xen-asm_64.S 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
	Asm versions of Xen pv-ops, suitable for either direct use or inlining.
	The inline versions are the same as the direct-use versions, with the
	pre- and post-amble chopped off.

	This code is encoded for size rather than absolute efficiency,
	with a view to being able to inline as much as possible.

	We only bother with direct forms (ie, vcpu in pda) of the operations
	here; the indirect forms are better handled in C, since they're
	generally too large to inline anyway.
 */

#include <linux/linkage.h>

#include <asm/asm-offsets.h>
#include <asm/processor-flags.h>
18 19
#include <asm/errno.h>
#include <asm/segment.h>
20
#include <asm/percpu.h>
21 22 23 24 25 26 27 28 29

#include <xen/interface/xen.h>

#define RELOC(x, v)	.globl x##_reloc; x##_reloc=v
#define ENDPATCH(x)	.globl x##_end; x##_end=.

/* Pseudo-flag used for virtual NMI, which we don't implement yet */
#define XEN_EFLAGS_NMI	0x80000000

30 31
#if 1
/*
32 33
	FIXME: x86_64 now can support direct access to percpu variables
	via a segment override.  Update xen accordingly.
34 35 36
 */
#define BUG			ud2a
#endif
37 38 39 40 41 42 43

/*
	Enable events.  This clears the event mask and tests the pending
	event status with one and operation.  If there are pending
	events, then enter the hypervisor to get them handled.
 */
ENTRY(xen_irq_enable_direct)
44 45
	BUG

46
	/* Unmask events */
47
	movb $0, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask
48 49 50 51 52 53

	/* Preempt here doesn't matter because that will deal with
	   any pending interrupts.  The pending check may end up being
	   run on the wrong CPU, but that doesn't hurt. */

	/* Test for pending */
54
	testb $0xff, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_pending
55 56 57 58 59 60 61 62 63 64 65 66 67 68
	jz 1f

2:	call check_events
1:
ENDPATCH(xen_irq_enable_direct)
	ret
	ENDPROC(xen_irq_enable_direct)
	RELOC(xen_irq_enable_direct, 2b+1)

/*
	Disabling events is simply a matter of making the event mask
	non-zero.
 */
ENTRY(xen_irq_disable_direct)
69 70
	BUG

71
	movb $1, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
ENDPATCH(xen_irq_disable_direct)
	ret
	ENDPROC(xen_irq_disable_direct)
	RELOC(xen_irq_disable_direct, 0)

/*
	(xen_)save_fl is used to get the current interrupt enable status.
	Callers expect the status to be in X86_EFLAGS_IF, and other bits
	may be set in the return value.  We take advantage of this by
	making sure that X86_EFLAGS_IF has the right value (and other bits
	in that byte are 0), but other bits in the return value are
	undefined.  We need to toggle the state of the bit, because
	Xen and x86 use opposite senses (mask vs enable).
 */
ENTRY(xen_save_fl_direct)
87 88
	BUG

89
	testb $0xff, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	setz %ah
	addb %ah,%ah
ENDPATCH(xen_save_fl_direct)
	ret
	ENDPROC(xen_save_fl_direct)
	RELOC(xen_save_fl_direct, 0)

/*
	In principle the caller should be passing us a value return
	from xen_save_fl_direct, but for robustness sake we test only
	the X86_EFLAGS_IF flag rather than the whole byte. After
	setting the interrupt mask state, it checks for unmasked
	pending events and enters the hypervisor to get them delivered
	if so.
 */
ENTRY(xen_restore_fl_direct)
106 107
	BUG

108
	testb $X86_EFLAGS_IF>>8, %ah
109
	setz PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask
110 111 112 113 114
	/* Preempt here doesn't matter because that will deal with
	   any pending interrupts.  The pending check may end up being
	   run on the wrong CPU, but that doesn't hurt. */

	/* check for unmasked and pending */
115
	cmpw $0x0001, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_pending
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	jz 1f
2:	call check_events
1:
ENDPATCH(xen_restore_fl_direct)
	ret
	ENDPROC(xen_restore_fl_direct)
	RELOC(xen_restore_fl_direct, 2b+1)


/*
	Force an event check by making a hypercall,
	but preserve regs before making the call.
 */
check_events:
	push %rax
	push %rcx
	push %rdx
	push %rsi
	push %rdi
	push %r8
	push %r9
	push %r10
	push %r11
139
	call xen_force_evtchn_callback
140 141 142 143 144 145 146 147 148 149 150
	pop %r11
	pop %r10
	pop %r9
	pop %r8
	pop %rdi
	pop %rsi
	pop %rdx
	pop %rcx
	pop %rax
	ret

151 152 153 154 155
ENTRY(xen_adjust_exception_frame)
	mov 8+0(%rsp),%rcx
	mov 8+8(%rsp),%r11
	ret $16

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
hypercall_iret = hypercall_page + __HYPERVISOR_iret * 32
/*
	Xen64 iret frame:

	ss
	rsp
	rflags
	cs
	rip		<-- standard iret frame

	flags

	rcx		}
	r11		}<-- pushed by hypercall page
rsp ->	rax		}
 */
172 173
ENTRY(xen_iret)
	pushq $0
174 175 176
1:	jmp hypercall_iret
ENDPATCH(xen_iret)
RELOC(xen_iret, 1b+1)
177

178 179 180 181
/*
	sysexit is not used for 64-bit processes, so it's
	only ever used to return to 32-bit compat userspace.
 */
182
ENTRY(xen_sysexit)
183 184 185 186 187 188
	pushq $__USER32_DS
	pushq %rcx
	pushq $X86_EFLAGS_IF
	pushq $__USER32_CS
	pushq %rdx

189
	pushq $0
190 191 192 193 194 195 196
1:	jmp hypercall_iret
ENDPATCH(xen_sysexit)
RELOC(xen_sysexit, 1b+1)

ENTRY(xen_sysret64)
	/* We're already on the usermode stack at this point, but still
	   with the kernel gs, so we can easily switch back */
197
	movq %rsp, PER_CPU_VAR(old_rsp)
198
	movq PER_CPU_VAR(kernel_stack),%rsp
199 200

	pushq $__USER_DS
201
	pushq PER_CPU_VAR(old_rsp)
202 203 204 205 206 207 208 209 210 211 212 213
	pushq %r11
	pushq $__USER_CS
	pushq %rcx

	pushq $VGCF_in_syscall
1:	jmp hypercall_iret
ENDPATCH(xen_sysret64)
RELOC(xen_sysret64, 1b+1)

ENTRY(xen_sysret32)
	/* We're already on the usermode stack at this point, but still
	   with the kernel gs, so we can easily switch back */
214
	movq %rsp, PER_CPU_VAR(old_rsp)
215
	movq PER_CPU_VAR(kernel_stack), %rsp
216 217

	pushq $__USER32_DS
218
	pushq PER_CPU_VAR(old_rsp)
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	pushq %r11
	pushq $__USER32_CS
	pushq %rcx

	pushq $VGCF_in_syscall
1:	jmp hypercall_iret
ENDPATCH(xen_sysret32)
RELOC(xen_sysret32, 1b+1)

/*
	Xen handles syscall callbacks much like ordinary exceptions,
	which means we have:
	 - kernel gs
	 - kernel rsp
	 - an iret-like stack frame on the stack (including rcx and r11):
		ss
		rsp
		rflags
		cs
		rip
		r11
	rsp->	rcx

	In all the entrypoints, we undo all that to make it look
	like a CPU-generated syscall/sysenter and jump to the normal
	entrypoint.
 */

.macro undo_xen_syscall
	mov 0*8(%rsp),%rcx
	mov 1*8(%rsp),%r11
	mov 5*8(%rsp),%rsp
.endm

/* Normal 64-bit system call target */
ENTRY(xen_syscall_target)
	undo_xen_syscall
	jmp system_call_after_swapgs
ENDPROC(xen_syscall_target)

#ifdef CONFIG_IA32_EMULATION

/* 32-bit compat syscall target */
ENTRY(xen_syscall32_target)
	undo_xen_syscall
	jmp ia32_cstar_target
ENDPROC(xen_syscall32_target)

/* 32-bit compat sysenter target */
ENTRY(xen_sysenter_target)
	undo_xen_syscall
	jmp ia32_sysenter_target
ENDPROC(xen_sysenter_target)

#else /* !CONFIG_IA32_EMULATION */

ENTRY(xen_syscall32_target)
ENTRY(xen_sysenter_target)
	lea 16(%rsp), %rsp	/* strip %rcx,%r11 */
	mov $-ENOSYS, %rax
	pushq $VGCF_in_syscall
	jmp hypercall_iret
ENDPROC(xen_syscall32_target)
ENDPROC(xen_sysenter_target)

#endif	/* CONFIG_IA32_EMULATION */