revoke.c 22.1 KB
Newer Older
1
/*
2
 * linux/fs/jbd2/revoke.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
 *
 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
 *
 * Copyright 2000 Red Hat corp --- All Rights Reserved
 *
 * This file is part of the Linux kernel and is made available under
 * the terms of the GNU General Public License, version 2, or at your
 * option, any later version, incorporated herein by reference.
 *
 * Journal revoke routines for the generic filesystem journaling code;
 * part of the ext2fs journaling system.
 *
 * Revoke is the mechanism used to prevent old log records for deleted
 * metadata from being replayed on top of newer data using the same
 * blocks.  The revoke mechanism is used in two separate places:
 *
 * + Commit: during commit we write the entire list of the current
 *   transaction's revoked blocks to the journal
 *
 * + Recovery: during recovery we record the transaction ID of all
 *   revoked blocks.  If there are multiple revoke records in the log
 *   for a single block, only the last one counts, and if there is a log
 *   entry for a block beyond the last revoke, then that log entry still
 *   gets replayed.
 *
 * We can get interactions between revokes and new log data within a
 * single transaction:
 *
 * Block is revoked and then journaled:
 *   The desired end result is the journaling of the new block, so we
 *   cancel the revoke before the transaction commits.
 *
 * Block is journaled and then revoked:
 *   The revoke must take precedence over the write of the block, so we
 *   need either to cancel the journal entry or to write the revoke
 *   later in the log than the log block.  In this case, we choose the
 *   latter: journaling a block cancels any revoke record for that block
 *   in the current transaction, so any revoke for that block in the
 *   transaction must have happened after the block was journaled and so
 *   the revoke must take precedence.
 *
 * Block is revoked and then written as data:
 *   The data write is allowed to succeed, but the revoke is _not_
 *   cancelled.  We still need to prevent old log records from
 *   overwriting the new data.  We don't even need to clear the revoke
 *   bit here.
 *
50 51 52 53
 * We cache revoke status of a buffer in the current transaction in b_states
 * bits.  As the name says, revokevalid flag indicates that the cached revoke
 * status of a buffer is valid and we can rely on the cached status.
 *
54 55 56 57 58 59 60 61
 * Revoke information on buffers is a tri-state value:
 *
 * RevokeValid clear:	no cached revoke status, need to look it up
 * RevokeValid set, Revoked clear:
 *			buffer has not been revoked, and cancel_revoke
 *			need do nothing.
 * RevokeValid set, Revoked set:
 *			buffer has been revoked.
J
Jan Kara 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
 *
 * Locking rules:
 * We keep two hash tables of revoke records. One hashtable belongs to the
 * running transaction (is pointed to by journal->j_revoke), the other one
 * belongs to the committing transaction. Accesses to the second hash table
 * happen only from the kjournald and no other thread touches this table.  Also
 * journal_switch_revoke_table() which switches which hashtable belongs to the
 * running and which to the committing transaction is called only from
 * kjournald. Therefore we need no locks when accessing the hashtable belonging
 * to the committing transaction.
 *
 * All users operating on the hash table belonging to the running transaction
 * have a handle to the transaction. Therefore they are safe from kjournald
 * switching hash tables under them. For operations on the lists of entries in
 * the hash table j_revoke_lock is used.
 *
L
Lucas De Marchi 已提交
78
 * Finally, also replay code uses the hash tables but at this moment no one else
J
Jan Kara 已提交
79 80
 * can touch them (filesystem isn't mounted yet) and hence no locking is
 * needed.
81 82 83 84 85 86 87
 */

#ifndef __KERNEL__
#include "jfs_user.h"
#else
#include <linux/time.h>
#include <linux/fs.h>
88
#include <linux/jbd2.h>
89 90 91 92
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/init.h>
93
#include <linux/bio.h>
V
vignesh babu 已提交
94
#include <linux/log2.h>
95
#include <linux/hash.h>
96
#endif
97

98 99
static struct kmem_cache *jbd2_revoke_record_cache;
static struct kmem_cache *jbd2_revoke_table_cache;
100 101 102 103 104

/* Each revoke record represents one single revoked block.  During
   journal replay, this involves recording the transaction ID of the
   last transaction to revoke this block. */

105
struct jbd2_revoke_record_s
106 107 108
{
	struct list_head  hash;
	tid_t		  sequence;	/* Used for recovery only */
109
	unsigned long long	  blocknr;
110 111 112 113
};


/* The revoke table is just a simple hash table of revoke records. */
114
struct jbd2_revoke_table_s
115 116 117 118 119 120 121 122 123 124
{
	/* It is conceivable that we might want a larger hash table
	 * for recovery.  Must be a power of two. */
	int		  hash_size;
	int		  hash_shift;
	struct list_head *hash_table;
};


#ifdef __KERNEL__
125
static void write_one_revoke_record(transaction_t *,
126 127
				    struct list_head *,
				    struct buffer_head **, int *,
128 129
				    struct jbd2_revoke_record_s *);
static void flush_descriptor(journal_t *, struct buffer_head *, int);
130 131 132 133
#endif

/* Utility functions to maintain the revoke table */

134
static inline int hash(journal_t *journal, unsigned long long block)
135
{
136
	return hash_64(block, journal->j_revoke->hash_shift);
137 138
}

139
static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
140 141 142
			      tid_t seq)
{
	struct list_head *hash_list;
143
	struct jbd2_revoke_record_s *record;
144
	gfp_t gfp_mask = GFP_NOFS;
145

146 147 148
	if (journal_oom_retry)
		gfp_mask |= __GFP_NOFAIL;
	record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
149
	if (!record)
150
		return -ENOMEM;
151 152 153 154 155 156 157 158 159 160 161 162

	record->sequence = seq;
	record->blocknr = blocknr;
	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
	spin_lock(&journal->j_revoke_lock);
	list_add(&record->hash, hash_list);
	spin_unlock(&journal->j_revoke_lock);
	return 0;
}

/* Find a revoke record in the journal's hash table. */

163
static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
164
						      unsigned long long blocknr)
165 166
{
	struct list_head *hash_list;
167
	struct jbd2_revoke_record_s *record;
168 169 170 171

	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];

	spin_lock(&journal->j_revoke_lock);
172
	record = (struct jbd2_revoke_record_s *) hash_list->next;
173 174 175 176 177
	while (&(record->hash) != hash_list) {
		if (record->blocknr == blocknr) {
			spin_unlock(&journal->j_revoke_lock);
			return record;
		}
178
		record = (struct jbd2_revoke_record_s *) record->hash.next;
179 180 181 182 183
	}
	spin_unlock(&journal->j_revoke_lock);
	return NULL;
}

184 185 186 187 188 189 190 191 192 193 194 195
void jbd2_journal_destroy_revoke_caches(void)
{
	if (jbd2_revoke_record_cache) {
		kmem_cache_destroy(jbd2_revoke_record_cache);
		jbd2_revoke_record_cache = NULL;
	}
	if (jbd2_revoke_table_cache) {
		kmem_cache_destroy(jbd2_revoke_table_cache);
		jbd2_revoke_table_cache = NULL;
	}
}

196
int __init jbd2_journal_init_revoke_caches(void)
197
{
198 199 200
	J_ASSERT(!jbd2_revoke_record_cache);
	J_ASSERT(!jbd2_revoke_table_cache);

201 202
	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
A
Al Viro 已提交
203
	if (!jbd2_revoke_record_cache)
204
		goto record_cache_failure;
205

206 207
	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
					     SLAB_TEMPORARY);
208 209
	if (!jbd2_revoke_table_cache)
		goto table_cache_failure;
210
	return 0;
211 212 213 214
table_cache_failure:
	jbd2_journal_destroy_revoke_caches();
record_cache_failure:
		return -ENOMEM;
215 216
}

217
static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
218
{
219 220 221
	int shift = 0;
	int tmp = hash_size;
	struct jbd2_revoke_table_s *table;
222

223 224 225
	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
	if (!table)
		goto out;
226 227 228 229

	while((tmp >>= 1UL) != 0UL)
		shift++;

230 231 232
	table->hash_size = hash_size;
	table->hash_shift = shift;
	table->hash_table =
233
		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
234 235 236 237
	if (!table->hash_table) {
		kmem_cache_free(jbd2_revoke_table_cache, table);
		table = NULL;
		goto out;
238 239 240
	}

	for (tmp = 0; tmp < hash_size; tmp++)
241
		INIT_LIST_HEAD(&table->hash_table[tmp]);
242

243 244 245 246 247 248 249 250 251 252 253 254
out:
	return table;
}

static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
{
	int i;
	struct list_head *hash_list;

	for (i = 0; i < table->hash_size; i++) {
		hash_list = &table->hash_table[i];
		J_ASSERT(list_empty(hash_list));
255 256
	}

257 258 259
	kfree(table->hash_table);
	kmem_cache_free(jbd2_revoke_table_cache, table);
}
260

261 262 263 264
/* Initialise the revoke table for a given journal to a given size. */
int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
{
	J_ASSERT(journal->j_revoke_table[0] == NULL);
V
vignesh babu 已提交
265
	J_ASSERT(is_power_of_2(hash_size));
266

267 268 269
	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
	if (!journal->j_revoke_table[0])
		goto fail0;
270

271 272 273
	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
	if (!journal->j_revoke_table[1])
		goto fail1;
274

275
	journal->j_revoke = journal->j_revoke_table[1];
276 277 278 279 280

	spin_lock_init(&journal->j_revoke_lock);

	return 0;

281 282 283 284 285
fail1:
	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
fail0:
	return -ENOMEM;
}
286

287
/* Destroy a journal's revoke table.  The table must already be empty! */
288
void jbd2_journal_destroy_revoke(journal_t *journal)
289 290
{
	journal->j_revoke = NULL;
291 292 293 294
	if (journal->j_revoke_table[0])
		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
	if (journal->j_revoke_table[1])
		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
295 296 297 298 299 300
}


#ifdef __KERNEL__

/*
301
 * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
302 303 304 305 306 307 308 309 310 311 312
 * prevents the block from being replayed during recovery if we take a
 * crash after this current transaction commits.  Any subsequent
 * metadata writes of the buffer in this transaction cancel the
 * revoke.
 *
 * Note that this call may block --- it is up to the caller to make
 * sure that there are no further calls to journal_write_metadata
 * before the revoke is complete.  In ext3, this implies calling the
 * revoke before clearing the block bitmap when we are deleting
 * metadata.
 *
313
 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
314 315 316 317 318 319
 * parameter, but does _not_ forget the buffer_head if the bh was only
 * found implicitly.
 *
 * bh_in may not be a journalled buffer - it may have come off
 * the hash tables without an attached journal_head.
 *
320
 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
321 322 323
 * by one.
 */

324
int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
325 326 327 328 329 330 331 332 333 334 335 336
		   struct buffer_head *bh_in)
{
	struct buffer_head *bh = NULL;
	journal_t *journal;
	struct block_device *bdev;
	int err;

	might_sleep();
	if (bh_in)
		BUFFER_TRACE(bh_in, "enter");

	journal = handle->h_transaction->t_journal;
337
	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
338 339 340 341 342 343 344 345 346 347 348 349
		J_ASSERT (!"Cannot set revoke feature!");
		return -EINVAL;
	}

	bdev = journal->j_fs_dev;
	bh = bh_in;

	if (!bh) {
		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
		if (bh)
			BUFFER_TRACE(bh, "found on hash");
	}
350
#ifdef JBD2_EXPENSIVE_CHECKING
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	else {
		struct buffer_head *bh2;

		/* If there is a different buffer_head lying around in
		 * memory anywhere... */
		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
		if (bh2) {
			/* ... and it has RevokeValid status... */
			if (bh2 != bh && buffer_revokevalid(bh2))
				/* ...then it better be revoked too,
				 * since it's illegal to create a revoke
				 * record against a buffer_head which is
				 * not marked revoked --- that would
				 * risk missing a subsequent revoke
				 * cancel. */
				J_ASSERT_BH(bh2, buffer_revoked(bh2));
			put_bh(bh2);
		}
	}
#endif

	/* We really ought not ever to revoke twice in a row without
           first having the revoke cancelled: it's illegal to free a
           block twice without allocating it in between! */
	if (bh) {
		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
				 "inconsistent data on disk")) {
			if (!bh_in)
				brelse(bh);
			return -EIO;
		}
		set_buffer_revoked(bh);
		set_buffer_revokevalid(bh);
		if (bh_in) {
385 386
			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
			jbd2_journal_forget(handle, bh_in);
387 388 389 390 391 392
		} else {
			BUFFER_TRACE(bh, "call brelse");
			__brelse(bh);
		}
	}

M
Mingming Cao 已提交
393
	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
394 395 396 397 398 399 400 401
	err = insert_revoke_hash(journal, blocknr,
				handle->h_transaction->t_tid);
	BUFFER_TRACE(bh_in, "exit");
	return err;
}

/*
 * Cancel an outstanding revoke.  For use only internally by the
402
 * journaling code (called from jbd2_journal_get_write_access).
403 404 405 406 407 408 409 410 411 412 413 414
 *
 * We trust buffer_revoked() on the buffer if the buffer is already
 * being journaled: if there is no revoke pending on the buffer, then we
 * don't do anything here.
 *
 * This would break if it were possible for a buffer to be revoked and
 * discarded, and then reallocated within the same transaction.  In such
 * a case we would have lost the revoked bit, but when we arrived here
 * the second time we would still have a pending revoke to cancel.  So,
 * do not trust the Revoked bit on buffers unless RevokeValid is also
 * set.
 */
415
int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
416
{
417
	struct jbd2_revoke_record_s *record;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
	journal_t *journal = handle->h_transaction->t_journal;
	int need_cancel;
	int did_revoke = 0;	/* akpm: debug */
	struct buffer_head *bh = jh2bh(jh);

	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);

	/* Is the existing Revoke bit valid?  If so, we trust it, and
	 * only perform the full cancel if the revoke bit is set.  If
	 * not, we can't trust the revoke bit, and we need to do the
	 * full search for a revoke record. */
	if (test_set_buffer_revokevalid(bh)) {
		need_cancel = test_clear_buffer_revoked(bh);
	} else {
		need_cancel = 1;
		clear_buffer_revoked(bh);
	}

	if (need_cancel) {
		record = find_revoke_record(journal, bh->b_blocknr);
		if (record) {
			jbd_debug(4, "cancelled existing revoke on "
				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
			spin_lock(&journal->j_revoke_lock);
			list_del(&record->hash);
			spin_unlock(&journal->j_revoke_lock);
444
			kmem_cache_free(jbd2_revoke_record_cache, record);
445 446 447 448
			did_revoke = 1;
		}
	}

449
#ifdef JBD2_EXPENSIVE_CHECKING
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	/* There better not be one left behind by now! */
	record = find_revoke_record(journal, bh->b_blocknr);
	J_ASSERT_JH(jh, record == NULL);
#endif

	/* Finally, have we just cleared revoke on an unhashed
	 * buffer_head?  If so, we'd better make sure we clear the
	 * revoked status on any hashed alias too, otherwise the revoke
	 * state machine will get very upset later on. */
	if (need_cancel) {
		struct buffer_head *bh2;
		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
		if (bh2) {
			if (bh2 != bh)
				clear_buffer_revoked(bh2);
			__brelse(bh2);
		}
	}
	return did_revoke;
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
/*
 * journal_clear_revoked_flag clears revoked flag of buffers in
 * revoke table to reflect there is no revoked buffers in the next
 * transaction which is going to be started.
 */
void jbd2_clear_buffer_revoked_flags(journal_t *journal)
{
	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
	int i = 0;

	for (i = 0; i < revoke->hash_size; i++) {
		struct list_head *hash_list;
		struct list_head *list_entry;
		hash_list = &revoke->hash_table[i];

		list_for_each(list_entry, hash_list) {
			struct jbd2_revoke_record_s *record;
			struct buffer_head *bh;
			record = (struct jbd2_revoke_record_s *)list_entry;
			bh = __find_get_block(journal->j_fs_dev,
					      record->blocknr,
					      journal->j_blocksize);
			if (bh) {
				clear_buffer_revoked(bh);
				__brelse(bh);
			}
		}
	}
}

501 502 503 504
/* journal_switch_revoke table select j_revoke for next transaction
 * we do not want to suspend any processing until all revokes are
 * written -bzzz
 */
505
void jbd2_journal_switch_revoke_table(journal_t *journal)
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
{
	int i;

	if (journal->j_revoke == journal->j_revoke_table[0])
		journal->j_revoke = journal->j_revoke_table[1];
	else
		journal->j_revoke = journal->j_revoke_table[0];

	for (i = 0; i < journal->j_revoke->hash_size; i++)
		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
}

/*
 * Write revoke records to the journal for all entries in the current
 * revoke hash, deleting the entries as we go.
 */
522 523
void jbd2_journal_write_revoke_records(transaction_t *transaction,
				       struct list_head *log_bufs)
524
{
525
	journal_t *journal = transaction->t_journal;
526
	struct buffer_head *descriptor;
527 528
	struct jbd2_revoke_record_s *record;
	struct jbd2_revoke_table_s *revoke;
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	struct list_head *hash_list;
	int i, offset, count;

	descriptor = NULL;
	offset = 0;
	count = 0;

	/* select revoke table for committing transaction */
	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
		journal->j_revoke_table[1] : journal->j_revoke_table[0];

	for (i = 0; i < revoke->hash_size; i++) {
		hash_list = &revoke->hash_table[i];

		while (!list_empty(hash_list)) {
544
			record = (struct jbd2_revoke_record_s *)
545
				hash_list->next;
546 547
			write_one_revoke_record(transaction, log_bufs,
						&descriptor, &offset, record);
548 549
			count++;
			list_del(&record->hash);
550
			kmem_cache_free(jbd2_revoke_record_cache, record);
551 552 553
		}
	}
	if (descriptor)
554
		flush_descriptor(journal, descriptor, offset);
555 556 557 558 559 560 561 562
	jbd_debug(1, "Wrote %d revoke records\n", count);
}

/*
 * Write out one revoke record.  We need to create a new descriptor
 * block if the old one is full or if we have not already created one.
 */

563
static void write_one_revoke_record(transaction_t *transaction,
564 565
				    struct list_head *log_bufs,
				    struct buffer_head **descriptorp,
566
				    int *offsetp,
567
				    struct jbd2_revoke_record_s *record)
568
{
569
	journal_t *journal = transaction->t_journal;
570
	int csum_size = 0;
571
	struct buffer_head *descriptor;
572
	int sz, offset;
573 574 575 576
	journal_header_t *header;

	/* If we are already aborting, this all becomes a noop.  We
           still need to go round the loop in
577
           jbd2_journal_write_revoke_records in order to free all of the
578 579 580 581 582 583 584
           revoke records: only the IO to the journal is omitted. */
	if (is_journal_aborted(journal))
		return;

	descriptor = *descriptorp;
	offset = *offsetp;

585
	/* Do we need to leave space at the end for a checksum? */
586
	if (jbd2_journal_has_csum_v2or3(journal))
587 588
		csum_size = sizeof(struct jbd2_journal_revoke_tail);

589
	if (jbd2_has_feature_64bit(journal))
590 591 592 593
		sz = 8;
	else
		sz = 4;

594 595
	/* Make sure we have a descriptor with space left for the record */
	if (descriptor) {
596
		if (offset + sz > journal->j_blocksize - csum_size) {
597
			flush_descriptor(journal, descriptor, offset);
598 599 600 601 602
			descriptor = NULL;
		}
	}

	if (!descriptor) {
603
		descriptor = jbd2_journal_get_descriptor_buffer(journal);
604 605
		if (!descriptor)
			return;
606
		header = (journal_header_t *)descriptor->b_data;
607 608
		header->h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
		header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
609 610 611
		header->h_sequence  = cpu_to_be32(transaction->t_tid);

		/* Record it so that we can wait for IO completion later */
612 613
		BUFFER_TRACE(descriptor, "file in log_bufs");
		jbd2_file_log_bh(log_bufs, descriptor);
614

615
		offset = sizeof(jbd2_journal_revoke_header_t);
616 617 618
		*descriptorp = descriptor;
	}

619
	if (jbd2_has_feature_64bit(journal))
620
		* ((__be64 *)(&descriptor->b_data[offset])) =
Z
Zach Brown 已提交
621
			cpu_to_be64(record->blocknr);
622
	else
623
		* ((__be32 *)(&descriptor->b_data[offset])) =
Z
Zach Brown 已提交
624
			cpu_to_be32(record->blocknr);
625
	offset += sz;
Z
Zach Brown 已提交
626

627 628 629
	*offsetp = offset;
}

630
static void jbd2_revoke_csum_set(journal_t *j, struct buffer_head *bh)
631 632 633 634
{
	struct jbd2_journal_revoke_tail *tail;
	__u32 csum;

635
	if (!jbd2_journal_has_csum_v2or3(j))
636 637
		return;

638
	tail = (struct jbd2_journal_revoke_tail *)(bh->b_data + j->j_blocksize -
639 640
			sizeof(struct jbd2_journal_revoke_tail));
	tail->r_checksum = 0;
641
	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
642 643 644
	tail->r_checksum = cpu_to_be32(csum);
}

645 646 647 648 649 650 651 652
/*
 * Flush a revoke descriptor out to the journal.  If we are aborting,
 * this is a noop; otherwise we are generating a buffer which needs to
 * be waited for during commit, so it has to go onto the appropriate
 * journal buffer list.
 */

static void flush_descriptor(journal_t *journal,
653
			     struct buffer_head *descriptor,
654
			     int offset)
655
{
656
	jbd2_journal_revoke_header_t *header;
657 658

	if (is_journal_aborted(journal)) {
659
		put_bh(descriptor);
660 661 662
		return;
	}

663
	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
664
	header->r_count = cpu_to_be32(offset);
665 666
	jbd2_revoke_csum_set(journal, descriptor);

667 668 669
	set_buffer_jwrite(descriptor);
	BUFFER_TRACE(descriptor, "write");
	set_buffer_dirty(descriptor);
670
	write_dirty_buffer(descriptor, WRITE_SYNC);
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
}
#endif

/*
 * Revoke support for recovery.
 *
 * Recovery needs to be able to:
 *
 *  record all revoke records, including the tid of the latest instance
 *  of each revoke in the journal
 *
 *  check whether a given block in a given transaction should be replayed
 *  (ie. has not been revoked by a revoke record in that or a subsequent
 *  transaction)
 *
 *  empty the revoke table after recovery.
 */

/*
 * First, setting revoke records.  We create a new revoke record for
 * every block ever revoked in the log as we scan it for recovery, and
 * we update the existing records if we find multiple revokes for a
 * single block.
 */

696
int jbd2_journal_set_revoke(journal_t *journal,
697
		       unsigned long long blocknr,
698 699
		       tid_t sequence)
{
700
	struct jbd2_revoke_record_s *record;
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719

	record = find_revoke_record(journal, blocknr);
	if (record) {
		/* If we have multiple occurrences, only record the
		 * latest sequence number in the hashed record */
		if (tid_gt(sequence, record->sequence))
			record->sequence = sequence;
		return 0;
	}
	return insert_revoke_hash(journal, blocknr, sequence);
}

/*
 * Test revoke records.  For a given block referenced in the log, has
 * that block been revoked?  A revoke record with a given transaction
 * sequence number revokes all blocks in that transaction and earlier
 * ones, but later transactions still need replayed.
 */

720
int jbd2_journal_test_revoke(journal_t *journal,
721
			unsigned long long blocknr,
722 723
			tid_t sequence)
{
724
	struct jbd2_revoke_record_s *record;
725 726 727 728 729 730 731 732 733 734 735 736 737 738

	record = find_revoke_record(journal, blocknr);
	if (!record)
		return 0;
	if (tid_gt(sequence, record->sequence))
		return 0;
	return 1;
}

/*
 * Finally, once recovery is over, we need to clear the revoke table so
 * that it can be reused by the running filesystem.
 */

739
void jbd2_journal_clear_revoke(journal_t *journal)
740 741 742
{
	int i;
	struct list_head *hash_list;
743 744
	struct jbd2_revoke_record_s *record;
	struct jbd2_revoke_table_s *revoke;
745 746 747 748 749 750

	revoke = journal->j_revoke;

	for (i = 0; i < revoke->hash_size; i++) {
		hash_list = &revoke->hash_table[i];
		while (!list_empty(hash_list)) {
751
			record = (struct jbd2_revoke_record_s*) hash_list->next;
752
			list_del(&record->hash);
753
			kmem_cache_free(jbd2_revoke_record_cache, record);
754 755 756
		}
	}
}