spu_manage.c 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * spu management operations for of based platforms
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 * Copyright 2006 Sony Corp.
 * (C) Copyright 2007 TOSHIBA CORPORATION
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include <linux/mm.h>
#include <linux/io.h>
#include <linux/mutex.h>
#include <linux/device.h>

#include <asm/spu.h>
#include <asm/spu_priv1.h>
#include <asm/firmware.h>
#include <asm/prom.h>

38
#include "spufs/spufs.h"
39 40 41 42 43 44 45 46 47 48 49 50 51
#include "interrupt.h"

struct device_node *spu_devnode(struct spu *spu)
{
	return spu->devnode;
}

EXPORT_SYMBOL_GPL(spu_devnode);

static u64 __init find_spu_unit_number(struct device_node *spe)
{
	const unsigned int *prop;
	int proplen;
52 53

	/* new device trees should provide the physical-id attribute */
54
	prop = of_get_property(spe, "physical-id", &proplen);
55 56 57
	if (proplen == 4)
		return (u64)*prop;

58 59 60 61 62 63
	/* celleb device tree provides the unit-id */
	prop = of_get_property(spe, "unit-id", &proplen);
	if (proplen == 4)
		return (u64)*prop;

	/* legacy device trees provide the id in the reg attribute */
64
	prop = of_get_property(spe, "reg", &proplen);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
	if (proplen == 4)
		return (u64)*prop;

	return 0;
}

static void spu_unmap(struct spu *spu)
{
	if (!firmware_has_feature(FW_FEATURE_LPAR))
		iounmap(spu->priv1);
	iounmap(spu->priv2);
	iounmap(spu->problem);
	iounmap((__force u8 __iomem *)spu->local_store);
}

static int __init spu_map_interrupts_old(struct spu *spu,
	struct device_node *np)
{
	unsigned int isrc;
	const u32 *tmp;
	int nid;

	/* Get the interrupt source unit from the device-tree */
88
	tmp = of_get_property(np, "isrc", NULL);
89 90 91 92
	if (!tmp)
		return -ENODEV;
	isrc = tmp[0];

93
	tmp = of_get_property(np->parent->parent, "node-id", NULL);
94
	if (!tmp) {
95
		printk(KERN_WARNING "%s: can't find node-id\n", __func__);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
		nid = spu->node;
	} else
		nid = tmp[0];

	/* Add the node number */
	isrc |= nid << IIC_IRQ_NODE_SHIFT;

	/* Now map interrupts of all 3 classes */
	spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc);
	spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc);
	spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc);

	/* Right now, we only fail if class 2 failed */
	return spu->irqs[2] == NO_IRQ ? -EINVAL : 0;
}

112 113 114 115 116 117 118 119 120 121
static void __iomem * __init spu_map_prop_old(struct spu *spu,
					      struct device_node *n,
					      const char *name)
{
	const struct address_prop {
		unsigned long address;
		unsigned int len;
	} __attribute__((packed)) *prop;
	int proplen;

122
	prop = of_get_property(n, name, &proplen);
123 124 125 126 127 128
	if (prop == NULL || proplen != sizeof (struct address_prop))
		return NULL;

	return ioremap(prop->address, prop->len);
}

129 130 131 132 133 134 135
static int __init spu_map_device_old(struct spu *spu)
{
	struct device_node *node = spu->devnode;
	const char *prop;
	int ret;

	ret = -ENODEV;
136
	spu->name = of_get_property(node, "name", NULL);
137 138 139
	if (!spu->name)
		goto out;

140
	prop = of_get_property(node, "local-store", NULL);
141 142 143 144 145 146
	if (!prop)
		goto out;
	spu->local_store_phys = *(unsigned long *)prop;

	/* we use local store as ram, not io memory */
	spu->local_store = (void __force *)
147
		spu_map_prop_old(spu, node, "local-store");
148 149 150
	if (!spu->local_store)
		goto out;

151
	prop = of_get_property(node, "problem", NULL);
152 153 154 155
	if (!prop)
		goto out_unmap;
	spu->problem_phys = *(unsigned long *)prop;

156
	spu->problem = spu_map_prop_old(spu, node, "problem");
157 158 159
	if (!spu->problem)
		goto out_unmap;

160
	spu->priv2 = spu_map_prop_old(spu, node, "priv2");
161 162 163 164
	if (!spu->priv2)
		goto out_unmap;

	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
165
		spu->priv1 = spu_map_prop_old(spu, node, "priv1");
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
		if (!spu->priv1)
			goto out_unmap;
	}

	ret = 0;
	goto out;

out_unmap:
	spu_unmap(spu);
out:
	return ret;
}

static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
{
	struct of_irq oirq;
	int ret;
	int i;

	for (i=0; i < 3; i++) {
		ret = of_irq_map_one(np, i, &oirq);
		if (ret) {
			pr_debug("spu_new: failed to get irq %d\n", i);
			goto err;
		}
		ret = -EINVAL;
		pr_debug("  irq %d no 0x%x on %s\n", i, oirq.specifier[0],
			 oirq.controller->full_name);
		spu->irqs[i] = irq_create_of_mapping(oirq.controller,
					oirq.specifier, oirq.size);
		if (spu->irqs[i] == NO_IRQ) {
			pr_debug("spu_new: failed to map it !\n");
			goto err;
		}
	}
	return 0;

err:
	pr_debug("failed to map irq %x for spu %s\n", *oirq.specifier,
		spu->name);
	for (; i >= 0; i--) {
		if (spu->irqs[i] != NO_IRQ)
			irq_dispose_mapping(spu->irqs[i]);
	}
	return ret;
}

static int spu_map_resource(struct spu *spu, int nr,
			    void __iomem** virt, unsigned long *phys)
{
	struct device_node *np = spu->devnode;
	struct resource resource = { };
	unsigned long len;
	int ret;

	ret = of_address_to_resource(np, nr, &resource);
	if (ret)
223
		return ret;
224 225 226 227 228
	if (phys)
		*phys = resource.start;
	len = resource.end - resource.start + 1;
	*virt = ioremap(resource.start, len);
	if (!*virt)
229 230
		return -EINVAL;
	return 0;
231 232 233 234 235 236 237
}

static int __init spu_map_device(struct spu *spu)
{
	struct device_node *np = spu->devnode;
	int ret = -ENODEV;

238
	spu->name = of_get_property(np, "name", NULL);
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	if (!spu->name)
		goto out;

	ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store,
			       &spu->local_store_phys);
	if (ret) {
		pr_debug("spu_new: failed to map %s resource 0\n",
			 np->full_name);
		goto out;
	}
	ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem,
			       &spu->problem_phys);
	if (ret) {
		pr_debug("spu_new: failed to map %s resource 1\n",
			 np->full_name);
		goto out_unmap;
	}
	ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL);
	if (ret) {
		pr_debug("spu_new: failed to map %s resource 2\n",
			 np->full_name);
		goto out_unmap;
	}
	if (!firmware_has_feature(FW_FEATURE_LPAR))
		ret = spu_map_resource(spu, 3,
			       (void __iomem**)&spu->priv1, NULL);
	if (ret) {
		pr_debug("spu_new: failed to map %s resource 3\n",
			 np->full_name);
		goto out_unmap;
	}
	pr_debug("spu_new: %s maps:\n", np->full_name);
	pr_debug("  local store   : 0x%016lx -> 0x%p\n",
		 spu->local_store_phys, spu->local_store);
	pr_debug("  problem state : 0x%016lx -> 0x%p\n",
		 spu->problem_phys, spu->problem);
	pr_debug("  priv2         :                       0x%p\n", spu->priv2);
	pr_debug("  priv1         :                       0x%p\n", spu->priv1);

	return 0;

out_unmap:
	spu_unmap(spu);
out:
	pr_debug("failed to map spe %s: %d\n", spu->name, ret);
	return ret;
}

static int __init of_enumerate_spus(int (*fn)(void *data))
{
	int ret;
	struct device_node *node;
291
	unsigned int n = 0;
292 293 294 295 296 297 298

	ret = -ENODEV;
	for (node = of_find_node_by_type(NULL, "spe");
			node; node = of_find_node_by_type(node, "spe")) {
		ret = fn(node);
		if (ret) {
			printk(KERN_WARNING "%s: Error initializing %s\n",
299
				__func__, node->name);
300 301
			break;
		}
302
		n++;
303
	}
304
	return ret ? ret : n;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
}

static int __init of_create_spu(struct spu *spu, void *data)
{
	int ret;
	struct device_node *spe = (struct device_node *)data;
	static int legacy_map = 0, legacy_irq = 0;

	spu->devnode = of_node_get(spe);
	spu->spe_id = find_spu_unit_number(spe);

	spu->node = of_node_to_nid(spe);
	if (spu->node >= MAX_NUMNODES) {
		printk(KERN_WARNING "SPE %s on node %d ignored,"
		       " node number too big\n", spe->full_name, spu->node);
		printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n");
		ret = -ENODEV;
		goto out;
	}

	ret = spu_map_device(spu);
	if (ret) {
		if (!legacy_map) {
			legacy_map = 1;
			printk(KERN_WARNING "%s: Legacy device tree found, "
330
				"trying to map old style\n", __func__);
331 332 333 334 335 336 337 338 339 340 341 342 343 344
		}
		ret = spu_map_device_old(spu);
		if (ret) {
			printk(KERN_ERR "Unable to map %s\n",
				spu->name);
			goto out;
		}
	}

	ret = spu_map_interrupts(spu, spe);
	if (ret) {
		if (!legacy_irq) {
			legacy_irq = 1;
			printk(KERN_WARNING "%s: Legacy device tree found, "
345
				"trying old style irq\n", __func__);
346 347 348
		}
		ret = spu_map_interrupts_old(spu, spe);
		if (ret) {
I
Ishizaki Kou 已提交
349
			printk(KERN_ERR "%s: could not map interrupts\n",
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
				spu->name);
			goto out_unmap;
		}
	}

	pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name,
		spu->local_store, spu->problem, spu->priv1,
		spu->priv2, spu->number);
	goto out;

out_unmap:
	spu_unmap(spu);
out:
	return ret;
}

static int of_destroy_spu(struct spu *spu)
{
	spu_unmap(spu);
	of_node_put(spu->devnode);
	return 0;
}

373 374 375 376 377 378 379 380 381 382
static void enable_spu_by_master_run(struct spu_context *ctx)
{
	ctx->ops->master_start(ctx);
}

static void disable_spu_by_master_run(struct spu_context *ctx)
{
	ctx->ops->master_stop(ctx);
}

383 384 385 386 387 388 389 390
/* Hardcoded affinity idxs for qs20 */
#define QS20_SPES_PER_BE 8
static int qs20_reg_idxs[QS20_SPES_PER_BE] =   { 0, 2, 4, 6, 7, 5, 3, 1 };
static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 };

static struct spu *spu_lookup_reg(int node, u32 reg)
{
	struct spu *spu;
391
	const u32 *spu_reg;
392 393

	list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
394
		spu_reg = of_get_property(spu_devnode(spu), "reg", NULL);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
		if (*spu_reg == reg)
			return spu;
	}
	return NULL;
}

static void init_affinity_qs20_harcoded(void)
{
	int node, i;
	struct spu *last_spu, *spu;
	u32 reg;

	for (node = 0; node < MAX_NUMNODES; node++) {
		last_spu = NULL;
		for (i = 0; i < QS20_SPES_PER_BE; i++) {
			reg = qs20_reg_idxs[i];
			spu = spu_lookup_reg(node, reg);
			if (!spu)
				continue;
			spu->has_mem_affinity = qs20_reg_memory[reg];
			if (last_spu)
				list_add_tail(&spu->aff_list,
						&last_spu->aff_list);
			last_spu = spu;
		}
	}
}

static int of_has_vicinity(void)
{
425
	struct device_node *dn;
426

427 428 429 430 431 432 433
	for_each_node_by_type(dn, "spe") {
		if (of_find_property(dn, "vicinity", NULL))  {
			of_node_put(dn);
			return 1;
		}
	}
	return 0;
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
}

static struct spu *devnode_spu(int cbe, struct device_node *dn)
{
	struct spu *spu;

	list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list)
		if (spu_devnode(spu) == dn)
			return spu;
	return NULL;
}

static struct spu *
neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid)
{
	struct spu *spu;
	struct device_node *spu_dn;
	const phandle *vic_handles;
	int lenp, i;

	list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) {
		spu_dn = spu_devnode(spu);
		if (spu_dn == avoid)
			continue;
		vic_handles = of_get_property(spu_dn, "vicinity", &lenp);
		for (i=0; i < (lenp / sizeof(phandle)); i++) {
			if (vic_handles[i] == target->linux_phandle)
				return spu;
		}
	}
	return NULL;
}

static void init_affinity_node(int cbe)
{
	struct spu *spu, *last_spu;
	struct device_node *vic_dn, *last_spu_dn;
	phandle avoid_ph;
	const phandle *vic_handles;
	const char *name;
	int lenp, i, added;

	last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu,
								cbe_list);
	avoid_ph = 0;
	for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) {
		last_spu_dn = spu_devnode(last_spu);
		vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp);

		/*
		 * Walk through each phandle in vicinity property of the spu
		 * (tipically two vicinity phandles per spe node)
		 */
		for (i = 0; i < (lenp / sizeof(phandle)); i++) {
			if (vic_handles[i] == avoid_ph)
				continue;

			vic_dn = of_find_node_by_phandle(vic_handles[i]);
			if (!vic_dn)
				continue;

			/* a neighbour might be spe, mic-tm, or bif0 */
			name = of_get_property(vic_dn, "name", NULL);
			if (!name)
				continue;

			if (strcmp(name, "spe") == 0) {
				spu = devnode_spu(cbe, vic_dn);
				avoid_ph = last_spu_dn->linux_phandle;
			} else {
				/*
				 * "mic-tm" and "bif0" nodes do not have
				 * vicinity property. So we need to find the
				 * spe which has vic_dn as neighbour, but
				 * skipping the one we came from (last_spu_dn)
				 */
				spu = neighbour_spu(cbe, vic_dn, last_spu_dn);
				if (!spu)
					continue;
				if (!strcmp(name, "mic-tm")) {
					last_spu->has_mem_affinity = 1;
					spu->has_mem_affinity = 1;
				}
				avoid_ph = vic_dn->linux_phandle;
			}

			list_add_tail(&spu->aff_list, &last_spu->aff_list);
			last_spu = spu;
			break;
		}
	}
}

static void init_affinity_fw(void)
{
	int cbe;

	for (cbe = 0; cbe < MAX_NUMNODES; cbe++)
		init_affinity_node(cbe);
}

static int __init init_affinity(void)
{
	if (of_has_vicinity()) {
		init_affinity_fw();
	} else {
		long root = of_get_flat_dt_root();
		if (of_flat_dt_is_compatible(root, "IBM,CPBW-1.0"))
			init_affinity_qs20_harcoded();
		else
I
Ishizaki Kou 已提交
544
			printk("No affinity configuration found\n");
545 546 547 548 549
	}

	return 0;
}

550 551 552 553
const struct spu_management_ops spu_management_of_ops = {
	.enumerate_spus = of_enumerate_spus,
	.create_spu = of_create_spu,
	.destroy_spu = of_destroy_spu,
554 555
	.enable_spu = enable_spu_by_master_run,
	.disable_spu = disable_spu_by_master_run,
556
	.init_affinity = init_affinity,
557
};