core.c 66.7 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
22
#include <linux/delay.h>
23 24 25 26
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>

27 28
#include "dummy.h"

29 30 31 32 33
#define REGULATOR_VERSION "0.5"

static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
34
static int has_full_constraints;
35

36
/*
37 38 39 40 41 42
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
43
	const char *dev_name;   /* The dev_name() for the consumer */
44
	const char *supply;
45
	struct regulator_dev *regulator;
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
static int _regulator_disable(struct regulator_dev *rdev);
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);

72 73 74 75 76 77 78 79 80 81
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
/* gets the regulator for a given consumer device */
static struct regulator *get_device_regulator(struct device *dev)
{
	struct regulator *regulator = NULL;
	struct regulator_dev *rdev;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
		list_for_each_entry(regulator, &rdev->consumer_list, list) {
			if (regulator->dev == dev) {
				mutex_unlock(&rdev->mutex);
				mutex_unlock(&regulator_list_mutex);
				return regulator;
			}
		}
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return NULL;
}

/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
112
		       rdev_get_name(rdev));
113 114 115 116
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		printk(KERN_ERR "%s: operation not allowed for %s\n",
117
		       __func__, rdev_get_name(rdev));
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
140
		       rdev_get_name(rdev));
141 142 143 144
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
		printk(KERN_ERR "%s: operation not allowed for %s\n",
145
		       __func__, rdev_get_name(rdev));
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

	if (*min_uA > *max_uA)
		return -EINVAL;

	return 0;
}

/* operating mode constraint check */
static int regulator_check_mode(struct regulator_dev *rdev, int mode)
{
163 164 165 166 167 168 169 170 171 172
	switch (mode) {
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
		return -EINVAL;
	}

173 174
	if (!rdev->constraints) {
		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
175
		       rdev_get_name(rdev));
176 177 178 179
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
		printk(KERN_ERR "%s: operation not allowed for %s\n",
180
		       __func__, rdev_get_name(rdev));
181 182 183 184
		return -EPERM;
	}
	if (!(rdev->constraints->valid_modes_mask & mode)) {
		printk(KERN_ERR "%s: invalid mode %x for %s\n",
185
		       __func__, mode, rdev_get_name(rdev));
186 187 188 189 190 191 192 193 194 195
		return -EINVAL;
	}
	return 0;
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
196
		       rdev_get_name(rdev));
197 198 199 200
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
		printk(KERN_ERR "%s: operation not allowed for %s\n",
201
		       __func__, rdev_get_name(rdev));
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
		return -EPERM;
	}
	return 0;
}

static ssize_t device_requested_uA_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator *regulator;

	regulator = get_device_regulator(dev);
	if (regulator == NULL)
		return 0;

	return sprintf(buf, "%d\n", regulator->uA_load);
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
222
	struct regulator_dev *rdev = dev_get_drvdata(dev);
223 224 225 226 227 228 229 230
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
231
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
232 233 234 235

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
236
	struct regulator_dev *rdev = dev_get_drvdata(dev);
237 238 239

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
240
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
241

242 243 244 245 246
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

247
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
248 249
}

D
David Brownell 已提交
250
static ssize_t regulator_print_opmode(char *buf, int mode)
251 252 253 254 255 256 257 258 259 260 261 262 263 264
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
265 266
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
267
{
268
	struct regulator_dev *rdev = dev_get_drvdata(dev);
269

D
David Brownell 已提交
270 271
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
272
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
273 274 275

static ssize_t regulator_print_state(char *buf, int state)
{
276 277 278 279 280 281 282 283
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
284 285 286 287
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
288 289 290 291 292
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
293

294
	return ret;
D
David Brownell 已提交
295
}
296
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
297

D
David Brownell 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

339 340 341
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
342
	struct regulator_dev *rdev = dev_get_drvdata(dev);
343 344 345 346 347 348

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
349
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
350 351 352 353

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
354
	struct regulator_dev *rdev = dev_get_drvdata(dev);
355 356 357 358 359 360

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
361
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
362 363 364 365

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
366
	struct regulator_dev *rdev = dev_get_drvdata(dev);
367 368 369 370 371 372

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
373
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
374 375 376 377

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
378
	struct regulator_dev *rdev = dev_get_drvdata(dev);
379 380 381 382 383 384

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
385
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
386 387 388 389

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
390
	struct regulator_dev *rdev = dev_get_drvdata(dev);
391 392 393 394 395
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
396
		uA += regulator->uA_load;
397 398 399
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
400
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
401 402 403 404

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
405
	struct regulator_dev *rdev = dev_get_drvdata(dev);
406 407 408 409 410 411
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
412
	struct regulator_dev *rdev = dev_get_drvdata(dev);
413 414 415 416 417 418 419 420 421 422 423 424 425

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
426
	struct regulator_dev *rdev = dev_get_drvdata(dev);
427 428 429

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
430 431
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
432 433 434 435

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
436
	struct regulator_dev *rdev = dev_get_drvdata(dev);
437 438 439

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
440 441
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
442 443 444 445

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
446
	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 448 449

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
450 451
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
452 453 454 455

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
456
	struct regulator_dev *rdev = dev_get_drvdata(dev);
457

D
David Brownell 已提交
458 459
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
460
}
461 462
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
463 464 465 466

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
467
	struct regulator_dev *rdev = dev_get_drvdata(dev);
468

D
David Brownell 已提交
469 470
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
471
}
472 473
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
474 475 476 477

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
478
	struct regulator_dev *rdev = dev_get_drvdata(dev);
479

D
David Brownell 已提交
480 481
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
482
}
483 484
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
485 486 487 488

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
489
	struct regulator_dev *rdev = dev_get_drvdata(dev);
490

D
David Brownell 已提交
491 492
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
493
}
494 495
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
496 497 498 499

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
500
	struct regulator_dev *rdev = dev_get_drvdata(dev);
501

D
David Brownell 已提交
502 503
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
504
}
505 506
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
507 508 509 510

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
511
	struct regulator_dev *rdev = dev_get_drvdata(dev);
512

D
David Brownell 已提交
513 514
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
515
}
516 517 518
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

519

520 521 522 523
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
524
static struct device_attribute regulator_dev_attrs[] = {
525
	__ATTR(name, 0444, regulator_name_show, NULL),
526 527 528 529 530 531 532
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
533
	struct regulator_dev *rdev = dev_get_drvdata(dev);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
553 554
	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
		return;
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570

	/* get output voltage */
	output_uV = rdev->desc->ops->get_voltage(rdev);
	if (output_uV <= 0)
		return;

	/* get input voltage */
	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
	else
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
571
		current_uA += sibling->uA_load;
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
	err = regulator_check_mode(rdev, mode);
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	bool can_set_state;

	can_set_state = rdev->desc->ops->set_suspend_enable &&
		rdev->desc->ops->set_suspend_disable;

	/* If we have no suspend mode configration don't set anything;
	 * only warn if the driver actually makes the suspend mode
	 * configurable.
	 */
	if (!rstate->enabled && !rstate->disabled) {
		if (can_set_state)
			printk(KERN_WARNING "%s: No configuration for %s\n",
			       __func__, rdev_get_name(rdev));
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
		printk(KERN_ERR "%s: invalid configuration for %s\n",
		       __func__, rdev_get_name(rdev));
		return -EINVAL;
	}
608

609
	if (!can_set_state) {
610 611
		printk(KERN_ERR "%s: no way to set suspend state\n",
			__func__);
612
		return -EINVAL;
613
	}
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666

	if (rstate->enabled)
		ret = rdev->desc->ops->set_suspend_enable(rdev);
	else
		ret = rdev->desc->ops->set_suspend_disable(rdev);
	if (ret < 0) {
		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
			printk(KERN_ERR "%s: failed to set voltage\n",
				__func__);
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
			printk(KERN_ERR "%s: failed to set mode\n", __func__);
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
667
	char buf[80] = "";
668 669
	int count = 0;
	int ret;
670

671
	if (constraints->min_uV && constraints->max_uV) {
672
		if (constraints->min_uV == constraints->max_uV)
673 674
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
675
		else
676 677 678 679 680 681 682 683 684 685 686 687 688
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

	if (constraints->min_uA && constraints->max_uA) {
689
		if (constraints->min_uA == constraints->max_uA)
690 691
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
692
		else
693 694 695 696 697 698 699 700 701 702
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d uA ", ret / 1000);
703
	}
704

705 706 707 708 709 710 711 712 713
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

714
	printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
715 716
}

717
static int machine_constraints_voltage(struct regulator_dev *rdev,
718
	struct regulation_constraints *constraints)
719
{
720
	struct regulator_ops *ops = rdev->desc->ops;
721
	const char *name = rdev_get_name(rdev);
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
		rdev->constraints->min_uV == rdev->constraints->max_uV &&
		ops->set_voltage) {
		ret = ops->set_voltage(rdev,
			rdev->constraints->min_uV, rdev->constraints->max_uV);
			if (ret < 0) {
				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
				       __func__,
				       rdev->constraints->min_uV, name);
				rdev->constraints = NULL;
				return ret;
			}
	}
738

739 740 741 742 743 744 745 746 747 748 749
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

750 751
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
752
		if (count == 1 && !cmin) {
753
			cmin = 1;
754
			cmax = INT_MAX;
755 756
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
757 758
		}

759 760
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
761
			return 0;
762

763
		/* else require explicit machine-level constraints */
764
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
765 766
			pr_err("%s: %s '%s' voltage constraints\n",
				       __func__, "invalid", name);
767
			return -EINVAL;
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
			pr_err("%s: %s '%s' voltage constraints\n",
				       __func__, "unsupportable", name);
789
			return -EINVAL;
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
			pr_debug("%s: override '%s' %s, %d -> %d\n",
				       __func__, name, "min_uV",
					constraints->min_uV, min_uV);
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
			pr_debug("%s: override '%s' %s, %d -> %d\n",
				       __func__, name, "max_uV",
					constraints->max_uV, max_uV);
			constraints->max_uV = max_uV;
		}
	}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
	int ret = 0;
	const char *name;
	struct regulator_ops *ops = rdev->desc->ops;

828 829
	rdev->constraints = constraints;

830 831 832
	name = rdev_get_name(rdev);

	ret = machine_constraints_voltage(rdev, constraints);
833 834 835
	if (ret != 0)
		goto out;

836
	/* do we need to setup our suspend state */
837
	if (constraints->initial_state) {
838
		ret = suspend_prepare(rdev, constraints->initial_state);
839 840 841 842 843 844 845
		if (ret < 0) {
			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
			       __func__, name);
			rdev->constraints = NULL;
			goto out;
		}
	}
846

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	if (constraints->initial_mode) {
		if (!ops->set_mode) {
			printk(KERN_ERR "%s: no set_mode operation for %s\n",
			       __func__, name);
			ret = -EINVAL;
			goto out;
		}

		ret = ops->set_mode(rdev, constraints->initial_mode);
		if (ret < 0) {
			printk(KERN_ERR
			       "%s: failed to set initial mode for %s: %d\n",
			       __func__, name, ret);
			goto out;
		}
	}

864 865 866 867
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
868 869 870 871 872 873 874 875 876
		ret = ops->enable(rdev);
		if (ret < 0) {
			printk(KERN_ERR "%s: failed to enable %s\n",
			       __func__, name);
			rdev->constraints = NULL;
			goto out;
		}
	}

877 878 879 880 881 882 883
	print_constraints(rdev);
out:
	return ret;
}

/**
 * set_supply - set regulator supply regulator
884 885
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
	struct regulator_dev *supply_rdev)
{
	int err;

	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
				"supply");
	if (err) {
		printk(KERN_ERR
		       "%s: could not add device link %s err %d\n",
		       __func__, supply_rdev->dev.kobj.name, err);
		       goto out;
	}
	rdev->supply = supply_rdev;
	list_add(&rdev->slist, &supply_rdev->supply_list);
out:
	return err;
}

/**
 * set_consumer_device_supply: Bind a regulator to a symbolic supply
912 913
 * @rdev:         regulator source
 * @consumer_dev: device the supply applies to
914
 * @consumer_dev_name: dev_name() string for device supply applies to
915
 * @supply:       symbolic name for supply
916 917 918 919 920
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
921 922
 *
 * Only one of consumer_dev and consumer_dev_name may be specified.
923 924
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
925 926
	struct device *consumer_dev, const char *consumer_dev_name,
	const char *supply)
927 928
{
	struct regulator_map *node;
929
	int has_dev;
930

931 932 933 934 935 936
	if (consumer_dev && consumer_dev_name)
		return -EINVAL;

	if (!consumer_dev_name && consumer_dev)
		consumer_dev_name = dev_name(consumer_dev);

937 938 939
	if (supply == NULL)
		return -EINVAL;

940 941 942 943 944
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

945
	list_for_each_entry(node, &regulator_map_list, list) {
946
		if (consumer_dev_name != node->dev_name)
947 948 949 950 951 952 953 954
			continue;
		if (strcmp(node->supply, supply) != 0)
			continue;

		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
				dev_name(&node->regulator->dev),
				node->regulator->desc->name,
				supply,
955
				dev_name(&rdev->dev), rdev_get_name(rdev));
956 957 958
		return -EBUSY;
	}

959
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
960 961 962 963 964 965
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

966 967 968 969 970 971
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
972 973
	}

974 975 976 977 978
	list_add(&node->list, &regulator_map_list);
	return 0;
}

static void unset_consumer_device_supply(struct regulator_dev *rdev,
979
	const char *consumer_dev_name, struct device *consumer_dev)
980 981 982
{
	struct regulator_map *node, *n;

983 984 985
	if (consumer_dev && !consumer_dev_name)
		consumer_dev_name = dev_name(consumer_dev);

986
	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
987 988 989 990 991 992 993 994 995 996 997
		if (rdev != node->regulator)
			continue;

		if (consumer_dev_name && node->dev_name &&
		    strcmp(consumer_dev_name, node->dev_name))
			continue;

		list_del(&node->list);
		kfree(node->dev_name);
		kfree(node);
		return;
998 999 1000
	}
}

1001 1002 1003 1004 1005 1006 1007
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1008
			kfree(node->dev_name);
1009 1010 1011 1012 1013 1014
			kfree(node);
			return;
		}
	}
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
#define REG_STR_SIZE	32

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
		/* create a 'requested_microamps_name' sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
			supply_name);
		if (size >= REG_STR_SIZE)
			goto overflow_err;

		regulator->dev = dev;
		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
		if (regulator->dev_attr.attr.name == NULL)
			goto attr_name_err;

		regulator->dev_attr.attr.owner = THIS_MODULE;
		regulator->dev_attr.attr.mode = 0444;
		regulator->dev_attr.show = device_requested_uA_show;
		err = device_create_file(dev, &regulator->dev_attr);
		if (err < 0) {
			printk(KERN_WARNING "%s: could not add regulator_dev"
				" load sysfs\n", __func__);
			goto attr_name_err;
		}

		/* also add a link to the device sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			goto attr_err;

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
			printk(KERN_WARNING
			       "%s: could not add device link %s err %d\n",
			       __func__, dev->kobj.name, err);
			device_remove_file(dev, &regulator->dev_attr);
			goto link_name_err;
		}
	}
	mutex_unlock(&rdev->mutex);
	return regulator;
link_name_err:
	kfree(regulator->supply_name);
attr_err:
	device_remove_file(regulator->dev, &regulator->dev_attr);
attr_name_err:
	kfree(regulator->dev_attr.attr.name);
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1090 1091 1092 1093 1094 1095 1096
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
		return 0;
	return rdev->desc->ops->enable_time(rdev);
}

1097 1098 1099
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1100 1101 1102 1103
{
	struct regulator_dev *rdev;
	struct regulator_map *map;
	struct regulator *regulator = ERR_PTR(-ENODEV);
1104
	const char *devname = NULL;
1105
	int ret;
1106 1107 1108 1109 1110 1111

	if (id == NULL) {
		printk(KERN_ERR "regulator: get() with no identifier\n");
		return regulator;
	}

1112 1113 1114
	if (dev)
		devname = dev_name(dev);

1115 1116 1117
	mutex_lock(&regulator_list_mutex);

	list_for_each_entry(map, &regulator_map_list, list) {
1118 1119 1120 1121 1122 1123
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, id) == 0) {
1124
			rdev = map->regulator;
1125
			goto found;
1126
		}
1127
	}
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
		pr_warning("%s supply %s not found, using dummy regulator\n",
			   devname, id);
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1144 1145 1146 1147
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1158 1159 1160
	if (!try_module_get(rdev->owner))
		goto out;

1161 1162 1163 1164 1165 1166
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
	}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1178
out:
1179
	mutex_unlock(&regulator_list_mutex);
1180

1181 1182
	return regulator;
}
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1201 1202
EXPORT_SYMBOL_GPL(regulator_get);

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

	/* remove any sysfs entries */
	if (regulator->dev) {
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
		kfree(regulator->supply_name);
		device_remove_file(regulator->dev, &regulator->dev_attr);
		kfree(regulator->dev_attr.attr.name);
	}
	list_del(&regulator->list);
	kfree(regulator);

1258 1259 1260
	rdev->open_count--;
	rdev->exclusive = 0;

1261 1262 1263 1264 1265
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

1277 1278 1279
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1280
	int ret, delay;
1281 1282 1283 1284 1285 1286

	/* do we need to enable the supply regulator first */
	if (rdev->supply) {
		ret = _regulator_enable(rdev->supply);
		if (ret < 0) {
			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1287
			       __func__, rdev_get_name(rdev), ret);
1288 1289 1290 1291 1292
			return ret;
		}
	}

	/* check voltage and requested load before enabling */
1293 1294 1295
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1296

1297 1298 1299 1300 1301 1302 1303
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1304
			if (!rdev->desc->ops->enable)
1305
				return -EINVAL;
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

			/* Query before enabling in case configuration
			 * dependant.  */
			ret = _regulator_get_enable_time(rdev);
			if (ret >= 0) {
				delay = ret;
			} else {
				printk(KERN_WARNING
					"%s: enable_time() failed for %s: %d\n",
					__func__, rdev_get_name(rdev),
					ret);
				delay = 0;
1318
			}
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

			/* Allow the regulator to ramp; it would be useful
			 * to extend this for bulk operations so that the
			 * regulators can ramp together.  */
			ret = rdev->desc->ops->enable(rdev);
			if (ret < 0)
				return ret;

			if (delay >= 1000)
				mdelay(delay / 1000);
			else if (delay)
				udelay(delay);

1332
		} else if (ret < 0) {
1333
			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1334
			       __func__, rdev_get_name(rdev), ret);
1335 1336
			return ret;
		}
1337
		/* Fallthrough on positive return values - already enabled */
1338 1339
	}

1340 1341 1342
	rdev->use_count++;

	return 0;
1343 1344 1345 1346 1347 1348
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1349 1350 1351 1352
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1353
 * NOTE: the output value can be set by other drivers, boot loader or may be
1354
 * hardwired in the regulator.
1355 1356 1357
 */
int regulator_enable(struct regulator *regulator)
{
1358 1359
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1360

1361
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1362
	ret = _regulator_enable(rdev);
1363
	mutex_unlock(&rdev->mutex);
1364 1365 1366 1367 1368 1369 1370 1371 1372
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

/* locks held by regulator_disable() */
static int _regulator_disable(struct regulator_dev *rdev)
{
	int ret = 0;

D
David Brownell 已提交
1373 1374
	if (WARN(rdev->use_count <= 0,
			"unbalanced disables for %s\n",
1375
			rdev_get_name(rdev)))
D
David Brownell 已提交
1376 1377
		return -EIO;

1378
	/* are we the last user and permitted to disable ? */
1379 1380
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1381 1382

		/* we are last user */
1383 1384
		if (_regulator_can_change_status(rdev) &&
		    rdev->desc->ops->disable) {
1385 1386 1387
			ret = rdev->desc->ops->disable(rdev);
			if (ret < 0) {
				printk(KERN_ERR "%s: failed to disable %s\n",
1388
				       __func__, rdev_get_name(rdev));
1389 1390
				return ret;
			}
1391 1392 1393

			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					     NULL);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
		}

		/* decrease our supplies ref count and disable if required */
		if (rdev->supply)
			_regulator_disable(rdev->supply);

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1417 1418 1419
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1420
 *
1421
 * NOTE: this will only disable the regulator output if no other consumer
1422 1423
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1424 1425 1426
 */
int regulator_disable(struct regulator *regulator)
{
1427 1428
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1429

1430
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1431
	ret = _regulator_disable(rdev);
1432
	mutex_unlock(&rdev->mutex);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
static int _regulator_force_disable(struct regulator_dev *rdev)
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
			printk(KERN_ERR "%s: failed to force disable %s\n",
1448
			       __func__, rdev_get_name(rdev));
1449 1450 1451
			return ret;
		}
		/* notify other consumers that power has been forced off */
1452 1453
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	}

	/* decrease our supplies ref count and disable if required */
	if (rdev->supply)
		_regulator_disable(rdev->supply);

	rdev->use_count = 0;
	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	regulator->uA_load = 0;
	ret = _regulator_force_disable(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1487
	/* If we don't know then assume that the regulator is always on */
1488
	if (!rdev->desc->ops->is_enabled)
1489
		return 1;
1490

1491
	return rdev->desc->ops->is_enabled(rdev);
1492 1493 1494 1495 1496 1497
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1498 1499 1500 1501 1502 1503 1504
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1505 1506 1507
 */
int regulator_is_enabled(struct regulator *regulator)
{
1508 1509 1510 1511 1512 1513 1514
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1515 1516 1517
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1541
 * zero if this selector code can't be used on this system, or a
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
	int i, voltages, ret;

	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
1612
 * Regulator system constraints must be set for this regulator before
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_voltage) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);

out:
1637
	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

static int _regulator_get_voltage(struct regulator_dev *rdev)
{
	/* sanity check */
	if (rdev->desc->ops->get_voltage)
		return rdev->desc->ops->get_voltage(rdev);
	else
		return -EINVAL;
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_mode(rdev, mode);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
	int ret, output_uV, input_uV, total_uA_load = 0;
	unsigned int mode;

	mutex_lock(&rdev->mutex);

	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
	if (ret < 0)
		goto out;
	ret = -EINVAL;

	/* sanity check */
	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

	/* get output voltage */
	output_uV = rdev->desc->ops->get_voltage(rdev);
	if (output_uV <= 0) {
		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1865
			__func__, rdev_get_name(rdev));
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
		goto out;
	}

	/* get input voltage */
	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
	else
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1876
			__func__, rdev_get_name(rdev));
1877 1878 1879 1880 1881
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
1882
		total_uA_load += consumer->uA_load;
1883 1884 1885 1886

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
1887 1888
	ret = regulator_check_mode(rdev, mode);
	if (ret < 0) {
1889
		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1890
			" %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1891 1892 1893 1894 1895
			total_uA_load, input_uV, output_uV);
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
1896
	if (ret < 0) {
1897
		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1898
			__func__, mode, rdev_get_name(rdev));
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
1911
 * @nb: notifier block
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
1926
 * @nb: notifier block
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

1938 1939 1940
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
1941 1942 1943 1944 1945 1946 1947 1948 1949
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	struct regulator_dev *_rdev;

	/* call rdev chain first */
	blocking_notifier_call_chain(&rdev->notifier, event, NULL);

	/* now notify regulator we supply */
1950
	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1951 1952 1953
		mutex_lock(&_rdev->mutex);
		_notifier_call_chain(_rdev, event, data);
		mutex_unlock(&_rdev->mutex);
1954
	}
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
1985 1986
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++) {
		ret = regulator_enable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2029
	printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2030
	for (--i; i >= 0; --i)
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
		regulator_disable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were disabled will be disabled again prior to
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++) {
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2064 2065
	printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
	       ret);
2066
	for (--i; i >= 0; --i)
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
		regulator_enable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2096
 * @rdev: regulator source
2097
 * @event: notifier block
2098
 * @data: callback-specific data.
2099 2100 2101
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2102
 * Note lock must be held by caller.
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
	case REGULATOR_STATUS_STANDBY:
		return REGULATOR_STATUS_STANDBY;
	default:
		return 0;
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
	if (ops->get_voltage) {
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
2168 2169 2170 2171 2172
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
	if (ops->set_voltage) {
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	/* suspend mode constraints need multiple supporting methods */
	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
		return status;

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

2253 2254
/**
 * regulator_register - register regulator
2255 2256
 * @regulator_desc: regulator to register
 * @dev: struct device for the regulator
2257
 * @init_data: platform provided init data, passed through by driver
2258
 * @driver_data: private regulator data
2259 2260 2261 2262 2263
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2264 2265
	struct device *dev, struct regulator_init_data *init_data,
	void *driver_data)
2266 2267 2268
{
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
2269
	int ret, i;
2270 2271 2272 2273 2274 2275 2276

	if (regulator_desc == NULL)
		return ERR_PTR(-EINVAL);

	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

2277 2278
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
2279 2280
		return ERR_PTR(-EINVAL);

2281 2282 2283
	if (!init_data)
		return ERR_PTR(-EINVAL);

2284 2285 2286 2287 2288 2289 2290
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
2291
	rdev->reg_data = driver_data;
2292 2293 2294 2295 2296 2297 2298 2299
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->supply_list);
	INIT_LIST_HEAD(&rdev->list);
	INIT_LIST_HEAD(&rdev->slist);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);

2300 2301 2302
	/* preform any regulator specific init */
	if (init_data->regulator_init) {
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
2303 2304
		if (ret < 0)
			goto clean;
2305 2306 2307
	}

	/* register with sysfs */
2308
	rdev->dev.class = &regulator_class;
2309
	rdev->dev.parent = dev;
2310 2311
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
2312
	ret = device_register(&rdev->dev);
D
David Brownell 已提交
2313 2314
	if (ret != 0)
		goto clean;
2315 2316 2317

	dev_set_drvdata(&rdev->dev, rdev);

2318 2319 2320 2321 2322
	/* set regulator constraints */
	ret = set_machine_constraints(rdev, &init_data->constraints);
	if (ret < 0)
		goto scrub;

2323 2324 2325 2326 2327
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

2328 2329 2330 2331
	/* set supply regulator if it exists */
	if (init_data->supply_regulator_dev) {
		ret = set_supply(rdev,
			dev_get_drvdata(init_data->supply_regulator_dev));
D
David Brownell 已提交
2332 2333
		if (ret < 0)
			goto scrub;
2334 2335 2336 2337 2338 2339
	}

	/* add consumers devices */
	for (i = 0; i < init_data->num_consumer_supplies; i++) {
		ret = set_consumer_device_supply(rdev,
			init_data->consumer_supplies[i].dev,
2340
			init_data->consumer_supplies[i].dev_name,
2341 2342 2343 2344
			init_data->consumer_supplies[i].supply);
		if (ret < 0) {
			for (--i; i >= 0; i--)
				unset_consumer_device_supply(rdev,
2345 2346
				    init_data->consumer_supplies[i].dev_name,
				    init_data->consumer_supplies[i].dev);
D
David Brownell 已提交
2347
			goto scrub;
2348
		}
2349
	}
2350 2351 2352

	list_add(&rdev->list, &regulator_list);
out:
2353 2354
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
2355 2356 2357

scrub:
	device_unregister(&rdev->dev);
2358 2359 2360 2361
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
2362 2363 2364 2365
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
2366 2367 2368 2369 2370
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
2371
 * @rdev: regulator to unregister
2372 2373 2374 2375 2376 2377 2378 2379 2380
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

	mutex_lock(&regulator_list_mutex);
2381
	WARN_ON(rdev->open_count);
2382
	unset_regulator_supplies(rdev);
2383 2384 2385 2386 2387 2388 2389 2390 2391
	list_del(&rdev->list);
	if (rdev->supply)
		sysfs_remove_link(&rdev->dev.kobj, "supply");
	device_unregister(&rdev->dev);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
2392
 * regulator_suspend_prepare - prepare regulators for system wide suspend
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
			printk(KERN_ERR "%s: failed to prepare %s\n",
2416
				__func__, rdev_get_name(rdev));
2417 2418 2419 2420 2421 2422 2423 2424 2425
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

2443 2444
/**
 * rdev_get_drvdata - get rdev regulator driver data
2445
 * @rdev: regulator
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
2482
 * @rdev: regulator
2483 2484 2485 2486 2487 2488 2489
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

2502 2503
static int __init regulator_init(void)
{
2504 2505
	int ret;

2506
	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2507 2508 2509 2510 2511 2512

	ret = class_register(&regulator_class);

	regulator_dummy_init();

	return ret;
2513 2514 2515 2516
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;
	const char *name;

	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

2536
		name = rdev_get_name(rdev);
2537

2538
		if (!ops->disable || (c && c->always_on))
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
			printk(KERN_INFO "%s: disabling %s\n",
			       __func__, name);
			ret = ops->disable(rdev);
			if (ret != 0) {
				printk(KERN_ERR
				       "%s: couldn't disable %s: %d\n",
				       __func__, name, ret);
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
			printk(KERN_WARNING
			       "%s: incomplete constraints, leaving %s on\n",
			       __func__, name);
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);