timer.c 36.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 *  linux/kernel/timer.c
 *
4
 *  Kernel internal timers, basic process system calls
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
29
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
30 31 32 33 34 35 36
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
37
#include <linux/delay.h>
38
#include <linux/tick.h>
39
#include <linux/kallsyms.h>
L
Linus Torvalds 已提交
40 41 42 43 44 45 46

#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

T
Thomas Gleixner 已提交
47 48 49 50
u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58 59 60
/*
 * per-CPU timer vector definitions:
 */
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)

61
struct tvec {
L
Linus Torvalds 已提交
62
	struct list_head vec[TVN_SIZE];
63
};
L
Linus Torvalds 已提交
64

65
struct tvec_root {
L
Linus Torvalds 已提交
66
	struct list_head vec[TVR_SIZE];
67
};
L
Linus Torvalds 已提交
68

69
struct tvec_base {
70 71
	spinlock_t lock;
	struct timer_list *running_timer;
L
Linus Torvalds 已提交
72
	unsigned long timer_jiffies;
73 74 75 76 77
	struct tvec_root tv1;
	struct tvec tv2;
	struct tvec tv3;
	struct tvec tv4;
	struct tvec tv5;
78
} ____cacheline_aligned;
L
Linus Torvalds 已提交
79

80
struct tvec_base boot_tvec_bases;
81
EXPORT_SYMBOL(boot_tvec_bases);
82
static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
L
Linus Torvalds 已提交
83

84
/*
85
 * Note that all tvec_bases are 2 byte aligned and lower bit of
86 87 88 89 90 91
 * base in timer_list is guaranteed to be zero. Use the LSB for
 * the new flag to indicate whether the timer is deferrable
 */
#define TBASE_DEFERRABLE_FLAG		(0x1)

/* Functions below help us manage 'deferrable' flag */
92
static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
93
{
94
	return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
95 96
}

97
static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
98
{
99
	return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
100 101 102 103
}

static inline void timer_set_deferrable(struct timer_list *timer)
{
104
	timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
105
				       TBASE_DEFERRABLE_FLAG));
106 107 108
}

static inline void
109
timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
110
{
111
	timer->base = (struct tvec_base *)((unsigned long)(new_base) |
112
				      tbase_get_deferrable(timer->base));
113 114
}

115 116 117 118 119
/**
 * __round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
120
 * __round_jiffies() rounds an absolute time in the future (in jiffies)
121 122 123 124 125 126 127 128 129 130 131 132
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
133
 * The return value is the rounded version of the @j parameter.
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
 */
unsigned long __round_jiffies(unsigned long j, int cpu)
{
	int rem;
	unsigned long original = j;

	/*
	 * We don't want all cpus firing their timers at once hitting the
	 * same lock or cachelines, so we skew each extra cpu with an extra
	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
	 * already did this.
	 * The skew is done by adding 3*cpunr, then round, then subtract this
	 * extra offset again.
	 */
	j += cpu * 3;

	rem = j % HZ;

	/*
	 * If the target jiffie is just after a whole second (which can happen
	 * due to delays of the timer irq, long irq off times etc etc) then
	 * we should round down to the whole second, not up. Use 1/4th second
	 * as cutoff for this rounding as an extreme upper bound for this.
	 */
	if (rem < HZ/4) /* round down */
		j = j - rem;
	else /* round up */
		j = j - rem + HZ;

	/* now that we have rounded, subtract the extra skew again */
	j -= cpu * 3;

	if (j <= jiffies) /* rounding ate our timeout entirely; */
		return original;
	return j;
}
EXPORT_SYMBOL_GPL(__round_jiffies);

/**
 * __round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
177
 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
178 179 180 181 182 183 184 185 186 187 188 189
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
190
 * The return value is the rounded version of the @j parameter.
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
 */
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
	/*
	 * In theory the following code can skip a jiffy in case jiffies
	 * increments right between the addition and the later subtraction.
	 * However since the entire point of this function is to use approximate
	 * timeouts, it's entirely ok to not handle that.
	 */
	return  __round_jiffies(j + jiffies, cpu) - jiffies;
}
EXPORT_SYMBOL_GPL(__round_jiffies_relative);

/**
 * round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
208
 * round_jiffies() rounds an absolute time in the future (in jiffies)
209 210 211 212 213 214 215 216
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
217
 * The return value is the rounded version of the @j parameter.
218 219 220 221 222 223 224 225 226 227 228
 */
unsigned long round_jiffies(unsigned long j)
{
	return __round_jiffies(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies);

/**
 * round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
229
 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
230 231 232 233 234 235 236 237
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
238
 * The return value is the rounded version of the @j parameter.
239 240 241 242 243 244 245 246
 */
unsigned long round_jiffies_relative(unsigned long j)
{
	return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_relative);


247
static inline void set_running_timer(struct tvec_base *base,
L
Linus Torvalds 已提交
248 249 250
					struct timer_list *timer)
{
#ifdef CONFIG_SMP
251
	base->running_timer = timer;
L
Linus Torvalds 已提交
252 253 254
#endif
}

255
static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
L
Linus Torvalds 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
{
	unsigned long expires = timer->expires;
	unsigned long idx = expires - base->timer_jiffies;
	struct list_head *vec;

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = base->tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = base->tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec = base->tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = base->tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/*
		 * Can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
	} else {
		int i;
		/* If the timeout is larger than 0xffffffff on 64-bit
		 * architectures then we use the maximum timeout:
		 */
		if (idx > 0xffffffffUL) {
			idx = 0xffffffffUL;
			expires = idx + base->timer_jiffies;
		}
		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = base->tv5.vec + i;
	}
	/*
	 * Timers are FIFO:
	 */
	list_add_tail(&timer->entry, vec);
}

297 298 299 300 301 302 303 304 305 306
#ifdef CONFIG_TIMER_STATS
void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
307 308 309 310 311 312 313 314 315 316 317 318 319 320

static void timer_stats_account_timer(struct timer_list *timer)
{
	unsigned int flag = 0;

	if (unlikely(tbase_get_deferrable(timer->base)))
		flag |= TIMER_STATS_FLAG_DEFERRABLE;

	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, flag);
}

#else
static void timer_stats_account_timer(struct timer_list *timer) {}
321 322
#endif

323
/**
324 325 326 327 328 329
 * init_timer - initialize a timer.
 * @timer: the timer to be initialized
 *
 * init_timer() must be done to a timer prior calling *any* of the
 * other timer functions.
 */
330
void init_timer(struct timer_list *timer)
331 332
{
	timer->entry.next = NULL;
333
	timer->base = __raw_get_cpu_var(tvec_bases);
334 335 336 337 338
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
339 340 341
}
EXPORT_SYMBOL(init_timer);

342
void init_timer_deferrable(struct timer_list *timer)
343 344 345 346 347 348
{
	init_timer(timer);
	timer_set_deferrable(timer);
}
EXPORT_SYMBOL(init_timer_deferrable);

349
static inline void detach_timer(struct timer_list *timer,
350
				int clear_pending)
351 352 353 354 355 356 357 358 359 360
{
	struct list_head *entry = &timer->entry;

	__list_del(entry->prev, entry->next);
	if (clear_pending)
		entry->next = NULL;
	entry->prev = LIST_POISON2;
}

/*
361
 * We are using hashed locking: holding per_cpu(tvec_bases).lock
362 363 364 365 366 367 368 369 370 371
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on ->tvX lists.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
372
static struct tvec_base *lock_timer_base(struct timer_list *timer,
373
					unsigned long *flags)
374
	__acquires(timer->base->lock)
375
{
376
	struct tvec_base *base;
377 378

	for (;;) {
379
		struct tvec_base *prelock_base = timer->base;
380
		base = tbase_get_base(prelock_base);
381 382
		if (likely(base != NULL)) {
			spin_lock_irqsave(&base->lock, *flags);
383
			if (likely(prelock_base == timer->base))
384 385 386 387 388 389 390 391
				return base;
			/* The timer has migrated to another CPU */
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

L
Linus Torvalds 已提交
392 393
int __mod_timer(struct timer_list *timer, unsigned long expires)
{
394
	struct tvec_base *base, *new_base;
L
Linus Torvalds 已提交
395 396 397
	unsigned long flags;
	int ret = 0;

398
	timer_stats_timer_set_start_info(timer);
L
Linus Torvalds 已提交
399 400
	BUG_ON(!timer->function);

401 402 403 404 405 406 407
	base = lock_timer_base(timer, &flags);

	if (timer_pending(timer)) {
		detach_timer(timer, 0);
		ret = 1;
	}

408
	new_base = __get_cpu_var(tvec_bases);
L
Linus Torvalds 已提交
409

410
	if (base != new_base) {
L
Linus Torvalds 已提交
411
		/*
412 413 414 415 416
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
		 * handler yet has not finished. This also guarantees that
		 * the timer is serialized wrt itself.
L
Linus Torvalds 已提交
417
		 */
418
		if (likely(base->running_timer != timer)) {
419
			/* See the comment in lock_timer_base() */
420
			timer_set_base(timer, NULL);
421
			spin_unlock(&base->lock);
422 423
			base = new_base;
			spin_lock(&base->lock);
424
			timer_set_base(timer, base);
L
Linus Torvalds 已提交
425 426 427 428
		}
	}

	timer->expires = expires;
429 430
	internal_add_timer(base, timer);
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
431 432 433 434 435 436

	return ret;
}

EXPORT_SYMBOL(__mod_timer);

437
/**
L
Linus Torvalds 已提交
438 439 440 441 442 443 444 445
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
446
	struct tvec_base *base = per_cpu(tvec_bases, cpu);
447
	unsigned long flags;
448

449
	timer_stats_timer_set_start_info(timer);
450
	BUG_ON(timer_pending(timer) || !timer->function);
451
	spin_lock_irqsave(&base->lock, flags);
452
	timer_set_base(timer, base);
L
Linus Torvalds 已提交
453
	internal_add_timer(base, timer);
454
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
455 456 457
}


458
/**
L
Linus Torvalds 已提交
459 460
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
461
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
462
 *
463
 * mod_timer() is a more efficient way to update the expire field of an
L
Linus Torvalds 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
	BUG_ON(!timer->function);

482
	timer_stats_timer_set_start_info(timer);
L
Linus Torvalds 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495
	/*
	 * This is a common optimization triggered by the
	 * networking code - if the timer is re-modified
	 * to be the same thing then just return:
	 */
	if (timer->expires == expires && timer_pending(timer))
		return 1;

	return __mod_timer(timer, expires);
}

EXPORT_SYMBOL(mod_timer);

496
/**
L
Linus Torvalds 已提交
497 498 499 500 501 502 503 504 505 506 507 508
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
509
	struct tvec_base *base;
L
Linus Torvalds 已提交
510
	unsigned long flags;
511
	int ret = 0;
L
Linus Torvalds 已提交
512

513
	timer_stats_timer_clear_start_info(timer);
514 515 516 517 518 519
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
		if (timer_pending(timer)) {
			detach_timer(timer, 1);
			ret = 1;
		}
L
Linus Torvalds 已提交
520 521 522
		spin_unlock_irqrestore(&base->lock, flags);
	}

523
	return ret;
L
Linus Torvalds 已提交
524 525 526 527 528
}

EXPORT_SYMBOL(del_timer);

#ifdef CONFIG_SMP
529 530 531 532
/**
 * try_to_del_timer_sync - Try to deactivate a timer
 * @timer: timer do del
 *
533 534 535 536 537 538 539
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 *
 * It must not be called from interrupt contexts.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
540
	struct tvec_base *base;
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	unsigned long flags;
	int ret = -1;

	base = lock_timer_base(timer, &flags);

	if (base->running_timer == timer)
		goto out;

	ret = 0;
	if (timer_pending(timer)) {
		detach_timer(timer, 1);
		ret = 1;
	}
out:
	spin_unlock_irqrestore(&base->lock, flags);

	return ret;
}

560 561
EXPORT_SYMBOL(try_to_del_timer_sync);

562
/**
L
Linus Torvalds 已提交
563 564 565 566 567 568 569
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
570
 * Synchronization rules: Callers must prevent restarting of the timer,
L
Linus Torvalds 已提交
571 572
 * otherwise this function is meaningless. It must not be called from
 * interrupt contexts. The caller must not hold locks which would prevent
573 574 575
 * completion of the timer's handler. The timer's handler must not call
 * add_timer_on(). Upon exit the timer is not queued and the handler is
 * not running on any CPU.
L
Linus Torvalds 已提交
576 577 578 579 580
 *
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
581 582 583 584
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
585
		cpu_relax();
586
	}
L
Linus Torvalds 已提交
587 588
}

589
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
590 591
#endif

592
static int cascade(struct tvec_base *base, struct tvec *tv, int index)
L
Linus Torvalds 已提交
593 594
{
	/* cascade all the timers from tv up one level */
595 596 597 598
	struct timer_list *timer, *tmp;
	struct list_head tv_list;

	list_replace_init(tv->vec + index, &tv_list);
L
Linus Torvalds 已提交
599 600

	/*
601 602
	 * We are removing _all_ timers from the list, so we
	 * don't have to detach them individually.
L
Linus Torvalds 已提交
603
	 */
604
	list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
605
		BUG_ON(tbase_get_base(timer->base) != base);
606
		internal_add_timer(base, timer);
L
Linus Torvalds 已提交
607 608 609 610 611
	}

	return index;
}

612 613 614
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)

/**
L
Linus Torvalds 已提交
615 616 617 618 619 620
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 *
 * This function cascades all vectors and executes all expired timer
 * vectors.
 */
621
static inline void __run_timers(struct tvec_base *base)
L
Linus Torvalds 已提交
622 623 624
{
	struct timer_list *timer;

625
	spin_lock_irq(&base->lock);
L
Linus Torvalds 已提交
626
	while (time_after_eq(jiffies, base->timer_jiffies)) {
627
		struct list_head work_list;
L
Linus Torvalds 已提交
628
		struct list_head *head = &work_list;
629
		int index = base->timer_jiffies & TVR_MASK;
630

L
Linus Torvalds 已提交
631 632 633 634 635 636 637 638
		/*
		 * Cascade timers:
		 */
		if (!index &&
			(!cascade(base, &base->tv2, INDEX(0))) &&
				(!cascade(base, &base->tv3, INDEX(1))) &&
					!cascade(base, &base->tv4, INDEX(2)))
			cascade(base, &base->tv5, INDEX(3));
639 640
		++base->timer_jiffies;
		list_replace_init(base->tv1.vec + index, &work_list);
641
		while (!list_empty(head)) {
L
Linus Torvalds 已提交
642 643 644
			void (*fn)(unsigned long);
			unsigned long data;

645
			timer = list_first_entry(head, struct timer_list,entry);
646 647
			fn = timer->function;
			data = timer->data;
L
Linus Torvalds 已提交
648

649 650
			timer_stats_account_timer(timer);

L
Linus Torvalds 已提交
651
			set_running_timer(base, timer);
652
			detach_timer(timer, 1);
653
			spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
654
			{
655
				int preempt_count = preempt_count();
L
Linus Torvalds 已提交
656 657
				fn(data);
				if (preempt_count != preempt_count()) {
P
Pavel Machek 已提交
658
					printk(KERN_ERR "huh, entered %p "
659 660 661 662
					       "with preempt_count %08x, exited"
					       " with %08x?\n",
					       fn, preempt_count,
					       preempt_count());
L
Linus Torvalds 已提交
663 664 665
					BUG();
				}
			}
666
			spin_lock_irq(&base->lock);
L
Linus Torvalds 已提交
667 668 669
		}
	}
	set_running_timer(base, NULL);
670
	spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
671 672
}

673
#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
L
Linus Torvalds 已提交
674 675 676 677 678
/*
 * Find out when the next timer event is due to happen. This
 * is used on S/390 to stop all activity when a cpus is idle.
 * This functions needs to be called disabled.
 */
679
static unsigned long __next_timer_interrupt(struct tvec_base *base)
L
Linus Torvalds 已提交
680
{
681
	unsigned long timer_jiffies = base->timer_jiffies;
682
	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
683
	int index, slot, array, found = 0;
L
Linus Torvalds 已提交
684
	struct timer_list *nte;
685
	struct tvec *varray[4];
L
Linus Torvalds 已提交
686 687

	/* Look for timer events in tv1. */
688
	index = slot = timer_jiffies & TVR_MASK;
L
Linus Torvalds 已提交
689
	do {
690
		list_for_each_entry(nte, base->tv1.vec + slot, entry) {
691 692
			if (tbase_get_deferrable(nte->base))
				continue;
693

694
			found = 1;
L
Linus Torvalds 已提交
695
			expires = nte->expires;
696 697 698 699
			/* Look at the cascade bucket(s)? */
			if (!index || slot < index)
				goto cascade;
			return expires;
L
Linus Torvalds 已提交
700
		}
701 702 703 704 705 706 707 708
		slot = (slot + 1) & TVR_MASK;
	} while (slot != index);

cascade:
	/* Calculate the next cascade event */
	if (index)
		timer_jiffies += TVR_SIZE - index;
	timer_jiffies >>= TVR_BITS;
L
Linus Torvalds 已提交
709 710 711 712 713 714

	/* Check tv2-tv5. */
	varray[0] = &base->tv2;
	varray[1] = &base->tv3;
	varray[2] = &base->tv4;
	varray[3] = &base->tv5;
715 716

	for (array = 0; array < 4; array++) {
717
		struct tvec *varp = varray[array];
718 719

		index = slot = timer_jiffies & TVN_MASK;
L
Linus Torvalds 已提交
720
		do {
721 722
			list_for_each_entry(nte, varp->vec + slot, entry) {
				found = 1;
L
Linus Torvalds 已提交
723 724
				if (time_before(nte->expires, expires))
					expires = nte->expires;
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
			}
			/*
			 * Do we still search for the first timer or are
			 * we looking up the cascade buckets ?
			 */
			if (found) {
				/* Look at the cascade bucket(s)? */
				if (!index || slot < index)
					break;
				return expires;
			}
			slot = (slot + 1) & TVN_MASK;
		} while (slot != index);

		if (index)
			timer_jiffies += TVN_SIZE - index;
		timer_jiffies >>= TVN_BITS;
L
Linus Torvalds 已提交
742
	}
743 744
	return expires;
}
745

746 747 748 749 750 751 752 753 754
/*
 * Check, if the next hrtimer event is before the next timer wheel
 * event:
 */
static unsigned long cmp_next_hrtimer_event(unsigned long now,
					    unsigned long expires)
{
	ktime_t hr_delta = hrtimer_get_next_event();
	struct timespec tsdelta;
755
	unsigned long delta;
756 757 758

	if (hr_delta.tv64 == KTIME_MAX)
		return expires;
759

760 761 762 763 764
	/*
	 * Expired timer available, let it expire in the next tick
	 */
	if (hr_delta.tv64 <= 0)
		return now + 1;
765

766
	tsdelta = ktime_to_timespec(hr_delta);
767
	delta = timespec_to_jiffies(&tsdelta);
768 769 770 771 772 773 774 775

	/*
	 * Limit the delta to the max value, which is checked in
	 * tick_nohz_stop_sched_tick():
	 */
	if (delta > NEXT_TIMER_MAX_DELTA)
		delta = NEXT_TIMER_MAX_DELTA;

776 777 778 779 780 781 782 783 784
	/*
	 * Take rounding errors in to account and make sure, that it
	 * expires in the next tick. Otherwise we go into an endless
	 * ping pong due to tick_nohz_stop_sched_tick() retriggering
	 * the timer softirq
	 */
	if (delta < 1)
		delta = 1;
	now += delta;
785 786
	if (time_before(now, expires))
		return now;
L
Linus Torvalds 已提交
787 788
	return expires;
}
789 790

/**
791
 * get_next_timer_interrupt - return the jiffy of the next pending timer
792
 * @now: current time (in jiffies)
793
 */
794
unsigned long get_next_timer_interrupt(unsigned long now)
795
{
796
	struct tvec_base *base = __get_cpu_var(tvec_bases);
797
	unsigned long expires;
798 799 800 801 802 803 804 805 806 807

	spin_lock(&base->lock);
	expires = __next_timer_interrupt(base);
	spin_unlock(&base->lock);

	if (time_before_eq(expires, now))
		return now;

	return cmp_next_hrtimer_event(now, expires);
}
808 809 810 811 812 813 814 815

#ifdef CONFIG_NO_IDLE_HZ
unsigned long next_timer_interrupt(void)
{
	return get_next_timer_interrupt(jiffies);
}
#endif

L
Linus Torvalds 已提交
816 817
#endif

818 819 820
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
void account_process_tick(struct task_struct *p, int user_tick)
{
M
Michael Neuling 已提交
821 822
	cputime_t one_jiffy = jiffies_to_cputime(1);

823
	if (user_tick) {
M
Michael Neuling 已提交
824 825
		account_user_time(p, one_jiffy);
		account_user_time_scaled(p, cputime_to_scaled(one_jiffy));
826
	} else {
M
Michael Neuling 已提交
827 828
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy);
		account_system_time_scaled(p, cputime_to_scaled(one_jiffy));
829 830 831 832
	}
}
#endif

L
Linus Torvalds 已提交
833
/*
D
Daniel Walker 已提交
834
 * Called from the timer interrupt handler to charge one tick to the current
L
Linus Torvalds 已提交
835 836 837 838 839 840 841 842
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;
	int cpu = smp_processor_id();

	/* Note: this timer irq context must be accounted for as well. */
843
	account_process_tick(p, user_tick);
L
Linus Torvalds 已提交
844 845 846 847
	run_local_timers();
	if (rcu_pending(cpu))
		rcu_check_callbacks(cpu, user_tick);
	scheduler_tick();
848
	run_posix_cpu_timers(p);
L
Linus Torvalds 已提交
849 850 851 852 853 854 855
}

/*
 * Nr of active tasks - counted in fixed-point numbers
 */
static unsigned long count_active_tasks(void)
{
856
	return nr_active() * FIXED_1;
L
Linus Torvalds 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
}

/*
 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
 * imply that avenrun[] is the standard name for this kind of thing.
 * Nothing else seems to be standardized: the fractional size etc
 * all seem to differ on different machines.
 *
 * Requires xtime_lock to access.
 */
unsigned long avenrun[3];

EXPORT_SYMBOL(avenrun);

/*
 * calc_load - given tick count, update the avenrun load estimates.
 * This is called while holding a write_lock on xtime_lock.
 */
static inline void calc_load(unsigned long ticks)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

E
Eric Dumazet 已提交
880 881 882 883 884 885 886 887 888
	count -= ticks;
	if (unlikely(count < 0)) {
		active_tasks = count_active_tasks();
		do {
			CALC_LOAD(avenrun[0], EXP_1, active_tasks);
			CALC_LOAD(avenrun[1], EXP_5, active_tasks);
			CALC_LOAD(avenrun[2], EXP_15, active_tasks);
			count += LOAD_FREQ;
		} while (count < 0);
L
Linus Torvalds 已提交
889 890 891 892 893 894 895 896
	}
}

/*
 * This function runs timers and the timer-tq in bottom half context.
 */
static void run_timer_softirq(struct softirq_action *h)
{
897
	struct tvec_base *base = __get_cpu_var(tvec_bases);
L
Linus Torvalds 已提交
898

899
	hrtimer_run_pending();
900

L
Linus Torvalds 已提交
901 902 903 904 905 906 907 908 909
	if (time_after_eq(jiffies, base->timer_jiffies))
		__run_timers(base);
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
910
	hrtimer_run_queues();
L
Linus Torvalds 已提交
911
	raise_softirq(TIMER_SOFTIRQ);
912
	softlockup_tick();
L
Linus Torvalds 已提交
913 914 915 916 917 918
}

/*
 * Called by the timer interrupt. xtime_lock must already be taken
 * by the timer IRQ!
 */
919
static inline void update_times(unsigned long ticks)
L
Linus Torvalds 已提交
920
{
921
	update_wall_time();
L
Linus Torvalds 已提交
922 923
	calc_load(ticks);
}
924

L
Linus Torvalds 已提交
925 926 927 928 929 930
/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */

931
void do_timer(unsigned long ticks)
L
Linus Torvalds 已提交
932
{
933 934
	jiffies_64 += ticks;
	update_times(ticks);
L
Linus Torvalds 已提交
935 936 937 938 939 940 941 942 943 944
}

#ifdef __ARCH_WANT_SYS_ALARM

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
asmlinkage unsigned long sys_alarm(unsigned int seconds)
{
945
	return alarm_setitimer(seconds);
L
Linus Torvalds 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
}

#endif

#ifndef __alpha__

/*
 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
 * should be moved into arch/i386 instead?
 */

/**
 * sys_getpid - return the thread group id of the current process
 *
 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 * the pid are identical unless CLONE_THREAD was specified on clone() in
 * which case the tgid is the same in all threads of the same group.
 *
 * This is SMP safe as current->tgid does not change.
 */
asmlinkage long sys_getpid(void)
{
968
	return task_tgid_vnr(current);
L
Linus Torvalds 已提交
969 970 971
}

/*
972 973 974 975
 * Accessing ->real_parent is not SMP-safe, it could
 * change from under us. However, we can use a stale
 * value of ->real_parent under rcu_read_lock(), see
 * release_task()->call_rcu(delayed_put_task_struct).
L
Linus Torvalds 已提交
976 977 978 979 980
 */
asmlinkage long sys_getppid(void)
{
	int pid;

981
	rcu_read_lock();
982
	pid = task_tgid_vnr(current->real_parent);
983
	rcu_read_unlock();
L
Linus Torvalds 已提交
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

	return pid;
}

asmlinkage long sys_getuid(void)
{
	/* Only we change this so SMP safe */
	return current->uid;
}

asmlinkage long sys_geteuid(void)
{
	/* Only we change this so SMP safe */
	return current->euid;
}

asmlinkage long sys_getgid(void)
{
	/* Only we change this so SMP safe */
	return current->gid;
}

asmlinkage long sys_getegid(void)
{
	/* Only we change this so SMP safe */
	return  current->egid;
}

#endif

static void process_timeout(unsigned long __data)
{
1016
	wake_up_process((struct task_struct *)__data);
L
Linus Torvalds 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 * pass before the routine returns. The routine will return 0
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task. In this case the remaining time
 * in jiffies will be returned, or 0 if the timer expired in time
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
 * In all cases the return value is guaranteed to be non-negative.
 */
1045
signed long __sched schedule_timeout(signed long timeout)
L
Linus Torvalds 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
1070
		if (timeout < 0) {
L
Linus Torvalds 已提交
1071
			printk(KERN_ERR "schedule_timeout: wrong timeout "
1072 1073
				"value %lx\n", timeout);
			dump_stack();
L
Linus Torvalds 已提交
1074 1075 1076 1077 1078 1079 1080
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1081 1082
	setup_timer(&timer, process_timeout, (unsigned long)current);
	__mod_timer(&timer, expire);
L
Linus Torvalds 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	schedule();
	del_singleshot_timer_sync(&timer);

	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1093 1094 1095 1096
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1097 1098
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1099 1100
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1101 1102 1103
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

M
Matthew Wilcox 已提交
1104 1105 1106 1107 1108 1109 1110
signed long __sched schedule_timeout_killable(signed long timeout)
{
	__set_current_state(TASK_KILLABLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);

1111 1112
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1113 1114
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1115 1116 1117
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

L
Linus Torvalds 已提交
1118 1119 1120
/* Thread ID - the internal kernel "pid" */
asmlinkage long sys_gettid(void)
{
1121
	return task_pid_vnr(current);
L
Linus Torvalds 已提交
1122 1123
}

1124
/**
1125
 * do_sysinfo - fill in sysinfo struct
1126
 * @info: pointer to buffer to fill
1127
 */
1128
int do_sysinfo(struct sysinfo *info)
L
Linus Torvalds 已提交
1129 1130 1131 1132 1133
{
	unsigned long mem_total, sav_total;
	unsigned int mem_unit, bitcount;
	unsigned long seq;

1134
	memset(info, 0, sizeof(struct sysinfo));
L
Linus Torvalds 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

	do {
		struct timespec tp;
		seq = read_seqbegin(&xtime_lock);

		/*
		 * This is annoying.  The below is the same thing
		 * posix_get_clock_monotonic() does, but it wants to
		 * take the lock which we want to cover the loads stuff
		 * too.
		 */

		getnstimeofday(&tp);
		tp.tv_sec += wall_to_monotonic.tv_sec;
		tp.tv_nsec += wall_to_monotonic.tv_nsec;
1150
		monotonic_to_bootbased(&tp);
L
Linus Torvalds 已提交
1151 1152 1153 1154
		if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
			tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
			tp.tv_sec++;
		}
1155
		info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
L
Linus Torvalds 已提交
1156

1157 1158 1159
		info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
		info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
		info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
L
Linus Torvalds 已提交
1160

1161
		info->procs = nr_threads;
L
Linus Torvalds 已提交
1162 1163
	} while (read_seqretry(&xtime_lock, seq));

1164 1165
	si_meminfo(info);
	si_swapinfo(info);
L
Linus Torvalds 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

	/*
	 * If the sum of all the available memory (i.e. ram + swap)
	 * is less than can be stored in a 32 bit unsigned long then
	 * we can be binary compatible with 2.2.x kernels.  If not,
	 * well, in that case 2.2.x was broken anyways...
	 *
	 *  -Erik Andersen <andersee@debian.org>
	 */

1176 1177
	mem_total = info->totalram + info->totalswap;
	if (mem_total < info->totalram || mem_total < info->totalswap)
L
Linus Torvalds 已提交
1178 1179
		goto out;
	bitcount = 0;
1180
	mem_unit = info->mem_unit;
L
Linus Torvalds 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	while (mem_unit > 1) {
		bitcount++;
		mem_unit >>= 1;
		sav_total = mem_total;
		mem_total <<= 1;
		if (mem_total < sav_total)
			goto out;
	}

	/*
	 * If mem_total did not overflow, multiply all memory values by
1192
	 * info->mem_unit and set it to 1.  This leaves things compatible
L
Linus Torvalds 已提交
1193 1194 1195 1196
	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
	 * kernels...
	 */

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	info->mem_unit = 1;
	info->totalram <<= bitcount;
	info->freeram <<= bitcount;
	info->sharedram <<= bitcount;
	info->bufferram <<= bitcount;
	info->totalswap <<= bitcount;
	info->freeswap <<= bitcount;
	info->totalhigh <<= bitcount;
	info->freehigh <<= bitcount;

out:
	return 0;
}

asmlinkage long sys_sysinfo(struct sysinfo __user *info)
{
	struct sysinfo val;

	do_sysinfo(&val);
L
Linus Torvalds 已提交
1216 1217 1218 1219 1220 1221 1222

	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
		return -EFAULT;

	return 0;
}

1223 1224 1225 1226 1227 1228 1229
/*
 * lockdep: we want to track each per-CPU base as a separate lock-class,
 * but timer-bases are kmalloc()-ed, so we need to attach separate
 * keys to them:
 */
static struct lock_class_key base_lock_keys[NR_CPUS];

A
Adrian Bunk 已提交
1230
static int __cpuinit init_timers_cpu(int cpu)
L
Linus Torvalds 已提交
1231 1232
{
	int j;
1233
	struct tvec_base *base;
A
Adrian Bunk 已提交
1234
	static char __cpuinitdata tvec_base_done[NR_CPUS];
1235

A
Andrew Morton 已提交
1236
	if (!tvec_base_done[cpu]) {
1237 1238 1239
		static char boot_done;

		if (boot_done) {
A
Andrew Morton 已提交
1240 1241 1242
			/*
			 * The APs use this path later in boot
			 */
1243 1244
			base = kmalloc_node(sizeof(*base),
						GFP_KERNEL | __GFP_ZERO,
1245 1246 1247
						cpu_to_node(cpu));
			if (!base)
				return -ENOMEM;
1248 1249 1250 1251 1252 1253 1254

			/* Make sure that tvec_base is 2 byte aligned */
			if (tbase_get_deferrable(base)) {
				WARN_ON(1);
				kfree(base);
				return -ENOMEM;
			}
A
Andrew Morton 已提交
1255
			per_cpu(tvec_bases, cpu) = base;
1256
		} else {
A
Andrew Morton 已提交
1257 1258 1259 1260 1261 1262
			/*
			 * This is for the boot CPU - we use compile-time
			 * static initialisation because per-cpu memory isn't
			 * ready yet and because the memory allocators are not
			 * initialised either.
			 */
1263
			boot_done = 1;
A
Andrew Morton 已提交
1264
			base = &boot_tvec_bases;
1265
		}
A
Andrew Morton 已提交
1266 1267 1268
		tvec_base_done[cpu] = 1;
	} else {
		base = per_cpu(tvec_bases, cpu);
1269
	}
A
Andrew Morton 已提交
1270

1271
	spin_lock_init(&base->lock);
1272 1273
	lockdep_set_class(&base->lock, base_lock_keys + cpu);

L
Linus Torvalds 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	for (j = 0; j < TVN_SIZE; j++) {
		INIT_LIST_HEAD(base->tv5.vec + j);
		INIT_LIST_HEAD(base->tv4.vec + j);
		INIT_LIST_HEAD(base->tv3.vec + j);
		INIT_LIST_HEAD(base->tv2.vec + j);
	}
	for (j = 0; j < TVR_SIZE; j++)
		INIT_LIST_HEAD(base->tv1.vec + j);

	base->timer_jiffies = jiffies;
1284
	return 0;
L
Linus Torvalds 已提交
1285 1286 1287
}

#ifdef CONFIG_HOTPLUG_CPU
1288
static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
L
Linus Torvalds 已提交
1289 1290 1291 1292
{
	struct timer_list *timer;

	while (!list_empty(head)) {
1293
		timer = list_first_entry(head, struct timer_list, entry);
1294
		detach_timer(timer, 0);
1295
		timer_set_base(timer, new_base);
L
Linus Torvalds 已提交
1296 1297 1298 1299
		internal_add_timer(new_base, timer);
	}
}

R
Randy Dunlap 已提交
1300
static void __cpuinit migrate_timers(int cpu)
L
Linus Torvalds 已提交
1301
{
1302 1303
	struct tvec_base *old_base;
	struct tvec_base *new_base;
L
Linus Torvalds 已提交
1304 1305 1306
	int i;

	BUG_ON(cpu_online(cpu));
1307 1308
	old_base = per_cpu(tvec_bases, cpu);
	new_base = get_cpu_var(tvec_bases);
L
Linus Torvalds 已提交
1309 1310

	local_irq_disable();
1311 1312
	double_spin_lock(&new_base->lock, &old_base->lock,
			 smp_processor_id() < cpu);
1313 1314

	BUG_ON(old_base->running_timer);
L
Linus Torvalds 已提交
1315 1316

	for (i = 0; i < TVR_SIZE; i++)
1317 1318 1319 1320 1321 1322 1323 1324
		migrate_timer_list(new_base, old_base->tv1.vec + i);
	for (i = 0; i < TVN_SIZE; i++) {
		migrate_timer_list(new_base, old_base->tv2.vec + i);
		migrate_timer_list(new_base, old_base->tv3.vec + i);
		migrate_timer_list(new_base, old_base->tv4.vec + i);
		migrate_timer_list(new_base, old_base->tv5.vec + i);
	}

1325 1326
	double_spin_unlock(&new_base->lock, &old_base->lock,
			   smp_processor_id() < cpu);
L
Linus Torvalds 已提交
1327 1328 1329 1330 1331
	local_irq_enable();
	put_cpu_var(tvec_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

1332
static int __cpuinit timer_cpu_notify(struct notifier_block *self,
L
Linus Torvalds 已提交
1333 1334 1335 1336 1337
				unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	switch(action) {
	case CPU_UP_PREPARE:
1338
	case CPU_UP_PREPARE_FROZEN:
1339 1340
		if (init_timers_cpu(cpu) < 0)
			return NOTIFY_BAD;
L
Linus Torvalds 已提交
1341 1342 1343
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1344
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353
		migrate_timers(cpu);
		break;
#endif
	default:
		break;
	}
	return NOTIFY_OK;
}

1354
static struct notifier_block __cpuinitdata timers_nb = {
L
Linus Torvalds 已提交
1355 1356 1357 1358 1359 1360
	.notifier_call	= timer_cpu_notify,
};


void __init init_timers(void)
{
1361
	int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
L
Linus Torvalds 已提交
1362
				(void *)(long)smp_processor_id());
1363

1364 1365
	init_timer_stats();

1366
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	register_cpu_notifier(&timers_nb);
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
}

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1379 1380
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1381 1382 1383 1384 1385
}

EXPORT_SYMBOL(msleep);

/**
1386
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1387 1388 1389 1390 1391 1392
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1393 1394
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1395 1396 1397 1398
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);