	size_t i;
1514 1515
	int rc;

1516
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1517 1518

	/* Carry out hardware-type specific initialisation */
1519
	rc = efx->type->probe(efx);
1520 1521 1522
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1523
	/* Determine the number of channels and queues by trying to hook
1524
	 * in MSI-X interrupts. */
1525 1526 1527
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1528

1529 1530
	efx->type->dimension_resources(efx);

1531 1532
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1533
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1534
		efx->rx_indir_table[i] =
1535
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1536

1537
	efx_set_channels(efx);
1538 1539
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1540 1541

	/* Initialise the interrupt moderation settings */
1542 1543
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1544 1545

	return 0;
1546 1547 1548 1549

fail:
	efx->type->remove(efx);
	return rc;
1550 1551 1552 1553
}

static void efx_remove_nic(struct efx_nic *efx)
{
1554
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1555 1556

	efx_remove_interrupts(efx);
1557
	efx->type->remove(efx);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1572
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1573 1574 1575 1576 1577
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1578
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1579 1580 1581
		goto fail2;
	}

1582 1583 1584 1585 1586
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1587
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1588

B
Ben Hutchings 已提交
1589 1590 1591 1592
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1593
		goto fail3;
B
Ben Hutchings 已提交
1594 1595
	}

1596 1597 1598 1599
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1600 1601
	return 0;

B
Ben Hutchings 已提交
1602
 fail4:
1603
	efx_remove_filters(efx);
1604 1605 1606 1607 1608 1609 1610 1611
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1612 1613 1614 1615 1616 1617
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1618
 */
1619 1620 1621
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1622
	BUG_ON(efx->state == STATE_DISABLED);
1623 1624 1625

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1626
	if (efx->port_enabled || !netif_running(efx->net_dev))
1627 1628 1629
		return;

	efx_start_port(efx);
1630
	efx_start_datapath(efx);
1631

1632 1633
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1634 1635
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1636 1637 1638 1639 1640

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1641 1642 1643 1644 1645
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1646

1647
	efx->type->start_stats(efx);
1648 1649 1650 1651 1652 1653 1654
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1655
	/* Make sure the hardware monitor and event self-test are stopped */
1656
	cancel_delayed_work_sync(&efx->monitor_work);
1657
	efx_selftest_async_cancel(efx);
1658
	/* Stop scheduled port reconfigurations */
1659
	cancel_work_sync(&efx->mac_work);
1660 1661
}

1662 1663 1664 1665 1666
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1667 1668 1669 1670 1671 1672 1673 1674
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1675
	efx->type->stop_stats(efx);
1676 1677
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1678
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1679 1680
	efx_flush_all(efx);

1681 1682 1683 1684 1685 1686
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1687 1688 1689
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1690 1691 1692 1693
}

static void efx_remove_all(struct efx_nic *efx)
{
1694
	efx_remove_channels(efx);
1695
	efx_remove_filters(efx);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1706
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1707
{
1708 1709
	if (usecs == 0)
		return 0;
1710
	if (usecs * 1000 < quantum_ns)
1711
		return 1; /* never round down to 0 */
1712
	return usecs * 1000 / quantum_ns;
1713 1714
}

1715
/* Set interrupt moderation parameters */
1716 1717 1718
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1719
{
1720
	struct efx_channel *channel;
1721 1722 1723 1724 1725
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1726 1727 1728

	EFX_ASSERT_RESET_SERIALISED(efx);

1729
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1730 1731
		return -EINVAL;

1732 1733 1734
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1735 1736 1737 1738 1739 1740 1741
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1742
	efx->irq_rx_adaptive = rx_adaptive;
1743
	efx->irq_rx_moderation = rx_ticks;
1744
	efx_for_each_channel(channel, efx) {
1745
		if (efx_channel_has_rx_queue(channel))
1746
			channel->irq_moderation = rx_ticks;
1747
		else if (efx_channel_has_tx_queues(channel))
1748 1749
			channel->irq_moderation = tx_ticks;
	}
1750 1751

	return 0;
1752 1753
}

1754 1755 1756
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1757 1758 1759 1760
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1761
	*rx_adaptive = efx->irq_rx_adaptive;
1762 1763 1764
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1765 1766 1767 1768 1769 1770 1771 1772

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1773
		*tx_usecs = DIV_ROUND_UP(
1774
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1775 1776
			efx->timer_quantum_ns,
			1000);
1777 1778
}

1779 1780 1781 1782 1783 1784
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1785
/* Run periodically off the general workqueue */
1786 1787 1788 1789 1790
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1791 1792 1793
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1794
	BUG_ON(efx->type->monitor == NULL);
1795 1796 1797

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1798 1799 1800 1801 1802 1803
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1820
	struct efx_nic *efx = netdev_priv(net_dev);
1821
	struct mii_ioctl_data *data = if_mii(ifr);
1822

1823 1824 1825
	if (cmd == SIOCSHWTSTAMP)
		return efx_ptp_ioctl(efx, ifr, cmd);

1826 1827 1828 1829 1830 1831
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1832 1833 1834 1835 1836 1837 1838 1839
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1840 1841 1842 1843 1844 1845 1846 1847 1848
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1849
static void efx_init_napi(struct efx_nic *efx)
1850 1851 1852
{
	struct efx_channel *channel;

1853 1854
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1855 1856 1857 1858 1859 1860 1861
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1862 1863 1864 1865 1866 1867
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1868 1869
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1886
	struct efx_nic *efx = netdev_priv(net_dev);
1887 1888
	struct efx_channel *channel;

1889
	efx_for_each_channel(channel, efx)
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1904
	struct efx_nic *efx = netdev_priv(net_dev);
1905 1906
	int rc;

1907 1908
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1909

1910 1911 1912
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1913 1914
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1915 1916
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1917

1918 1919 1920 1921
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1922
	efx_start_all(efx);
1923
	efx_selftest_async_start(efx);
1924 1925 1926 1927 1928 1929 1930 1931 1932
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1933
	struct efx_nic *efx = netdev_priv(net_dev);
1934

1935 1936
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1937

1938 1939
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1940 1941 1942 1943

	return 0;
}

1944
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1945 1946
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1947
{
1948
	struct efx_nic *efx = netdev_priv(net_dev);
1949 1950
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1951
	spin_lock_bh(&efx->stats_lock);
1952

1953
	efx->type->update_stats(efx);
1954 1955 1956 1957 1958

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1959
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1977 1978
	spin_unlock_bh(&efx->stats_lock);

1979 1980 1981 1982 1983 1984
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1985
	struct efx_nic *efx = netdev_priv(net_dev);
1986

1987 1988 1989
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1990

1991
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1992 1993 1994 1995 1996 1997
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1998
	struct efx_nic *efx = netdev_priv(net_dev);
1999
	int rc;
2000

2001 2002 2003
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2004 2005 2006
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2007
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2008

2009 2010 2011
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2012
	mutex_lock(&efx->mac_lock);
2013
	net_dev->mtu = new_mtu;
2014
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2015 2016
	mutex_unlock(&efx->mac_lock);

2017
	efx_start_all(efx);
2018
	netif_device_attach(efx->net_dev);
2019
	return 0;
2020 2021 2022 2023
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2024
	struct efx_nic *efx = netdev_priv(net_dev);
2025 2026 2027 2028
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
2029 2030 2031
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2032
		return -EADDRNOTAVAIL;
2033 2034 2035
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2036
	efx_sriov_mac_address_changed(efx);
2037 2038

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2039
	mutex_lock(&efx->mac_lock);
2040
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2041
	mutex_unlock(&efx->mac_lock);
2042 2043 2044 2045

	return 0;
}

2046
/* Context: netif_addr_lock held, BHs disabled. */
2047
static void efx_set_rx_mode(struct net_device *net_dev)
2048
{
2049
	struct efx_nic *efx = netdev_priv(net_dev);
2050
	struct netdev_hw_addr *ha;
2051 2052 2053 2054
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

2055
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
2056 2057

	/* Build multicast hash table */
2058
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
2059 2060 2061
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
2062 2063
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
2064
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2065
			__set_bit_le(bit, mc_hash);
2066 2067
		}

2068 2069 2070 2071
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
2072
		__set_bit_le(0xff, mc_hash);
2073
	}
2074

2075 2076 2077
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2078 2079
}

2080
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
2091 2092 2093
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2094
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2095 2096 2097 2098 2099 2100
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2101
	.ndo_set_rx_mode	= efx_set_rx_mode,
2102
	.ndo_set_features	= efx_set_features,
2103 2104 2105 2106 2107 2108
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2109 2110 2111
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2112
	.ndo_setup_tc		= efx_setup_tc,
2113 2114 2115
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2116 2117
};

2118 2119 2120 2121 2122 2123 2124
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2125 2126 2127
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2128
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2129

2130 2131 2132
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2133 2134 2135 2136 2137 2138 2139 2140

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2141 2142 2143 2144 2145 2146 2147 2148
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

2149 2150 2151
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2152
	struct efx_channel *channel;
2153 2154 2155 2156
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
2157
	net_dev->netdev_ops = &efx_netdev_ops;
2158
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2159
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2160

2161
	rtnl_lock();
2162

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2176 2177 2178
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2179
	efx_update_name(efx);
2180

2181 2182 2183
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2184 2185 2186 2187
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2188 2189
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2190 2191
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2192 2193
	}

2194
	rtnl_unlock();
2195

B
Ben Hutchings 已提交
2196 2197
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2198 2199
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2200 2201 2202
		goto fail_registered;
	}

2203
	return 0;
B
Ben Hutchings 已提交
2204

2205 2206 2207
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2208
fail_locked:
2209
	efx->state = STATE_UNINIT;
2210
	rtnl_unlock();
2211
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2212
	return rc;
2213 2214 2215 2216
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
2217
	struct efx_channel *channel;
2218 2219 2220 2221 2222
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

2223
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2224 2225 2226 2227

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
2228 2229 2230 2231
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_release_tx_buffers(tx_queue);
	}
2232

2233 2234
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2235 2236 2237 2238 2239

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2240 2241 2242 2243 2244 2245 2246 2247
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2248 2249
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2250
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2251 2252 2253
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2254
	efx_stop_all(efx);
2255
	efx_stop_interrupts(efx, false);
2256 2257

	mutex_lock(&efx->mac_lock);
2258 2259
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2260
	efx->type->fini(efx);
2261 2262
}

B
Ben Hutchings 已提交
2263 2264 2265 2266 2267
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2268
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2269 2270 2271
{
	int rc;

B
Ben Hutchings 已提交
2272
	EFX_ASSERT_RESET_SERIALISED(efx);
2273

2274
	rc = efx->type->init(efx);
2275
	if (rc) {
2276
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2277
		goto fail;
2278 2279
	}

2280 2281 2282
	if (!ok)
		goto fail;

2283
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2284 2285 2286 2287
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2288 2289
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2290 2291
	}

2292
	efx->type->reconfigure_mac(efx);
2293

2294
	efx_start_interrupts(efx, false);
B
Ben Hutchings 已提交
2295
	efx_restore_filters(efx);
2296
	efx_sriov_reset(efx);
2297 2298 2299 2300 2301 2302 2303 2304 2305

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2306 2307 2308

	mutex_unlock(&efx->mac_lock);

2309 2310 2311
	return rc;
}

2312 2313
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2314
 *
2315
 * Caller must hold the rtnl_lock.
2316
 */
2317
int efx_reset(struct efx_nic *efx, enum reset_type method)
2318
{
2319 2320
	int rc, rc2;
	bool disabled;
2321

2322 2323
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2324

2325
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2326
	efx_reset_down(efx, method);
2327

2328
	rc = efx->type->reset(efx, method);
2329
	if (rc) {
2330
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2331
		goto out;
2332 2333
	}

2334 2335 2336 2337
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2338 2339 2340 2341 2342 2343 2344

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2345
out:
2346
	/* Leave device stopped if necessary */
2347 2348 2349
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2350 2351 2352 2353 2354
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2355 2356
	}

2357
	if (disabled) {
2358
		dev_close(efx->net_dev);
2359
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2360 2361
		efx->state = STATE_DISABLED;
	} else {
2362
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2363
		netif_device_attach(efx->net_dev);
2364
	}
2365 2366 2367
	return rc;
}

2368 2369 2370 2371 2372
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2373
int efx_try_recovery(struct efx_nic *efx)
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2394 2395 2396 2397 2398
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2399
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2410

2411
	if (!pending)
2412 2413
		return;

2414
	rtnl_lock();
2415 2416 2417 2418 2419 2420

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2421
		(void)efx_reset(efx, method);
2422

2423
	rtnl_unlock();
2424 2425 2426 2427 2428 2429
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2430 2431 2432 2433 2434 2435 2436
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2437 2438 2439
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2440
	case RESET_TYPE_RECOVER_OR_ALL:
2441 2442
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2443
	case RESET_TYPE_RECOVER_OR_DISABLE:
2444
		method = type;
2445 2446
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2447 2448
		break;
	default:
2449
		method = efx->type->map_reset_reason(type);
2450 2451 2452
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2453 2454
		break;
	}
2455

2456
	set_bit(method, &efx->reset_pending);
2457 2458 2459 2460 2461 2462 2463
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2464

2465 2466 2467 2468
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2469
	queue_work(reset_workqueue, &efx->reset_work);
2470 2471 2472 2473 2474 2475 2476 2477 2478
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2479
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2480 2481
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2482
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2483 2484
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2485
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2486
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2487
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2488
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2489
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2490 2491 2492 2493 2494
	{0}			/* end of list */
};

/**************************************************************************
 *
2495
 * Dummy PHY/MAC operations
2496
 *
2497
 * Can be used for some unimplemented operations
2498 2499 2500 2501 2502 2503 2504 2505 2506
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2507 2508

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2509 2510 2511
{
	return false;
}
2512

2513
static const struct efx_phy_operations efx_dummy_phy_operations = {
2514
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2515
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2516
	.poll		 = efx_port_dummy_op_poll,
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2529
static int efx_init_struct(struct efx_nic *efx,
2530 2531
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2532
	int i;
2533 2534 2535

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2536 2537 2538
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2539 2540
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2541
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2542
	efx->pci_dev = pci_dev;
2543
	efx->msg_enable = debug;
2544
	efx->state = STATE_UNINIT;
2545 2546 2547 2548 2549 2550
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2551
	efx->mdio.dev = net_dev;
2552
	INIT_WORK(&efx->mac_work, efx_mac_work);
2553
	init_waitqueue_head(&efx->flush_wq);
2554 2555

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2556 2557 2558
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
2559 2560 2561 2562 2563 2564 2565 2566
	}

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2567 2568 2569 2570
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2571
	if (!efx->workqueue)
2572
		goto fail;
2573

2574
	return 0;
2575 2576 2577 2578

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2579 2580 2581 2582
}

static void efx_fini_struct(struct efx_nic *efx)
{
2583 2584 2585 2586 2587
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2605 2606 2607 2608 2609 2610
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

2611 2612 2613 2614
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif
2615
	efx_stop_interrupts(efx, false);
2616
	efx_nic_fini_interrupt(efx);
2617
	efx_fini_port(efx);
2618
	efx->type->fini(efx);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
2637
	efx_stop_interrupts(efx, false);
2638 2639
	rtnl_unlock();

2640
	efx_sriov_fini(efx);
2641 2642
	efx_unregister_netdev(efx);

2643 2644
	efx_mtd_remove(efx);

2645 2646 2647
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2648
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2649 2650

	efx_fini_struct(efx);
2651
	pci_set_drvdata(pci_dev, NULL);
2652
	free_netdev(efx->net_dev);
2653 2654

	pci_disable_pcie_error_reporting(pci_dev);
2655 2656
};

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2720
	efx_init_napi(efx);
2721

2722
	rc = efx->type->init(efx);
2723
	if (rc) {
2724 2725
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2726
		goto fail3;
2727 2728 2729 2730
	}

	rc = efx_init_port(efx);
	if (rc) {
2731 2732
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2733
		goto fail4;
2734 2735
	}

2736
	rc = efx_nic_init_interrupt(efx);
2737
	if (rc)
2738
		goto fail5;
2739
	efx_start_interrupts(efx, false);
2740 2741 2742

	return 0;

2743
 fail5:
2744 2745
	efx_fini_port(efx);
 fail4:
2746
	efx->type->fini(efx);
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2757
 * theoretically).  It sets up PCI mappings, resets the NIC,
2758 2759 2760 2761 2762
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2763
static int efx_pci_probe(struct pci_dev *pci_dev,
2764
			 const struct pci_device_id *entry)
2765 2766 2767
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2768
	int rc;
2769 2770

	/* Allocate and initialise a struct net_device and struct efx_nic */
2771 2772
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2773 2774
	if (!net_dev)
		return -ENOMEM;
2775 2776 2777
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2778
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2779
			      NETIF_F_RXCSUM);
2780
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2781
		net_dev->features |= NETIF_F_TSO6;
2782 2783
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2784 2785 2786 2787
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2788
	pci_set_drvdata(pci_dev, efx);
2789
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2790
	rc = efx_init_struct(efx, pci_dev, net_dev);
2791 2792 2793
	if (rc)
		goto fail1;

2794
	netif_info(efx, probe, efx->net_dev,
2795
		   "Solarflare NIC detected\n");
2796

2797 2798
	efx_print_product_vpd(efx);

2799 2800 2801 2802 2803
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2804 2805 2806
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2807 2808 2809

	rc = efx_register_netdev(efx);
	if (rc)
2810
		goto fail4;
2811

2812 2813 2814 2815 2816
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2817
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2818

2819
	/* Try to create MTDs, but allow this to fail */
2820
	rtnl_lock();
2821
	rc = efx_mtd_probe(efx);
2822
	rtnl_unlock();
2823 2824 2825 2826
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2827 2828 2829 2830 2831
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2832 2833 2834
	return 0;

 fail4:
2835
	efx_pci_remove_main(efx);
2836 2837 2838 2839 2840
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2841
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2842
	WARN_ON(rc > 0);
2843
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2844 2845 2846 2847
	free_netdev(net_dev);
	return rc;
}

2848 2849 2850 2851
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2852 2853
	rtnl_lock();

2854 2855
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2856

2857
		efx_device_detach_sync(efx);
2858

2859 2860 2861
		efx_stop_all(efx);
		efx_stop_interrupts(efx, false);
	}
2862

2863 2864
	rtnl_unlock();

2865 2866 2867 2868 2869 2870 2871
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2872 2873
	rtnl_lock();

2874 2875
	if (efx->state != STATE_DISABLED) {
		efx_start_interrupts(efx, false);
2876

2877 2878 2879
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2880

2881
		efx_start_all(efx);
2882

2883
		netif_device_attach(efx->net_dev);
2884

2885
		efx->state = STATE_READY;
2886

2887 2888
		efx->type->resume_wol(efx);
	}
2889

2890 2891
	rtnl_unlock();

2892 2893 2894
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2905
	efx->reset_pending = 0;
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2947
static const struct dev_pm_ops efx_pm_ops = {
2948 2949 2950 2951 2952 2953 2954 2955
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2956 2957 2958 2959
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
2960 2961
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
		efx_stop_interrupts(efx, false);

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
2996
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3055
static struct pci_driver efx_pci_driver = {
3056
	.name		= KBUILD_MODNAME,
3057 3058 3059
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3060
	.driver.pm	= &efx_pm_ops,
3061
	.err_handler	= &efx_err_handlers,
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3084 3085 3086 3087
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3088 3089 3090 3091 3092
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3093 3094 3095 3096 3097 3098 3099 3100

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3101 3102
	destroy_workqueue(reset_workqueue);
 err_reset:
3103 3104
	efx_fini_sriov();
 err_sriov:
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3115
	destroy_workqueue(reset_workqueue);
3116
	efx_fini_sriov();
3117 3118 3119 3120 3121 3122 3123
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3124 3125
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
3126 3127 3128
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);