enlighten.c 28.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Core of Xen paravirt_ops implementation.
 *
 * This file contains the xen_paravirt_ops structure itself, and the
 * implementations for:
 * - privileged instructions
 * - interrupt flags
 * - segment operations
 * - booting and setup
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/preempt.h>
18
#include <linux/hardirq.h>
19 20 21 22 23 24
#include <linux/percpu.h>
#include <linux/delay.h>
#include <linux/start_kernel.h>
#include <linux/sched.h>
#include <linux/bootmem.h>
#include <linux/module.h>
25 26 27
#include <linux/mm.h>
#include <linux/page-flags.h>
#include <linux/highmem.h>
28 29 30 31

#include <xen/interface/xen.h>
#include <xen/interface/physdev.h>
#include <xen/interface/vcpu.h>
J
Jeremy Fitzhardinge 已提交
32
#include <xen/interface/sched.h>
33 34 35 36 37 38 39 40 41 42 43 44
#include <xen/features.h>
#include <xen/page.h>

#include <asm/paravirt.h>
#include <asm/page.h>
#include <asm/xen/hypercall.h>
#include <asm/xen/hypervisor.h>
#include <asm/fixmap.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/desc.h>
#include <asm/pgtable.h>
J
Jeremy Fitzhardinge 已提交
45
#include <asm/tlbflush.h>
J
Jeremy Fitzhardinge 已提交
46
#include <asm/reboot.h>
47 48

#include "xen-ops.h"
J
Jeremy Fitzhardinge 已提交
49
#include "mmu.h"
50 51 52 53 54 55
#include "multicalls.h"

EXPORT_SYMBOL_GPL(hypercall_page);

DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

/*
 * Note about cr3 (pagetable base) values:
 *
 * xen_cr3 contains the current logical cr3 value; it contains the
 * last set cr3.  This may not be the current effective cr3, because
 * its update may be being lazily deferred.  However, a vcpu looking
 * at its own cr3 can use this value knowing that it everything will
 * be self-consistent.
 *
 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 * hypercall to set the vcpu cr3 is complete (so it may be a little
 * out of date, but it will never be set early).  If one vcpu is
 * looking at another vcpu's cr3 value, it should use this variable.
 */
DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
73 74 75 76

struct start_info *xen_start_info;
EXPORT_SYMBOL_GPL(xen_start_info);

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
static /* __initdata */ struct shared_info dummy_shared_info;

/*
 * Point at some empty memory to start with. We map the real shared_info
 * page as soon as fixmap is up and running.
 */
struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;

/*
 * Flag to determine whether vcpu info placement is available on all
 * VCPUs.  We assume it is to start with, and then set it to zero on
 * the first failure.  This is because it can succeed on some VCPUs
 * and not others, since it can involve hypervisor memory allocation,
 * or because the guest failed to guarantee all the appropriate
 * constraints on all VCPUs (ie buffer can't cross a page boundary).
 *
 * Note that any particular CPU may be using a placed vcpu structure,
 * but we can only optimise if the all are.
 *
 * 0: not available, 1: available
 */
98
static int have_vcpu_info_placement = 0;
99 100

static void __init xen_vcpu_setup(int cpu)
101
{
102 103 104 105
	struct vcpu_register_vcpu_info info;
	int err;
	struct vcpu_info *vcpup;

106
	per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
107 108 109 110 111 112 113 114 115

	if (!have_vcpu_info_placement)
		return;		/* already tested, not available */

	vcpup = &per_cpu(xen_vcpu_info, cpu);

	info.mfn = virt_to_mfn(vcpup);
	info.offset = offset_in_page(vcpup);

116
	printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
117 118 119 120 121 122 123 124 125 126 127 128 129 130
	       cpu, vcpup, info.mfn, info.offset);

	/* Check to see if the hypervisor will put the vcpu_info
	   structure where we want it, which allows direct access via
	   a percpu-variable. */
	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);

	if (err) {
		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
		have_vcpu_info_placement = 0;
	} else {
		/* This cpu is using the registered vcpu info, even if
		   later ones fail to. */
		per_cpu(xen_vcpu, cpu) = vcpup;
131

132 133 134
		printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
		       cpu, vcpup);
	}
135 136 137 138 139
}

static void __init xen_banner(void)
{
	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
140
	       pv_info.name);
141 142 143
	printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
}

144 145
static void xen_cpuid(unsigned int *ax, unsigned int *bx,
		      unsigned int *cx, unsigned int *dx)
146 147 148 149 150 151 152
{
	unsigned maskedx = ~0;

	/*
	 * Mask out inconvenient features, to try and disable as many
	 * unsupported kernel subsystems as possible.
	 */
153
	if (*ax == 1)
154 155 156 157 158
		maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
			    (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
			    (1 << X86_FEATURE_ACC));   /* thermal monitoring */

	asm(XEN_EMULATE_PREFIX "cpuid"
159 160 161 162 163 164
		: "=a" (*ax),
		  "=b" (*bx),
		  "=c" (*cx),
		  "=d" (*dx)
		: "0" (*ax), "2" (*cx));
	*dx &= maskedx;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
}

static void xen_set_debugreg(int reg, unsigned long val)
{
	HYPERVISOR_set_debugreg(reg, val);
}

static unsigned long xen_get_debugreg(int reg)
{
	return HYPERVISOR_get_debugreg(reg);
}

static unsigned long xen_save_fl(void)
{
	struct vcpu_info *vcpu;
	unsigned long flags;

	vcpu = x86_read_percpu(xen_vcpu);
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
	/* flag has opposite sense of mask */
	flags = !vcpu->evtchn_upcall_mask;

	/* convert to IF type flag
	   -0 -> 0x00000000
	   -1 -> 0xffffffff
	*/
	return (-flags) & X86_EFLAGS_IF;
}

static void xen_restore_fl(unsigned long flags)
{
	struct vcpu_info *vcpu;

	/* convert from IF type flag */
	flags = !(flags & X86_EFLAGS_IF);
200 201 202 203 204

	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
	preempt_disable();
205 206
	vcpu = x86_read_percpu(xen_vcpu);
	vcpu->evtchn_upcall_mask = flags;
207
	preempt_enable_no_resched();
208

209 210
	/* Doesn't matter if we get preempted here, because any
	   pending event will get dealt with anyway. */
211

212 213 214
	if (flags == 0) {
		preempt_check_resched();
		barrier(); /* unmask then check (avoid races) */
215 216
		if (unlikely(vcpu->evtchn_upcall_pending))
			force_evtchn_callback();
217
	}
218 219 220 221
}

static void xen_irq_disable(void)
{
222 223 224
	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
225
	preempt_disable();
226
	x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
227 228 229 230 231 232 233
	preempt_enable_no_resched();
}

static void xen_irq_enable(void)
{
	struct vcpu_info *vcpu;

234 235 236
	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
237 238 239
	preempt_disable();
	vcpu = x86_read_percpu(xen_vcpu);
	vcpu->evtchn_upcall_mask = 0;
240
	preempt_enable_no_resched();
241

242 243
	/* Doesn't matter if we get preempted here, because any
	   pending event will get dealt with anyway. */
244

245
	barrier(); /* unmask then check (avoid races) */
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	if (unlikely(vcpu->evtchn_upcall_pending))
		force_evtchn_callback();
}

static void xen_safe_halt(void)
{
	/* Blocking includes an implicit local_irq_enable(). */
	if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
		BUG();
}

static void xen_halt(void)
{
	if (irqs_disabled())
		HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
	else
		xen_safe_halt();
}

265
static void xen_leave_lazy(void)
266
{
267
	paravirt_leave_lazy(paravirt_get_lazy_mode());
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	xen_mc_flush();
}

static unsigned long xen_store_tr(void)
{
	return 0;
}

static void xen_set_ldt(const void *addr, unsigned entries)
{
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_SET_LDT;
283
	op->arg1.linear_addr = (unsigned long)addr;
284 285 286 287 288 289 290
	op->arg2.nr_ents = entries;

	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

291
static void xen_load_gdt(const struct desc_ptr *dtr)
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
{
	unsigned long *frames;
	unsigned long va = dtr->address;
	unsigned int size = dtr->size + 1;
	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
	int f;
	struct multicall_space mcs;

	/* A GDT can be up to 64k in size, which corresponds to 8192
	   8-byte entries, or 16 4k pages.. */

	BUG_ON(size > 65536);
	BUG_ON(va & ~PAGE_MASK);

	mcs = xen_mc_entry(sizeof(*frames) * pages);
	frames = mcs.args;

	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
		frames[f] = virt_to_mfn(va);
		make_lowmem_page_readonly((void *)va);
	}

	MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

static void load_TLS_descriptor(struct thread_struct *t,
				unsigned int cpu, unsigned int i)
{
	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
	xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
	struct multicall_space mc = __xen_mc_entry(0);

	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
}

static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
{
	xen_mc_batch();

	load_TLS_descriptor(t, cpu, 0);
	load_TLS_descriptor(t, cpu, 1);
	load_TLS_descriptor(t, cpu, 2);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
338 339 340 341 342 343 344 345 346 347

	/*
	 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
	 * it means we're in a context switch, and %gs has just been
	 * saved.  This means we can zero it out to prevent faults on
	 * exit from the hypervisor if the next process has no %gs.
	 * Either way, it has been saved, and the new value will get
	 * loaded properly.  This will go away as soon as Xen has been
	 * modified to not save/restore %gs for normal hypercalls.
	 */
348
	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
349
		loadsegment(gs, 0);
350 351 352
}

static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
353
				const void *ptr)
354 355 356
{
	unsigned long lp = (unsigned long)&dt[entrynum];
	xmaddr_t mach_lp = virt_to_machine(lp);
357
	u64 entry = *(u64 *)ptr;
358

359 360
	preempt_disable();

361 362 363
	xen_mc_flush();
	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
		BUG();
364 365

	preempt_enable();
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
}

static int cvt_gate_to_trap(int vector, u32 low, u32 high,
			    struct trap_info *info)
{
	u8 type, dpl;

	type = (high >> 8) & 0x1f;
	dpl = (high >> 13) & 3;

	if (type != 0xf && type != 0xe)
		return 0;

	info->vector = vector;
	info->address = (high & 0xffff0000) | (low & 0x0000ffff);
	info->cs = low >> 16;
	info->flags = dpl;
	/* interrupt gates clear IF */
	if (type == 0xe)
		info->flags |= 4;

	return 1;
}

/* Locations of each CPU's IDT */
391
static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
392 393 394

/* Set an IDT entry.  If the entry is part of the current IDT, then
   also update Xen. */
395
static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
396 397
{
	unsigned long p = (unsigned long)&dt[entrynum];
398 399 400 401 402 403
	unsigned long start, end;

	preempt_disable();

	start = __get_cpu_var(idt_desc).address;
	end = start + __get_cpu_var(idt_desc).size + 1;
404 405 406

	xen_mc_flush();

407
	native_write_idt_entry(dt, entrynum, g);
408 409 410

	if (p >= start && (p + 8) <= end) {
		struct trap_info info[2];
411
		u32 *desc = (u32 *)g;
412 413 414

		info[1].address = 0;

415
		if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
416 417 418
			if (HYPERVISOR_set_trap_table(info))
				BUG();
	}
419 420

	preempt_enable();
421 422
}

423
static void xen_convert_trap_info(const struct desc_ptr *desc,
J
Jeremy Fitzhardinge 已提交
424
				  struct trap_info *traps)
425 426 427 428 429 430 431 432 433 434 435 436 437
{
	unsigned in, out, count;

	count = (desc->size+1) / 8;
	BUG_ON(count > 256);

	for (in = out = 0; in < count; in++) {
		const u32 *entry = (u32 *)(desc->address + in * 8);

		if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
			out++;
	}
	traps[out].address = 0;
J
Jeremy Fitzhardinge 已提交
438 439 440 441
}

void xen_copy_trap_info(struct trap_info *traps)
{
442
	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
J
Jeremy Fitzhardinge 已提交
443 444 445 446 447 448 449

	xen_convert_trap_info(desc, traps);
}

/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
   hold a spinlock to protect the static traps[] array (static because
   it avoids allocation, and saves stack space). */
450
static void xen_load_idt(const struct desc_ptr *desc)
J
Jeremy Fitzhardinge 已提交
451 452 453 454 455 456
{
	static DEFINE_SPINLOCK(lock);
	static struct trap_info traps[257];

	spin_lock(&lock);

457 458
	__get_cpu_var(idt_desc) = *desc;

J
Jeremy Fitzhardinge 已提交
459
	xen_convert_trap_info(desc, traps);
460 461 462 463 464 465 466 467 468 469 470

	xen_mc_flush();
	if (HYPERVISOR_set_trap_table(traps))
		BUG();

	spin_unlock(&lock);
}

/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
   they're handled differently. */
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
471
				const void *desc, int type)
472
{
473 474
	preempt_disable();

475 476 477
	switch (type) {
	case DESC_LDT:
	case DESC_TSS:
478 479 480 481 482 483 484
		/* ignore */
		break;

	default: {
		xmaddr_t maddr = virt_to_machine(&dt[entry]);

		xen_mc_flush();
485
		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
486 487 488 489
			BUG();
	}

	}
490 491

	preempt_enable();
492 493
}

494
static void xen_load_sp0(struct tss_struct *tss,
495
			  struct thread_struct *thread)
496 497
{
	struct multicall_space mcs = xen_mc_entry(0);
498
	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

static void xen_set_iopl_mask(unsigned mask)
{
	struct physdev_set_iopl set_iopl;

	/* Force the change at ring 0. */
	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
}

static void xen_io_delay(void)
{
}

#ifdef CONFIG_X86_LOCAL_APIC
516
static u32 xen_apic_read(unsigned long reg)
517 518 519
{
	return 0;
}
J
Jeremy Fitzhardinge 已提交
520

521
static void xen_apic_write(unsigned long reg, u32 val)
J
Jeremy Fitzhardinge 已提交
522 523 524 525
{
	/* Warn to see if there's any stray references */
	WARN_ON(1);
}
526 527 528 529
#endif

static void xen_flush_tlb(void)
{
J
Jeremy Fitzhardinge 已提交
530 531
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
532

J
Jeremy Fitzhardinge 已提交
533 534 535 536 537
	op = mcs.args;
	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
538 539 540 541
}

static void xen_flush_tlb_single(unsigned long addr)
{
J
Jeremy Fitzhardinge 已提交
542 543
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
544

J
Jeremy Fitzhardinge 已提交
545 546 547 548 549 550
	op = mcs.args;
	op->cmd = MMUEXT_INVLPG_LOCAL;
	op->arg1.linear_addr = addr & PAGE_MASK;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
551 552
}

J
Jeremy Fitzhardinge 已提交
553 554 555
static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
				 unsigned long va)
{
J
Jeremy Fitzhardinge 已提交
556 557 558 559
	struct {
		struct mmuext_op op;
		cpumask_t mask;
	} *args;
J
Jeremy Fitzhardinge 已提交
560
	cpumask_t cpumask = *cpus;
J
Jeremy Fitzhardinge 已提交
561
	struct multicall_space mcs;
J
Jeremy Fitzhardinge 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

	/*
	 * A couple of (to be removed) sanity checks:
	 *
	 * - current CPU must not be in mask
	 * - mask must exist :)
	 */
	BUG_ON(cpus_empty(cpumask));
	BUG_ON(cpu_isset(smp_processor_id(), cpumask));
	BUG_ON(!mm);

	/* If a CPU which we ran on has gone down, OK. */
	cpus_and(cpumask, cpumask, cpu_online_map);
	if (cpus_empty(cpumask))
		return;

J
Jeremy Fitzhardinge 已提交
578 579 580 581 582
	mcs = xen_mc_entry(sizeof(*args));
	args = mcs.args;
	args->mask = cpumask;
	args->op.arg2.vcpumask = &args->mask;

J
Jeremy Fitzhardinge 已提交
583
	if (va == TLB_FLUSH_ALL) {
J
Jeremy Fitzhardinge 已提交
584
		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
J
Jeremy Fitzhardinge 已提交
585
	} else {
J
Jeremy Fitzhardinge 已提交
586 587
		args->op.cmd = MMUEXT_INVLPG_MULTI;
		args->op.arg1.linear_addr = va;
J
Jeremy Fitzhardinge 已提交
588 589
	}

J
Jeremy Fitzhardinge 已提交
590 591 592
	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
J
Jeremy Fitzhardinge 已提交
593 594
}

595 596 597 598 599
static void xen_write_cr2(unsigned long cr2)
{
	x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
}

600 601 602 603 604
static unsigned long xen_read_cr2(void)
{
	return x86_read_percpu(xen_vcpu)->arch.cr2;
}

605 606 607 608 609
static unsigned long xen_read_cr2_direct(void)
{
	return x86_read_percpu(xen_vcpu_info.arch.cr2);
}

610 611
static void xen_write_cr4(unsigned long cr4)
{
612 613
	/* Just ignore cr4 changes; Xen doesn't allow us to do
	   anything anyway. */
614 615 616 617 618 619 620
}

static unsigned long xen_read_cr3(void)
{
	return x86_read_percpu(xen_cr3);
}

621 622 623 624 625
static void set_current_cr3(void *v)
{
	x86_write_percpu(xen_current_cr3, (unsigned long)v);
}

626 627
static void xen_write_cr3(unsigned long cr3)
{
628 629 630 631
	struct mmuext_op *op;
	struct multicall_space mcs;
	unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));

632 633
	BUG_ON(preemptible());

634
	mcs = xen_mc_entry(sizeof(*op));  /* disables interrupts */
635

636 637
	/* Update while interrupts are disabled, so its atomic with
	   respect to ipis */
638 639
	x86_write_percpu(xen_cr3, cr3);

640 641 642
	op = mcs.args;
	op->cmd = MMUEXT_NEW_BASEPTR;
	op->arg1.mfn = mfn;
643

644
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
645

646 647 648
	/* Update xen_update_cr3 once the batch has actually
	   been submitted. */
	xen_mc_callback(set_current_cr3, (void *)cr3);
649

650
	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
651 652
}

653 654
/* Early in boot, while setting up the initial pagetable, assume
   everything is pinned. */
655
static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
656
{
657
	BUG_ON(mem_map);	/* should only be used early */
658 659 660
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
}

661 662 663 664 665 666 667 668 669
static void pin_pagetable_pfn(unsigned level, unsigned long pfn)
{
	struct mmuext_op op;
	op.cmd = level;
	op.arg1.mfn = pfn_to_mfn(pfn);
	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
		BUG();
}

670 671 672
/* This needs to make sure the new pte page is pinned iff its being
   attached to a pinned pagetable. */
static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
673
{
674
	struct page *page = pfn_to_page(pfn);
675

676 677 678
	if (PagePinned(virt_to_page(mm->pgd))) {
		SetPagePinned(page);

679
		if (!PageHighMem(page)) {
680
			make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
681 682
			pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
		} else
683 684 685 686
			/* make sure there are no stray mappings of
			   this page */
			kmap_flush_unused();
	}
687 688
}

689
/* This should never happen until we're OK to use struct page */
690 691
static void xen_release_pt(u32 pfn)
{
692 693 694
	struct page *page = pfn_to_page(pfn);

	if (PagePinned(page)) {
695 696
		if (!PageHighMem(page)) {
			pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
697
			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
698
		}
699
	}
700 701
}

702 703
#ifdef CONFIG_HIGHPTE
static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
704
{
705 706 707 708 709 710 711 712 713 714 715
	pgprot_t prot = PAGE_KERNEL;

	if (PagePinned(page))
		prot = PAGE_KERNEL_RO;

	if (0 && PageHighMem(page))
		printk("mapping highpte %lx type %d prot %s\n",
		       page_to_pfn(page), type,
		       (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");

	return kmap_atomic_prot(page, type, prot);
716
}
717
#endif
718

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
{
	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
			       pte_val_ma(pte));

	return pte;
}

/* Init-time set_pte while constructing initial pagetables, which
   doesn't allow RO pagetable pages to be remapped RW */
static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
{
	pte = mask_rw_pte(ptep, pte);

	xen_set_pte(ptep, pte);
}

738 739 740 741
static __init void xen_pagetable_setup_start(pgd_t *base)
{
	pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;

742
	/* special set_pte for pagetable initialization */
743
	pv_mmu_ops.set_pte = xen_set_pte_init;
744

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
	init_mm.pgd = base;
	/*
	 * copy top-level of Xen-supplied pagetable into place.	 For
	 * !PAE we can use this as-is, but for PAE it is a stand-in
	 * while we copy the pmd pages.
	 */
	memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));

	if (PTRS_PER_PMD > 1) {
		int i;
		/*
		 * For PAE, need to allocate new pmds, rather than
		 * share Xen's, since Xen doesn't like pmd's being
		 * shared between address spaces.
		 */
		for (i = 0; i < PTRS_PER_PGD; i++) {
			if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
				pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);

				memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
				       PAGE_SIZE);

767
				make_lowmem_page_readonly(pmd);
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787

				set_pgd(&base[i], __pgd(1 + __pa(pmd)));
			} else
				pgd_clear(&base[i]);
		}
	}

	/* make sure zero_page is mapped RO so we can use it in pagetables */
	make_lowmem_page_readonly(empty_zero_page);
	make_lowmem_page_readonly(base);
	/*
	 * Switch to new pagetable.  This is done before
	 * pagetable_init has done anything so that the new pages
	 * added to the table can be prepared properly for Xen.
	 */
	xen_write_cr3(__pa(base));
}

static __init void xen_pagetable_setup_done(pgd_t *base)
{
788 789
	/* This will work as long as patching hasn't happened yet
	   (which it hasn't) */
790 791
	pv_mmu_ops.alloc_pt = xen_alloc_pt;
	pv_mmu_ops.set_pte = xen_set_pte;
792

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
		/*
		 * Create a mapping for the shared info page.
		 * Should be set_fixmap(), but shared_info is a machine
		 * address with no corresponding pseudo-phys address.
		 */
		set_pte_mfn(fix_to_virt(FIX_PARAVIRT_BOOTMAP),
			    PFN_DOWN(xen_start_info->shared_info),
			    PAGE_KERNEL);

		HYPERVISOR_shared_info =
			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);

	} else
		HYPERVISOR_shared_info =
			(struct shared_info *)__va(xen_start_info->shared_info);

810 811 812
	/* Actually pin the pagetable down, but we can't set PG_pinned
	   yet because the page structures don't exist yet. */
	{
813 814
		unsigned level;

815
#ifdef CONFIG_X86_PAE
816
		level = MMUEXT_PIN_L3_TABLE;
817
#else
818
		level = MMUEXT_PIN_L2_TABLE;
819
#endif
820 821

		pin_pagetable_pfn(level, PFN_DOWN(__pa(base)));
822
	}
823
}
824

825 826 827 828 829 830 831 832 833 834 835 836 837
/* This is called once we have the cpu_possible_map */
void __init xen_setup_vcpu_info_placement(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		xen_vcpu_setup(cpu);

	/* xen_vcpu_setup managed to place the vcpu_info within the
	   percpu area for all cpus, so make use of it */
	if (have_vcpu_info_placement) {
		printk(KERN_INFO "Xen: using vcpu_info placement\n");

838 839 840 841 842 843
		pv_irq_ops.save_fl = xen_save_fl_direct;
		pv_irq_ops.restore_fl = xen_restore_fl_direct;
		pv_irq_ops.irq_disable = xen_irq_disable_direct;
		pv_irq_ops.irq_enable = xen_irq_enable_direct;
		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
		pv_cpu_ops.iret = xen_iret_direct;
844
	}
845 846
}

847 848
static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
			  unsigned long addr, unsigned len)
849 850 851 852 853 854
{
	char *start, *end, *reloc;
	unsigned ret;

	start = end = reloc = NULL;

855 856
#define SITE(op, x)							\
	case PARAVIRT_PATCH(op.x):					\
857 858 859 860 861 862 863 864
	if (have_vcpu_info_placement) {					\
		start = (char *)xen_##x##_direct;			\
		end = xen_##x##_direct_end;				\
		reloc = xen_##x##_direct_reloc;				\
	}								\
	goto patch_site

	switch (type) {
865 866 867 868
		SITE(pv_irq_ops, irq_enable);
		SITE(pv_irq_ops, irq_disable);
		SITE(pv_irq_ops, save_fl);
		SITE(pv_irq_ops, restore_fl);
869 870 871 872 873 874
#undef SITE

	patch_site:
		if (start == NULL || (end-start) > len)
			goto default_patch;

875
		ret = paravirt_patch_insns(insnbuf, len, start, end);
876 877 878 879 880 881 882

		/* Note: because reloc is assigned from something that
		   appears to be an array, gcc assumes it's non-null,
		   but doesn't know its relationship with start and
		   end. */
		if (reloc > start && reloc < end) {
			int reloc_off = reloc - start;
883 884
			long *relocp = (long *)(insnbuf + reloc_off);
			long delta = start - (char *)addr;
885 886 887 888 889 890 891

			*relocp += delta;
		}
		break;

	default_patch:
	default:
892 893
		ret = paravirt_patch_default(type, clobbers, insnbuf,
					     addr, len);
894 895 896 897 898 899
		break;
	}

	return ret;
}

900
static const struct pv_info xen_info __initdata = {
901 902 903 904
	.paravirt_enabled = 1,
	.shared_kernel_pmd = 0,

	.name = "Xen",
905
};
906

907
static const struct pv_init_ops xen_init_ops __initdata = {
908
	.patch = xen_patch,
909

910
	.banner = xen_banner,
911 912
	.memory_setup = xen_memory_setup,
	.arch_setup = xen_arch_setup,
913
	.post_allocator_init = xen_mark_init_mm_pinned,
914
};
915

916
static const struct pv_time_ops xen_time_ops __initdata = {
J
Jeremy Fitzhardinge 已提交
917
	.time_init = xen_time_init,
918

J
Jeremy Fitzhardinge 已提交
919 920 921
	.set_wallclock = xen_set_wallclock,
	.get_wallclock = xen_get_wallclock,
	.get_cpu_khz = xen_cpu_khz,
J
Jeremy Fitzhardinge 已提交
922
	.sched_clock = xen_sched_clock,
923
};
J
Jeremy Fitzhardinge 已提交
924

925
static const struct pv_cpu_ops xen_cpu_ops __initdata = {
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
	.cpuid = xen_cpuid,

	.set_debugreg = xen_set_debugreg,
	.get_debugreg = xen_get_debugreg,

	.clts = native_clts,

	.read_cr0 = native_read_cr0,
	.write_cr0 = native_write_cr0,

	.read_cr4 = native_read_cr4,
	.read_cr4_safe = native_read_cr4_safe,
	.write_cr4 = xen_write_cr4,

	.wbinvd = native_wbinvd,

	.read_msr = native_read_msr_safe,
	.write_msr = native_write_msr_safe,
	.read_tsc = native_read_tsc,
	.read_pmc = native_read_pmc,

	.iret = (void *)&hypercall_page[__HYPERVISOR_iret],
948
	.irq_enable_syscall_ret = NULL,  /* never called */
949 950 951 952 953 954 955 956 957 958 959 960 961 962

	.load_tr_desc = paravirt_nop,
	.set_ldt = xen_set_ldt,
	.load_gdt = xen_load_gdt,
	.load_idt = xen_load_idt,
	.load_tls = xen_load_tls,

	.store_gdt = native_store_gdt,
	.store_idt = native_store_idt,
	.store_tr = xen_store_tr,

	.write_ldt_entry = xen_write_ldt_entry,
	.write_gdt_entry = xen_write_gdt_entry,
	.write_idt_entry = xen_write_idt_entry,
963
	.load_sp0 = xen_load_sp0,
964 965 966 967

	.set_iopl_mask = xen_set_iopl_mask,
	.io_delay = xen_io_delay,

968 969 970 971
	.lazy_mode = {
		.enter = paravirt_enter_lazy_cpu,
		.leave = xen_leave_lazy,
	},
972 973 974 975 976 977 978 979 980 981 982
};

static const struct pv_irq_ops xen_irq_ops __initdata = {
	.init_IRQ = xen_init_IRQ,
	.save_fl = xen_save_fl,
	.restore_fl = xen_restore_fl,
	.irq_disable = xen_irq_disable,
	.irq_enable = xen_irq_enable,
	.safe_halt = xen_safe_halt,
	.halt = xen_halt,
};
983

984
static const struct pv_apic_ops xen_apic_ops __initdata = {
985
#ifdef CONFIG_X86_LOCAL_APIC
J
Jeremy Fitzhardinge 已提交
986 987
	.apic_write = xen_apic_write,
	.apic_write_atomic = xen_apic_write,
988 989 990 991 992
	.apic_read = xen_apic_read,
	.setup_boot_clock = paravirt_nop,
	.setup_secondary_clock = paravirt_nop,
	.startup_ipi_hook = paravirt_nop,
#endif
993 994 995 996 997 998 999 1000 1001 1002 1003
};

static const struct pv_mmu_ops xen_mmu_ops __initdata = {
	.pagetable_setup_start = xen_pagetable_setup_start,
	.pagetable_setup_done = xen_pagetable_setup_done,

	.read_cr2 = xen_read_cr2,
	.write_cr2 = xen_write_cr2,

	.read_cr3 = xen_read_cr3,
	.write_cr3 = xen_write_cr3,
1004 1005 1006 1007

	.flush_tlb_user = xen_flush_tlb,
	.flush_tlb_kernel = xen_flush_tlb,
	.flush_tlb_single = xen_flush_tlb_single,
J
Jeremy Fitzhardinge 已提交
1008
	.flush_tlb_others = xen_flush_tlb_others,
1009 1010 1011 1012

	.pte_update = paravirt_nop,
	.pte_update_defer = paravirt_nop,

1013
	.alloc_pt = xen_alloc_pt_init,
1014
	.release_pt = xen_release_pt,
1015 1016 1017 1018 1019 1020 1021
	.alloc_pd = paravirt_nop,
	.alloc_pd_clone = paravirt_nop,
	.release_pd = paravirt_nop,

#ifdef CONFIG_HIGHPTE
	.kmap_atomic_pte = xen_kmap_atomic_pte,
#endif
1022

1023
	.set_pte = NULL,	/* see xen_pagetable_setup_* */
J
Jeremy Fitzhardinge 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	.set_pte_at = xen_set_pte_at,
	.set_pmd = xen_set_pmd,

	.pte_val = xen_pte_val,
	.pgd_val = xen_pgd_val,

	.make_pte = xen_make_pte,
	.make_pgd = xen_make_pgd,

#ifdef CONFIG_X86_PAE
	.set_pte_atomic = xen_set_pte_atomic,
	.set_pte_present = xen_set_pte_at,
	.set_pud = xen_set_pud,
	.pte_clear = xen_pte_clear,
	.pmd_clear = xen_pmd_clear,

	.make_pmd = xen_make_pmd,
	.pmd_val = xen_pmd_val,
#endif	/* PAE */

	.activate_mm = xen_activate_mm,
	.dup_mmap = xen_dup_mmap,
	.exit_mmap = xen_exit_mmap,

1048 1049 1050 1051
	.lazy_mode = {
		.enter = paravirt_enter_lazy_mmu,
		.leave = xen_leave_lazy,
	},
1052 1053
};

J
Jeremy Fitzhardinge 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
#ifdef CONFIG_SMP
static const struct smp_ops xen_smp_ops __initdata = {
	.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
	.smp_prepare_cpus = xen_smp_prepare_cpus,
	.cpu_up = xen_cpu_up,
	.smp_cpus_done = xen_smp_cpus_done,

	.smp_send_stop = xen_smp_send_stop,
	.smp_send_reschedule = xen_smp_send_reschedule,
	.smp_call_function_mask = xen_smp_call_function_mask,
};
#endif	/* CONFIG_SMP */

J
Jeremy Fitzhardinge 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
static void xen_reboot(int reason)
{
#ifdef CONFIG_SMP
	smp_send_stop();
#endif

	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
		BUG();
}

static void xen_restart(char *msg)
{
	xen_reboot(SHUTDOWN_reboot);
}

static void xen_emergency_restart(void)
{
	xen_reboot(SHUTDOWN_reboot);
}

static void xen_machine_halt(void)
{
	xen_reboot(SHUTDOWN_poweroff);
}

static void xen_crash_shutdown(struct pt_regs *regs)
{
	xen_reboot(SHUTDOWN_crash);
}

static const struct machine_ops __initdata xen_machine_ops = {
	.restart = xen_restart,
	.halt = xen_machine_halt,
	.power_off = xen_machine_halt,
	.shutdown = xen_machine_halt,
	.crash_shutdown = xen_crash_shutdown,
	.emergency_restart = xen_emergency_restart,
};

1106

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
static void __init xen_reserve_top(void)
{
	unsigned long top = HYPERVISOR_VIRT_START;
	struct xen_platform_parameters pp;

	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
		top = pp.virt_start;

	reserve_top_address(-top + 2 * PAGE_SIZE);
}

1118 1119 1120 1121 1122 1123 1124 1125
/* First C function to be called on Xen boot */
asmlinkage void __init xen_start_kernel(void)
{
	pgd_t *pgd;

	if (!xen_start_info)
		return;

J
Jeremy Fitzhardinge 已提交
1126
	BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1127 1128

	/* Install Xen paravirt ops */
1129 1130 1131 1132 1133 1134 1135 1136
	pv_info = xen_info;
	pv_init_ops = xen_init_ops;
	pv_time_ops = xen_time_ops;
	pv_cpu_ops = xen_cpu_ops;
	pv_irq_ops = xen_irq_ops;
	pv_apic_ops = xen_apic_ops;
	pv_mmu_ops = xen_mmu_ops;

J
Jeremy Fitzhardinge 已提交
1137 1138
	machine_ops = xen_machine_ops;

J
Jeremy Fitzhardinge 已提交
1139 1140 1141
#ifdef CONFIG_SMP
	smp_ops = xen_smp_ops;
#endif
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

	xen_setup_features();

	/* Get mfn list */
	if (!xen_feature(XENFEAT_auto_translated_physmap))
		phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;

	pgd = (pgd_t *)xen_start_info->pt_base;

	init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;

	init_mm.pgd = pgd; /* use the Xen pagetables to start */

	/* keep using Xen gdt for now; no urgent need to change it */

	x86_write_percpu(xen_cr3, __pa(pgd));
1158
	x86_write_percpu(xen_current_cr3, __pa(pgd));
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

#ifdef CONFIG_SMP
	/* Don't do the full vcpu_info placement stuff until we have a
	   possible map. */
	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
#else
	/* May as well do it now, since there's no good time to call
	   it later on UP. */
	xen_setup_vcpu_info_placement();
#endif
1169

1170
	pv_info.kernel_rpl = 1;
1171
	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1172
		pv_info.kernel_rpl = 0;
1173 1174

	/* set the limit of our address space */
1175
	xen_reserve_top();
1176 1177 1178 1179 1180 1181 1182

	/* set up basic CPUID stuff */
	cpu_detect(&new_cpu_data);
	new_cpu_data.hard_math = 1;
	new_cpu_data.x86_capability[0] = cpuid_edx(1);

	/* Poke various useful things into boot_params */
1183 1184 1185 1186
	boot_params.hdr.type_of_loader = (9 << 4) | 0;
	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
		? __pa(xen_start_info->mod_start) : 0;
	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1187 1188 1189 1190

	/* Start the world */
	start_kernel();
}