tx.c 33.0 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
4
 * Copyright 2005-2009 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/pci.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
B
Ben Hutchings 已提交
15
#include <linux/ipv6.h>
16
#include <linux/slab.h>
B
Ben Hutchings 已提交
17
#include <net/ipv6.h>
18 19 20 21
#include <linux/if_ether.h>
#include <linux/highmem.h>
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
22
#include "nic.h"
23 24 25 26 27 28 29 30
#include "workarounds.h"

/*
 * TX descriptor ring full threshold
 *
 * The tx_queue descriptor ring fill-level must fall below this value
 * before we restart the netif queue
 */
31
#define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32

33 34
static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
			       struct efx_tx_buffer *buffer)
35 36 37
{
	if (buffer->unmap_len) {
		struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
38 39
		dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
					 buffer->unmap_len);
40
		if (buffer->unmap_single)
41 42
			pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
					 PCI_DMA_TODEVICE);
43
		else
44 45
			pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
				       PCI_DMA_TODEVICE);
46
		buffer->unmap_len = 0;
47
		buffer->unmap_single = false;
48 49 50 51 52
	}

	if (buffer->skb) {
		dev_kfree_skb_any((struct sk_buff *) buffer->skb);
		buffer->skb = NULL;
53 54 55
		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
			   "TX queue %d transmission id %x complete\n",
			   tx_queue->queue, tx_queue->read_count);
56 57 58
	}
}

B
Ben Hutchings 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/**
 * struct efx_tso_header - a DMA mapped buffer for packet headers
 * @next: Linked list of free ones.
 *	The list is protected by the TX queue lock.
 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
 * @dma_addr: The DMA address of the header below.
 *
 * This controls the memory used for a TSO header.  Use TSOH_DATA()
 * to find the packet header data.  Use TSOH_SIZE() to calculate the
 * total size required for a given packet header length.  TSO headers
 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
 */
struct efx_tso_header {
	union {
		struct efx_tso_header *next;
		size_t unmap_len;
	};
	dma_addr_t dma_addr;
};

static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
80
			       struct sk_buff *skb);
B
Ben Hutchings 已提交
81 82 83 84
static void efx_fini_tso(struct efx_tx_queue *tx_queue);
static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
			       struct efx_tso_header *tsoh);

85 86
static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
			  struct efx_tx_buffer *buffer)
B
Ben Hutchings 已提交
87 88 89 90 91 92 93 94 95 96 97 98
{
	if (buffer->tsoh) {
		if (likely(!buffer->tsoh->unmap_len)) {
			buffer->tsoh->next = tx_queue->tso_headers_free;
			tx_queue->tso_headers_free = buffer->tsoh;
		} else {
			efx_tsoh_heap_free(tx_queue, buffer->tsoh);
		}
		buffer->tsoh = NULL;
	}
}

99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static inline unsigned
efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
{
	/* Depending on the NIC revision, we can use descriptor
	 * lengths up to 8K or 8K-1.  However, since PCI Express
	 * devices must split read requests at 4K boundaries, there is
	 * little benefit from using descriptors that cross those
	 * boundaries and we keep things simple by not doing so.
	 */
	unsigned len = (~dma_addr & 0xfff) + 1;

	/* Work around hardware bug for unaligned buffers. */
	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));

	return len;
}

118 119 120 121 122 123 124 125 126 127
/*
 * Add a socket buffer to a TX queue
 *
 * This maps all fragments of a socket buffer for DMA and adds them to
 * the TX queue.  The queue's insert pointer will be incremented by
 * the number of fragments in the socket buffer.
 *
 * If any DMA mapping fails, any mapped fragments will be unmapped,
 * the queue's insert pointer will be restored to its original value.
 *
128 129 130
 * This function is split out from efx_hard_start_xmit to allow the
 * loopback test to direct packets via specific TX queues.
 *
131 132 133
 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
 * You must hold netif_tx_lock() to call this function.
 */
134
netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
135 136 137 138 139 140 141
{
	struct efx_nic *efx = tx_queue->efx;
	struct pci_dev *pci_dev = efx->pci_dev;
	struct efx_tx_buffer *buffer;
	skb_frag_t *fragment;
	struct page *page;
	int page_offset;
142
	unsigned int len, unmap_len = 0, fill_level, insert_ptr;
143 144
	dma_addr_t dma_addr, unmap_addr = 0;
	unsigned int dma_len;
145
	bool unmap_single;
146
	int q_space, i = 0;
147
	netdev_tx_t rc = NETDEV_TX_OK;
148 149 150

	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);

151
	if (skb_shinfo(skb)->gso_size)
B
Ben Hutchings 已提交
152 153
		return efx_enqueue_skb_tso(tx_queue, skb);

154 155 156
	/* Get size of the initial fragment */
	len = skb_headlen(skb);

157 158 159 160 161 162 163 164
	/* Pad if necessary */
	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
		EFX_BUG_ON_PARANOID(skb->data_len);
		len = 32 + 1;
		if (skb_pad(skb, len - skb->len))
			return NETDEV_TX_OK;
	}

165
	fill_level = tx_queue->insert_count - tx_queue->old_read_count;
166
	q_space = efx->txq_entries - 1 - fill_level;
167 168 169 170 171

	/* Map for DMA.  Use pci_map_single rather than pci_map_page
	 * since this is more efficient on machines with sparse
	 * memory.
	 */
172
	unmap_single = true;
173 174 175 176
	dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);

	/* Process all fragments */
	while (1) {
177
		if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
			goto pci_err;

		/* Store fields for marking in the per-fragment final
		 * descriptor */
		unmap_len = len;
		unmap_addr = dma_addr;

		/* Add to TX queue, splitting across DMA boundaries */
		do {
			if (unlikely(q_space-- <= 0)) {
				/* It might be that completions have
				 * happened since the xmit path last
				 * checked.  Update the xmit path's
				 * copy of read_count.
				 */
193
				netif_tx_stop_queue(tx_queue->core_txq);
194
				/* This memory barrier protects the
195
				 * change of queue state from the access
196 197 198
				 * of read_count. */
				smp_mb();
				tx_queue->old_read_count =
199
					ACCESS_ONCE(tx_queue->read_count);
200 201
				fill_level = (tx_queue->insert_count
					      - tx_queue->old_read_count);
202
				q_space = efx->txq_entries - 1 - fill_level;
203 204 205 206
				if (unlikely(q_space-- <= 0)) {
					rc = NETDEV_TX_BUSY;
					goto unwind;
				}
207
				smp_mb();
208
				netif_tx_start_queue(tx_queue->core_txq);
209 210
			}

211
			insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
212
			buffer = &tx_queue->buffer[insert_ptr];
B
Ben Hutchings 已提交
213 214
			efx_tsoh_free(tx_queue, buffer);
			EFX_BUG_ON_PARANOID(buffer->tsoh);
215 216
			EFX_BUG_ON_PARANOID(buffer->skb);
			EFX_BUG_ON_PARANOID(buffer->len);
217
			EFX_BUG_ON_PARANOID(!buffer->continuation);
218 219
			EFX_BUG_ON_PARANOID(buffer->unmap_len);

220 221
			dma_len = efx_max_tx_len(efx, dma_addr);
			if (likely(dma_len >= len))
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
				dma_len = len;

			/* Fill out per descriptor fields */
			buffer->len = dma_len;
			buffer->dma_addr = dma_addr;
			len -= dma_len;
			dma_addr += dma_len;
			++tx_queue->insert_count;
		} while (len);

		/* Transfer ownership of the unmapping to the final buffer */
		buffer->unmap_single = unmap_single;
		buffer->unmap_len = unmap_len;
		unmap_len = 0;

		/* Get address and size of next fragment */
		if (i >= skb_shinfo(skb)->nr_frags)
			break;
		fragment = &skb_shinfo(skb)->frags[i];
		len = fragment->size;
		page = fragment->page;
		page_offset = fragment->page_offset;
		i++;
		/* Map for DMA */
246
		unmap_single = false;
247 248 249 250 251 252
		dma_addr = pci_map_page(pci_dev, page, page_offset, len,
					PCI_DMA_TODEVICE);
	}

	/* Transfer ownership of the skb to the final buffer */
	buffer->skb = skb;
253
	buffer->continuation = false;
254 255

	/* Pass off to hardware */
256
	efx_nic_push_buffers(tx_queue);
257 258 259 260

	return NETDEV_TX_OK;

 pci_err:
261 262 263 264
	netif_err(efx, tx_err, efx->net_dev,
		  " TX queue %d could not map skb with %d bytes %d "
		  "fragments for DMA\n", tx_queue->queue, skb->len,
		  skb_shinfo(skb)->nr_frags + 1);
265 266

	/* Mark the packet as transmitted, and free the SKB ourselves */
267
	dev_kfree_skb_any(skb);
268 269 270 271 272

 unwind:
	/* Work backwards until we hit the original insert pointer value */
	while (tx_queue->insert_count != tx_queue->write_count) {
		--tx_queue->insert_count;
273
		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
274 275 276 277 278 279
		buffer = &tx_queue->buffer[insert_ptr];
		efx_dequeue_buffer(tx_queue, buffer);
		buffer->len = 0;
	}

	/* Free the fragment we were mid-way through pushing */
280 281 282 283 284 285 286 287
	if (unmap_len) {
		if (unmap_single)
			pci_unmap_single(pci_dev, unmap_addr, unmap_len,
					 PCI_DMA_TODEVICE);
		else
			pci_unmap_page(pci_dev, unmap_addr, unmap_len,
				       PCI_DMA_TODEVICE);
	}
288 289 290 291 292 293 294 295 296

	return rc;
}

/* Remove packets from the TX queue
 *
 * This removes packets from the TX queue, up to and including the
 * specified index.
 */
297 298
static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
				unsigned int index)
299 300 301 302
{
	struct efx_nic *efx = tx_queue->efx;
	unsigned int stop_index, read_ptr;

303 304
	stop_index = (index + 1) & tx_queue->ptr_mask;
	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
305 306 307 308

	while (read_ptr != stop_index) {
		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
		if (unlikely(buffer->len == 0)) {
309 310 311
			netif_err(efx, tx_err, efx->net_dev,
				  "TX queue %d spurious TX completion id %x\n",
				  tx_queue->queue, read_ptr);
312 313 314 315 316
			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
			return;
		}

		efx_dequeue_buffer(tx_queue, buffer);
317
		buffer->continuation = true;
318 319 320
		buffer->len = 0;

		++tx_queue->read_count;
321
		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
322 323 324 325 326 327 328 329 330 331 332 333
	}
}

/* Initiate a packet transmission.  We use one channel per CPU
 * (sharing when we have more CPUs than channels).  On Falcon, the TX
 * completion events will be directed back to the CPU that transmitted
 * the packet, which should be cache-efficient.
 *
 * Context: non-blocking.
 * Note that returning anything other than NETDEV_TX_OK will cause the
 * OS to free the skb.
 */
334 335
netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
				      struct net_device *net_dev)
336
{
337
	struct efx_nic *efx = netdev_priv(net_dev);
338
	struct efx_tx_queue *tx_queue;
339
	unsigned index, type;
340

341 342 343
	if (unlikely(efx->port_inhibited))
		return NETDEV_TX_BUSY;

344 345 346 347 348 349 350
	index = skb_get_queue_mapping(skb);
	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
	if (index >= efx->n_tx_channels) {
		index -= efx->n_tx_channels;
		type |= EFX_TXQ_TYPE_HIGHPRI;
	}
	tx_queue = efx_get_tx_queue(efx, index, type);
351

352
	return efx_enqueue_skb(tx_queue, skb);
353 354
}

355 356
void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
{
357 358
	struct efx_nic *efx = tx_queue->efx;

359
	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	tx_queue->core_txq =
		netdev_get_tx_queue(efx->net_dev,
				    tx_queue->queue / EFX_TXQ_TYPES +
				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
				     efx->n_tx_channels : 0));
}

int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	unsigned tc;
	int rc;

	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
		return -EINVAL;

	if (num_tc == net_dev->num_tc)
		return 0;

	for (tc = 0; tc < num_tc; tc++) {
		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
	}

	if (num_tc > net_dev->num_tc) {
		/* Initialise high-priority queues as necessary */
		efx_for_each_channel(channel, efx) {
			efx_for_each_possible_channel_tx_queue(tx_queue,
							       channel) {
				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
					continue;
				if (!tx_queue->buffer) {
					rc = efx_probe_tx_queue(tx_queue);
					if (rc)
						return rc;
				}
				if (!tx_queue->initialised)
					efx_init_tx_queue(tx_queue);
				efx_init_tx_queue_core_txq(tx_queue);
			}
		}
	} else {
		/* Reduce number of classes before number of queues */
		net_dev->num_tc = num_tc;
	}

	rc = netif_set_real_num_tx_queues(net_dev,
					  max_t(int, num_tc, 1) *
					  efx->n_tx_channels);
	if (rc)
		return rc;

	/* Do not destroy high-priority queues when they become
	 * unused.  We would have to flush them first, and it is
	 * fairly difficult to flush a subset of TX queues.  Leave
	 * it to efx_fini_channels().
	 */

	net_dev->num_tc = num_tc;
	return 0;
422 423
}

424 425 426 427 428
void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
{
	unsigned fill_level;
	struct efx_nic *efx = tx_queue->efx;

429
	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
430 431 432 433

	efx_dequeue_buffers(tx_queue, index);

	/* See if we need to restart the netif queue.  This barrier
434 435
	 * separates the update of read_count from the test of the
	 * queue state. */
436
	smp_mb();
437 438
	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
	    likely(efx->port_enabled)) {
439
		fill_level = tx_queue->insert_count - tx_queue->read_count;
440
		if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
441
			EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
442
			netif_tx_wake_queue(tx_queue->core_txq);
443 444
		}
	}
445 446 447 448 449 450 451 452 453 454

	/* Check whether the hardware queue is now empty */
	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
		if (tx_queue->read_count == tx_queue->old_write_count) {
			smp_mb();
			tx_queue->empty_read_count =
				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
		}
	}
455 456 457 458 459
}

int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
460
	unsigned int entries;
461 462
	int i, rc;

463 464 465 466 467 468 469 470
	/* Create the smallest power-of-two aligned ring */
	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
	tx_queue->ptr_mask = entries - 1;

	netif_dbg(efx, probe, efx->net_dev,
		  "creating TX queue %d size %#x mask %#x\n",
		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
471 472

	/* Allocate software ring */
473 474
	tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer),
				   GFP_KERNEL);
475 476
	if (!tx_queue->buffer)
		return -ENOMEM;
477
	for (i = 0; i <= tx_queue->ptr_mask; ++i)
478
		tx_queue->buffer[i].continuation = true;
479 480

	/* Allocate hardware ring */
481
	rc = efx_nic_probe_tx(tx_queue);
482
	if (rc)
483
		goto fail;
484 485 486

	return 0;

487
 fail:
488 489 490 491 492
	kfree(tx_queue->buffer);
	tx_queue->buffer = NULL;
	return rc;
}

493
void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
494
{
495 496
	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
		  "initialising TX queue %d\n", tx_queue->queue);
497 498 499

	tx_queue->insert_count = 0;
	tx_queue->write_count = 0;
500
	tx_queue->old_write_count = 0;
501 502
	tx_queue->read_count = 0;
	tx_queue->old_read_count = 0;
503
	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
504 505

	/* Set up TX descriptor ring */
506
	efx_nic_init_tx(tx_queue);
507 508

	tx_queue->initialised = true;
509 510 511 512 513 514 515 516 517 518 519
}

void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
{
	struct efx_tx_buffer *buffer;

	if (!tx_queue->buffer)
		return;

	/* Free any buffers left in the ring */
	while (tx_queue->read_count != tx_queue->write_count) {
520
		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
521
		efx_dequeue_buffer(tx_queue, buffer);
522
		buffer->continuation = true;
523 524 525 526 527 528 529 530
		buffer->len = 0;

		++tx_queue->read_count;
	}
}

void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
{
531 532 533
	if (!tx_queue->initialised)
		return;

534 535
	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
		  "shutting down TX queue %d\n", tx_queue->queue);
536

537 538
	tx_queue->initialised = false;

539
	/* Flush TX queue, remove descriptor ring */
540
	efx_nic_fini_tx(tx_queue);
541 542 543

	efx_release_tx_buffers(tx_queue);

B
Ben Hutchings 已提交
544 545
	/* Free up TSO header cache */
	efx_fini_tso(tx_queue);
546 547 548 549
}

void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
{
550 551 552
	if (!tx_queue->buffer)
		return;

553 554
	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
		  "destroying TX queue %d\n", tx_queue->queue);
555
	efx_nic_remove_tx(tx_queue);
556 557 558 559 560 561

	kfree(tx_queue->buffer);
	tx_queue->buffer = NULL;
}


B
Ben Hutchings 已提交
562 563 564 565 566 567 568 569 570 571 572
/* Efx TCP segmentation acceleration.
 *
 * Why?  Because by doing it here in the driver we can go significantly
 * faster than the GSO.
 *
 * Requires TX checksum offload support.
 */

/* Number of bytes inserted at the start of a TSO header buffer,
 * similar to NET_IP_ALIGN.
 */
573
#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
B
Ben Hutchings 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
#define TSOH_OFFSET	0
#else
#define TSOH_OFFSET	NET_IP_ALIGN
#endif

#define TSOH_BUFFER(tsoh)	((u8 *)(tsoh + 1) + TSOH_OFFSET)

/* Total size of struct efx_tso_header, buffer and padding */
#define TSOH_SIZE(hdr_len)					\
	(sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)

/* Size of blocks on free list.  Larger blocks must be allocated from
 * the heap.
 */
#define TSOH_STD_SIZE		128

#define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
#define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
#define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
B
Ben Hutchings 已提交
594
#define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
B
Ben Hutchings 已提交
595 596 597

/**
 * struct tso_state - TSO state for an SKB
598
 * @out_len: Remaining length in current segment
B
Ben Hutchings 已提交
599
 * @seqnum: Current sequence number
600
 * @ipv4_id: Current IPv4 ID, host endian
B
Ben Hutchings 已提交
601
 * @packet_space: Remaining space in current packet
602 603 604 605 606
 * @dma_addr: DMA address of current position
 * @in_len: Remaining length in current SKB fragment
 * @unmap_len: Length of SKB fragment
 * @unmap_addr: DMA address of SKB fragment
 * @unmap_single: DMA single vs page mapping flag
B
Ben Hutchings 已提交
607
 * @protocol: Network protocol (after any VLAN header)
608 609
 * @header_len: Number of bytes of header
 * @full_packet_size: Number of bytes to put in each outgoing segment
B
Ben Hutchings 已提交
610 611 612 613 614
 *
 * The state used during segmentation.  It is put into this data structure
 * just to make it easy to pass into inline functions.
 */
struct tso_state {
615 616
	/* Output position */
	unsigned out_len;
B
Ben Hutchings 已提交
617
	unsigned seqnum;
618
	unsigned ipv4_id;
B
Ben Hutchings 已提交
619 620
	unsigned packet_space;

621 622 623 624 625 626 627
	/* Input position */
	dma_addr_t dma_addr;
	unsigned in_len;
	unsigned unmap_len;
	dma_addr_t unmap_addr;
	bool unmap_single;

B
Ben Hutchings 已提交
628
	__be16 protocol;
629 630
	unsigned header_len;
	int full_packet_size;
B
Ben Hutchings 已提交
631 632 633 634 635
};


/*
 * Verify that our various assumptions about sk_buffs and the conditions
B
Ben Hutchings 已提交
636
 * under which TSO will be attempted hold true.  Return the protocol number.
B
Ben Hutchings 已提交
637
 */
B
Ben Hutchings 已提交
638
static __be16 efx_tso_check_protocol(struct sk_buff *skb)
B
Ben Hutchings 已提交
639
{
640 641
	__be16 protocol = skb->protocol;

B
Ben Hutchings 已提交
642
	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
643 644 645 646 647 648 649 650 651 652
			    protocol);
	if (protocol == htons(ETH_P_8021Q)) {
		/* Find the encapsulated protocol; reset network header
		 * and transport header based on that. */
		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
		protocol = veh->h_vlan_encapsulated_proto;
		skb_set_network_header(skb, sizeof(*veh));
		if (protocol == htons(ETH_P_IP))
			skb_set_transport_header(skb, sizeof(*veh) +
						 4 * ip_hdr(skb)->ihl);
B
Ben Hutchings 已提交
653 654 655
		else if (protocol == htons(ETH_P_IPV6))
			skb_set_transport_header(skb, sizeof(*veh) +
						 sizeof(struct ipv6hdr));
656 657
	}

B
Ben Hutchings 已提交
658 659 660 661 662 663
	if (protocol == htons(ETH_P_IP)) {
		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
	} else {
		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
	}
B
Ben Hutchings 已提交
664 665 666
	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
			     + (tcp_hdr(skb)->doff << 2u)) >
			    skb_headlen(skb));
B
Ben Hutchings 已提交
667 668

	return protocol;
B
Ben Hutchings 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
}


/*
 * Allocate a page worth of efx_tso_header structures, and string them
 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
 */
static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
{

	struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
	struct efx_tso_header *tsoh;
	dma_addr_t dma_addr;
	u8 *base_kva, *kva;

	base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
	if (base_kva == NULL) {
686 687
		netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
			  "Unable to allocate page for TSO headers\n");
B
Ben Hutchings 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
		return -ENOMEM;
	}

	/* pci_alloc_consistent() allocates pages. */
	EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));

	for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
		tsoh = (struct efx_tso_header *)kva;
		tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
		tsoh->next = tx_queue->tso_headers_free;
		tx_queue->tso_headers_free = tsoh;
	}

	return 0;
}


/* Free up a TSO header, and all others in the same page. */
static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
				struct efx_tso_header *tsoh,
				struct pci_dev *pci_dev)
{
	struct efx_tso_header **p;
	unsigned long base_kva;
	dma_addr_t base_dma;

	base_kva = (unsigned long)tsoh & PAGE_MASK;
	base_dma = tsoh->dma_addr & PAGE_MASK;

	p = &tx_queue->tso_headers_free;
718
	while (*p != NULL) {
B
Ben Hutchings 已提交
719 720 721 722
		if (((unsigned long)*p & PAGE_MASK) == base_kva)
			*p = (*p)->next;
		else
			p = &(*p)->next;
723
	}
B
Ben Hutchings 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739

	pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
}

static struct efx_tso_header *
efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
{
	struct efx_tso_header *tsoh;

	tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
	if (unlikely(!tsoh))
		return NULL;

	tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
					TSOH_BUFFER(tsoh), header_len,
					PCI_DMA_TODEVICE);
740 741
	if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
					   tsoh->dma_addr))) {
B
Ben Hutchings 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
		kfree(tsoh);
		return NULL;
	}

	tsoh->unmap_len = header_len;
	return tsoh;
}

static void
efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
{
	pci_unmap_single(tx_queue->efx->pci_dev,
			 tsoh->dma_addr, tsoh->unmap_len,
			 PCI_DMA_TODEVICE);
	kfree(tsoh);
}

/**
 * efx_tx_queue_insert - push descriptors onto the TX queue
 * @tx_queue:		Efx TX queue
 * @dma_addr:		DMA address of fragment
 * @len:		Length of fragment
764
 * @final_buffer:	The final buffer inserted into the queue
B
Ben Hutchings 已提交
765 766 767 768 769 770
 *
 * Push descriptors onto the TX queue.  Return 0 on success or 1 if
 * @tx_queue full.
 */
static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
			       dma_addr_t dma_addr, unsigned len,
771
			       struct efx_tx_buffer **final_buffer)
B
Ben Hutchings 已提交
772 773 774
{
	struct efx_tx_buffer *buffer;
	struct efx_nic *efx = tx_queue->efx;
775
	unsigned dma_len, fill_level, insert_ptr;
B
Ben Hutchings 已提交
776 777 778 779 780 781
	int q_space;

	EFX_BUG_ON_PARANOID(len <= 0);

	fill_level = tx_queue->insert_count - tx_queue->old_read_count;
	/* -1 as there is no way to represent all descriptors used */
782
	q_space = efx->txq_entries - 1 - fill_level;
B
Ben Hutchings 已提交
783 784 785 786 787 788 789

	while (1) {
		if (unlikely(q_space-- <= 0)) {
			/* It might be that completions have happened
			 * since the xmit path last checked.  Update
			 * the xmit path's copy of read_count.
			 */
790
			netif_tx_stop_queue(tx_queue->core_txq);
B
Ben Hutchings 已提交
791
			/* This memory barrier protects the change of
792
			 * queue state from the access of read_count. */
B
Ben Hutchings 已提交
793 794
			smp_mb();
			tx_queue->old_read_count =
795
				ACCESS_ONCE(tx_queue->read_count);
B
Ben Hutchings 已提交
796 797
			fill_level = (tx_queue->insert_count
				      - tx_queue->old_read_count);
798
			q_space = efx->txq_entries - 1 - fill_level;
799 800
			if (unlikely(q_space-- <= 0)) {
				*final_buffer = NULL;
B
Ben Hutchings 已提交
801
				return 1;
802
			}
B
Ben Hutchings 已提交
803
			smp_mb();
804
			netif_tx_start_queue(tx_queue->core_txq);
B
Ben Hutchings 已提交
805 806
		}

807
		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
B
Ben Hutchings 已提交
808 809 810 811
		buffer = &tx_queue->buffer[insert_ptr];
		++tx_queue->insert_count;

		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
812 813
				    tx_queue->read_count >=
				    efx->txq_entries);
B
Ben Hutchings 已提交
814 815 816 817 818

		efx_tsoh_free(tx_queue, buffer);
		EFX_BUG_ON_PARANOID(buffer->len);
		EFX_BUG_ON_PARANOID(buffer->unmap_len);
		EFX_BUG_ON_PARANOID(buffer->skb);
819
		EFX_BUG_ON_PARANOID(!buffer->continuation);
B
Ben Hutchings 已提交
820 821 822 823
		EFX_BUG_ON_PARANOID(buffer->tsoh);

		buffer->dma_addr = dma_addr;

824
		dma_len = efx_max_tx_len(efx, dma_addr);
B
Ben Hutchings 已提交
825 826 827 828 829 830 831 832 833 834 835 836

		/* If there is enough space to send then do so */
		if (dma_len >= len)
			break;

		buffer->len = dma_len; /* Don't set the other members */
		dma_addr += dma_len;
		len -= dma_len;
	}

	EFX_BUG_ON_PARANOID(!len);
	buffer->len = len;
837
	*final_buffer = buffer;
B
Ben Hutchings 已提交
838 839 840 841 842 843 844 845 846 847 848
	return 0;
}


/*
 * Put a TSO header into the TX queue.
 *
 * This is special-cased because we know that it is small enough to fit in
 * a single fragment, and we know it doesn't cross a page boundary.  It
 * also allows us to not worry about end-of-packet etc.
 */
849 850
static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
			       struct efx_tso_header *tsoh, unsigned len)
B
Ben Hutchings 已提交
851 852 853
{
	struct efx_tx_buffer *buffer;

854
	buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
B
Ben Hutchings 已提交
855 856 857 858
	efx_tsoh_free(tx_queue, buffer);
	EFX_BUG_ON_PARANOID(buffer->len);
	EFX_BUG_ON_PARANOID(buffer->unmap_len);
	EFX_BUG_ON_PARANOID(buffer->skb);
859
	EFX_BUG_ON_PARANOID(!buffer->continuation);
B
Ben Hutchings 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872
	EFX_BUG_ON_PARANOID(buffer->tsoh);
	buffer->len = len;
	buffer->dma_addr = tsoh->dma_addr;
	buffer->tsoh = tsoh;

	++tx_queue->insert_count;
}


/* Remove descriptors put into a tx_queue. */
static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
{
	struct efx_tx_buffer *buffer;
873
	dma_addr_t unmap_addr;
B
Ben Hutchings 已提交
874 875 876 877 878

	/* Work backwards until we hit the original insert pointer value */
	while (tx_queue->insert_count != tx_queue->write_count) {
		--tx_queue->insert_count;
		buffer = &tx_queue->buffer[tx_queue->insert_count &
879
					   tx_queue->ptr_mask];
B
Ben Hutchings 已提交
880 881 882
		efx_tsoh_free(tx_queue, buffer);
		EFX_BUG_ON_PARANOID(buffer->skb);
		if (buffer->unmap_len) {
883 884
			unmap_addr = (buffer->dma_addr + buffer->len -
				      buffer->unmap_len);
885 886
			if (buffer->unmap_single)
				pci_unmap_single(tx_queue->efx->pci_dev,
887
						 unmap_addr, buffer->unmap_len,
888 889 890
						 PCI_DMA_TODEVICE);
			else
				pci_unmap_page(tx_queue->efx->pci_dev,
891
					       unmap_addr, buffer->unmap_len,
892
					       PCI_DMA_TODEVICE);
B
Ben Hutchings 已提交
893 894
			buffer->unmap_len = 0;
		}
895 896
		buffer->len = 0;
		buffer->continuation = true;
B
Ben Hutchings 已提交
897 898 899 900 901
	}
}


/* Parse the SKB header and initialise state. */
902
static void tso_start(struct tso_state *st, const struct sk_buff *skb)
B
Ben Hutchings 已提交
903 904 905 906
{
	/* All ethernet/IP/TCP headers combined size is TCP header size
	 * plus offset of TCP header relative to start of packet.
	 */
907 908 909
	st->header_len = ((tcp_hdr(skb)->doff << 2u)
			  + PTR_DIFF(tcp_hdr(skb), skb->data));
	st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
B
Ben Hutchings 已提交
910

B
Ben Hutchings 已提交
911 912 913 914
	if (st->protocol == htons(ETH_P_IP))
		st->ipv4_id = ntohs(ip_hdr(skb)->id);
	else
		st->ipv4_id = 0;
B
Ben Hutchings 已提交
915 916 917 918 919 920
	st->seqnum = ntohl(tcp_hdr(skb)->seq);

	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);

921 922 923 924
	st->packet_space = st->full_packet_size;
	st->out_len = skb->len - st->header_len;
	st->unmap_len = 0;
	st->unmap_single = false;
B
Ben Hutchings 已提交
925 926
}

927 928
static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
			    skb_frag_t *frag)
B
Ben Hutchings 已提交
929
{
930 931 932 933 934 935 936 937
	st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
				      frag->page_offset, frag->size,
				      PCI_DMA_TODEVICE);
	if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
		st->unmap_single = false;
		st->unmap_len = frag->size;
		st->in_len = frag->size;
		st->dma_addr = st->unmap_addr;
938 939 940 941 942
		return 0;
	}
	return -ENOMEM;
}

943 944
static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
				 const struct sk_buff *skb)
945
{
946
	int hl = st->header_len;
947
	int len = skb_headlen(skb) - hl;
B
Ben Hutchings 已提交
948

949 950 951 952 953 954 955
	st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
					len, PCI_DMA_TODEVICE);
	if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
		st->unmap_single = true;
		st->unmap_len = len;
		st->in_len = len;
		st->dma_addr = st->unmap_addr;
B
Ben Hutchings 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
		return 0;
	}
	return -ENOMEM;
}


/**
 * tso_fill_packet_with_fragment - form descriptors for the current fragment
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 * @st:			TSO state
 *
 * Form descriptors for the current fragment, until we reach the end
 * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
 * space in @tx_queue.
 */
972 973 974
static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
					 const struct sk_buff *skb,
					 struct tso_state *st)
B
Ben Hutchings 已提交
975
{
976
	struct efx_tx_buffer *buffer;
B
Ben Hutchings 已提交
977 978
	int n, end_of_packet, rc;

979
	if (st->in_len == 0)
B
Ben Hutchings 已提交
980 981 982 983
		return 0;
	if (st->packet_space == 0)
		return 0;

984
	EFX_BUG_ON_PARANOID(st->in_len <= 0);
B
Ben Hutchings 已提交
985 986
	EFX_BUG_ON_PARANOID(st->packet_space <= 0);

987
	n = min(st->in_len, st->packet_space);
B
Ben Hutchings 已提交
988 989

	st->packet_space -= n;
990 991
	st->out_len -= n;
	st->in_len -= n;
B
Ben Hutchings 已提交
992

993
	rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
994
	if (likely(rc == 0)) {
995
		if (st->out_len == 0)
996 997
			/* Transfer ownership of the skb */
			buffer->skb = skb;
B
Ben Hutchings 已提交
998

999
		end_of_packet = st->out_len == 0 || st->packet_space == 0;
1000
		buffer->continuation = !end_of_packet;
B
Ben Hutchings 已提交
1001

1002
		if (st->in_len == 0) {
1003
			/* Transfer ownership of the pci mapping */
1004 1005 1006
			buffer->unmap_len = st->unmap_len;
			buffer->unmap_single = st->unmap_single;
			st->unmap_len = 0;
1007 1008 1009
		}
	}

1010
	st->dma_addr += n;
B
Ben Hutchings 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	return rc;
}


/**
 * tso_start_new_packet - generate a new header and prepare for the new packet
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 * @st:			TSO state
 *
 * Generate a new header and prepare for the new packet.  Return 0 on
 * success, or -1 if failed to alloc header.
 */
1024 1025 1026
static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
				const struct sk_buff *skb,
				struct tso_state *st)
B
Ben Hutchings 已提交
1027 1028 1029 1030 1031 1032 1033
{
	struct efx_tso_header *tsoh;
	struct tcphdr *tsoh_th;
	unsigned ip_length;
	u8 *header;

	/* Allocate a DMA-mapped header buffer. */
1034
	if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1035
		if (tx_queue->tso_headers_free == NULL) {
B
Ben Hutchings 已提交
1036 1037
			if (efx_tsoh_block_alloc(tx_queue))
				return -1;
1038
		}
B
Ben Hutchings 已提交
1039 1040 1041 1042 1043 1044
		EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
		tsoh = tx_queue->tso_headers_free;
		tx_queue->tso_headers_free = tsoh->next;
		tsoh->unmap_len = 0;
	} else {
		tx_queue->tso_long_headers++;
1045
		tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
B
Ben Hutchings 已提交
1046 1047 1048 1049 1050 1051 1052 1053
		if (unlikely(!tsoh))
			return -1;
	}

	header = TSOH_BUFFER(tsoh);
	tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));

	/* Copy and update the headers. */
1054
	memcpy(header, skb->data, st->header_len);
B
Ben Hutchings 已提交
1055 1056 1057

	tsoh_th->seq = htonl(st->seqnum);
	st->seqnum += skb_shinfo(skb)->gso_size;
1058
	if (st->out_len > skb_shinfo(skb)->gso_size) {
B
Ben Hutchings 已提交
1059
		/* This packet will not finish the TSO burst. */
1060
		ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
B
Ben Hutchings 已提交
1061 1062 1063 1064
		tsoh_th->fin = 0;
		tsoh_th->psh = 0;
	} else {
		/* This packet will be the last in the TSO burst. */
1065
		ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
B
Ben Hutchings 已提交
1066 1067 1068 1069
		tsoh_th->fin = tcp_hdr(skb)->fin;
		tsoh_th->psh = tcp_hdr(skb)->psh;
	}

B
Ben Hutchings 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	if (st->protocol == htons(ETH_P_IP)) {
		struct iphdr *tsoh_iph =
			(struct iphdr *)(header + SKB_IPV4_OFF(skb));

		tsoh_iph->tot_len = htons(ip_length);

		/* Linux leaves suitable gaps in the IP ID space for us to fill. */
		tsoh_iph->id = htons(st->ipv4_id);
		st->ipv4_id++;
	} else {
		struct ipv6hdr *tsoh_iph =
			(struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));

		tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
	}
B
Ben Hutchings 已提交
1085 1086 1087 1088 1089

	st->packet_space = skb_shinfo(skb)->gso_size;
	++tx_queue->tso_packets;

	/* Form a descriptor for this header. */
1090
	efx_tso_put_header(tx_queue, tsoh, st->header_len);
B
Ben Hutchings 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

	return 0;
}


/**
 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 *
 * Context: You must hold netif_tx_lock() to call this function.
 *
 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
 * @skb was not enqueued.  In all cases @skb is consumed.  Return
 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
 */
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1108
			       struct sk_buff *skb)
B
Ben Hutchings 已提交
1109
{
1110
	struct efx_nic *efx = tx_queue->efx;
B
Ben Hutchings 已提交
1111 1112 1113
	int frag_i, rc, rc2 = NETDEV_TX_OK;
	struct tso_state state;

B
Ben Hutchings 已提交
1114 1115
	/* Find the packet protocol and sanity-check it */
	state.protocol = efx_tso_check_protocol(skb);
B
Ben Hutchings 已提交
1116 1117 1118 1119 1120 1121 1122 1123

	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);

	tso_start(&state, skb);

	/* Assume that skb header area contains exactly the headers, and
	 * all payload is in the frag list.
	 */
1124
	if (skb_headlen(skb) == state.header_len) {
B
Ben Hutchings 已提交
1125 1126 1127
		/* Grab the first payload fragment. */
		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
		frag_i = 0;
1128 1129
		rc = tso_get_fragment(&state, efx,
				      skb_shinfo(skb)->frags + frag_i);
B
Ben Hutchings 已提交
1130 1131 1132
		if (rc)
			goto mem_err;
	} else {
1133
		rc = tso_get_head_fragment(&state, efx, skb);
B
Ben Hutchings 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
		if (rc)
			goto mem_err;
		frag_i = -1;
	}

	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
		goto mem_err;

	while (1) {
		rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1144 1145 1146 1147
		if (unlikely(rc)) {
			rc2 = NETDEV_TX_BUSY;
			goto unwind;
		}
B
Ben Hutchings 已提交
1148 1149

		/* Move onto the next fragment? */
1150
		if (state.in_len == 0) {
B
Ben Hutchings 已提交
1151 1152 1153
			if (++frag_i >= skb_shinfo(skb)->nr_frags)
				/* End of payload reached. */
				break;
1154 1155
			rc = tso_get_fragment(&state, efx,
					      skb_shinfo(skb)->frags + frag_i);
B
Ben Hutchings 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
			if (rc)
				goto mem_err;
		}

		/* Start at new packet? */
		if (state.packet_space == 0 &&
		    tso_start_new_packet(tx_queue, skb, &state) < 0)
			goto mem_err;
	}

	/* Pass off to hardware */
1167
	efx_nic_push_buffers(tx_queue);
B
Ben Hutchings 已提交
1168 1169 1170 1171 1172

	tx_queue->tso_bursts++;
	return NETDEV_TX_OK;

 mem_err:
1173 1174
	netif_err(efx, tx_err, efx->net_dev,
		  "Out of memory for TSO headers, or PCI mapping error\n");
1175
	dev_kfree_skb_any(skb);
B
Ben Hutchings 已提交
1176 1177

 unwind:
1178
	/* Free the DMA mapping we were in the process of writing out */
1179 1180 1181 1182
	if (state.unmap_len) {
		if (state.unmap_single)
			pci_unmap_single(efx->pci_dev, state.unmap_addr,
					 state.unmap_len, PCI_DMA_TODEVICE);
1183
		else
1184 1185
			pci_unmap_page(efx->pci_dev, state.unmap_addr,
				       state.unmap_len, PCI_DMA_TODEVICE);
1186
	}
1187

B
Ben Hutchings 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	efx_enqueue_unwind(tx_queue);
	return rc2;
}


/*
 * Free up all TSO datastructures associated with tx_queue. This
 * routine should be called only once the tx_queue is both empty and
 * will no longer be used.
 */
static void efx_fini_tso(struct efx_tx_queue *tx_queue)
{
	unsigned i;

1202
	if (tx_queue->buffer) {
1203
		for (i = 0; i <= tx_queue->ptr_mask; ++i)
B
Ben Hutchings 已提交
1204
			efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1205
	}
B
Ben Hutchings 已提交
1206 1207 1208 1209 1210

	while (tx_queue->tso_headers_free != NULL)
		efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
				    tx_queue->efx->pci_dev);
}