rcupdate.h 27.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * Read-Copy Update mechanism for mutual exclusion
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
18
 * Copyright IBM Corporation, 2001
L
Linus Torvalds 已提交
19 20
 *
 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21
 *
22
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
L
Linus Torvalds 已提交
23 24 25 26 27 28
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 * Papers:
 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
 *
 * For detailed explanation of Read-Copy Update mechanism see -
29
 *		http://lse.sourceforge.net/locking/rcupdate.html
L
Linus Torvalds 已提交
30 31 32 33 34 35
 *
 */

#ifndef __LINUX_RCUPDATE_H
#define __LINUX_RCUPDATE_H

36
#include <linux/types.h>
L
Linus Torvalds 已提交
37 38 39 40 41
#include <linux/cache.h>
#include <linux/spinlock.h>
#include <linux/threads.h>
#include <linux/cpumask.h>
#include <linux/seqlock.h>
42
#include <linux/lockdep.h>
P
Paul E. McKenney 已提交
43
#include <linux/completion.h>
44
#include <linux/debugobjects.h>
45
#include <linux/compiler.h>
L
Linus Torvalds 已提交
46

D
Dave Young 已提交
47 48 49 50
#ifdef CONFIG_RCU_TORTURE_TEST
extern int rcutorture_runnable; /* for sysctl */
#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */

51 52 53 54 55 56 57 58 59 60 61 62
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
extern void rcutorture_record_test_transition(void);
extern void rcutorture_record_progress(unsigned long vernum);
#else
static inline void rcutorture_record_test_transition(void)
{
}
static inline void rcutorture_record_progress(unsigned long vernum)
{
}
#endif

63 64
#define UINT_CMP_GE(a, b)	(UINT_MAX / 2 >= (a) - (b))
#define UINT_CMP_LT(a, b)	(UINT_MAX / 2 < (a) - (b))
65 66 67
#define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
#define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))

68
/* Exported common interfaces */
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

#ifdef CONFIG_PREEMPT_RCU

/**
 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all pre-existing RCU read-side
 * critical sections have completed.  However, the callback function
 * might well execute concurrently with RCU read-side critical sections
 * that started after call_rcu() was invoked.  RCU read-side critical
 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 * and may be nested.
 */
extern void call_rcu(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

#else /* #ifdef CONFIG_PREEMPT_RCU */

/* In classic RCU, call_rcu() is just call_rcu_sched(). */
#define	call_rcu	call_rcu_sched

#endif /* #else #ifdef CONFIG_PREEMPT_RCU */

/**
 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_bh() assumes
 * that the read-side critical sections end on completion of a softirq
 * handler. This means that read-side critical sections in process
 * context must not be interrupted by softirqs. This interface is to be
 * used when most of the read-side critical sections are in softirq context.
 * RCU read-side critical sections are delimited by :
 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
 *  OR
 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
 *  These may be nested.
 */
extern void call_rcu_bh(struct rcu_head *head,
			void (*func)(struct rcu_head *head));

/**
 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_sched() assumes
 * that the read-side critical sections end on enabling of preemption
 * or on voluntary preemption.
 * RCU read-side critical sections are delimited by :
 *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
 *  OR
 *  anything that disables preemption.
 *  These may be nested.
 */
132 133
extern void call_rcu_sched(struct rcu_head *head,
			   void (*func)(struct rcu_head *rcu));
134

135
extern void synchronize_sched(void);
136

137 138 139 140 141 142 143 144 145
static inline void __rcu_read_lock_bh(void)
{
	local_bh_disable();
}

static inline void __rcu_read_unlock_bh(void)
{
	local_bh_enable();
}
146

147 148
#ifdef CONFIG_PREEMPT_RCU

149 150 151 152
extern void __rcu_read_lock(void);
extern void __rcu_read_unlock(void);
void synchronize_rcu(void);

153 154 155 156 157 158 159 160
/*
 * Defined as a macro as it is a very low level header included from
 * areas that don't even know about current.  This gives the rcu_read_lock()
 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
 */
#define rcu_preempt_depth() (current->rcu_read_lock_nesting)

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#else /* #ifdef CONFIG_PREEMPT_RCU */

static inline void __rcu_read_lock(void)
{
	preempt_disable();
}

static inline void __rcu_read_unlock(void)
{
	preempt_enable();
}

static inline void synchronize_rcu(void)
{
	synchronize_sched();
}

static inline int rcu_preempt_depth(void)
{
	return 0;
}

#endif /* #else #ifdef CONFIG_PREEMPT_RCU */

/* Internal to kernel */
extern void rcu_sched_qs(int cpu);
extern void rcu_bh_qs(int cpu);
extern void rcu_check_callbacks(int cpu, int user);
struct notifier_block;

#ifdef CONFIG_NO_HZ

extern void rcu_enter_nohz(void);
extern void rcu_exit_nohz(void);

#else /* #ifdef CONFIG_NO_HZ */

static inline void rcu_enter_nohz(void)
{
}

static inline void rcu_exit_nohz(void)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ */
207

208 209 210 211 212 213 214 215 216
/*
 * Infrastructure to implement the synchronize_() primitives in
 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 */

typedef void call_rcu_func_t(struct rcu_head *head,
			     void (*func)(struct rcu_head *head));
void wait_rcu_gp(call_rcu_func_t crf);

217
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
218
#include <linux/rcutree.h>
P
Paul E. McKenney 已提交
219
#elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
220
#include <linux/rcutiny.h>
221 222
#else
#error "Unknown RCU implementation specified to kernel configuration"
223
#endif
224

225 226 227 228 229 230 231 232 233 234
/*
 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
 * initialization and destruction of rcu_head on the stack. rcu_head structures
 * allocated dynamically in the heap or defined statically don't need any
 * initialization.
 */
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
extern void init_rcu_head_on_stack(struct rcu_head *head);
extern void destroy_rcu_head_on_stack(struct rcu_head *head);
#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
235 236 237 238 239 240 241
static inline void init_rcu_head_on_stack(struct rcu_head *head)
{
}

static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
{
}
242
#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
243

244
#ifdef CONFIG_DEBUG_LOCK_ALLOC
245

246
extern struct lockdep_map rcu_lock_map;
247 248
# define rcu_read_acquire() \
		lock_acquire(&rcu_lock_map, 0, 0, 2, 1, NULL, _THIS_IP_)
249
# define rcu_read_release()	lock_release(&rcu_lock_map, 1, _THIS_IP_)
250 251 252 253 254 255 256 257 258 259 260 261

extern struct lockdep_map rcu_bh_lock_map;
# define rcu_read_acquire_bh() \
		lock_acquire(&rcu_bh_lock_map, 0, 0, 2, 1, NULL, _THIS_IP_)
# define rcu_read_release_bh()	lock_release(&rcu_bh_lock_map, 1, _THIS_IP_)

extern struct lockdep_map rcu_sched_lock_map;
# define rcu_read_acquire_sched() \
		lock_acquire(&rcu_sched_lock_map, 0, 0, 2, 1, NULL, _THIS_IP_)
# define rcu_read_release_sched() \
		lock_release(&rcu_sched_lock_map, 1, _THIS_IP_)

262
extern int debug_lockdep_rcu_enabled(void);
263

264
/**
265
 * rcu_read_lock_held() - might we be in RCU read-side critical section?
266
 *
267 268
 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
269
 * this assumes we are in an RCU read-side critical section unless it can
270 271
 * prove otherwise.  This is useful for debug checks in functions that
 * require that they be called within an RCU read-side critical section.
272
 *
273
 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
274
 * and while lockdep is disabled.
275 276 277
 */
static inline int rcu_read_lock_held(void)
{
278 279 280
	if (!debug_lockdep_rcu_enabled())
		return 1;
	return lock_is_held(&rcu_lock_map);
281 282
}

283 284 285
/*
 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
 * hell.
286
 */
287
extern int rcu_read_lock_bh_held(void);
288 289

/**
290
 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
291
 *
292 293 294 295 296
 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
 * RCU-sched read-side critical section.  In absence of
 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
 * critical section unless it can prove otherwise.  Note that disabling
 * of preemption (including disabling irqs) counts as an RCU-sched
297 298 299
 * read-side critical section.  This is useful for debug checks in functions
 * that required that they be called within an RCU-sched read-side
 * critical section.
300
 *
301 302
 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
 * and while lockdep is disabled.
303
 */
304
#ifdef CONFIG_PREEMPT_COUNT
305 306 307 308
static inline int rcu_read_lock_sched_held(void)
{
	int lockdep_opinion = 0;

309 310
	if (!debug_lockdep_rcu_enabled())
		return 1;
311 312
	if (debug_locks)
		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
313
	return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
314
}
315
#else /* #ifdef CONFIG_PREEMPT_COUNT */
316 317 318
static inline int rcu_read_lock_sched_held(void)
{
	return 1;
319
}
320
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */

# define rcu_read_acquire()		do { } while (0)
# define rcu_read_release()		do { } while (0)
# define rcu_read_acquire_bh()		do { } while (0)
# define rcu_read_release_bh()		do { } while (0)
# define rcu_read_acquire_sched()	do { } while (0)
# define rcu_read_release_sched()	do { } while (0)

static inline int rcu_read_lock_held(void)
{
	return 1;
}

static inline int rcu_read_lock_bh_held(void)
{
	return 1;
}

341
#ifdef CONFIG_PREEMPT_COUNT
342 343
static inline int rcu_read_lock_sched_held(void)
{
344
	return preempt_count() != 0 || irqs_disabled();
345
}
346
#else /* #ifdef CONFIG_PREEMPT_COUNT */
347 348 349
static inline int rcu_read_lock_sched_held(void)
{
	return 1;
350
}
351
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
352 353 354 355 356

#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */

#ifdef CONFIG_PROVE_RCU

357 358
extern int rcu_my_thread_group_empty(void);

359 360 361
/**
 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
 * @c: condition to check
362
 * @s: informative message
363
 */
364
#define rcu_lockdep_assert(c, s)					\
365 366 367 368
	do {								\
		static bool __warned;					\
		if (debug_lockdep_rcu_enabled() && !__warned && !(c)) {	\
			__warned = true;				\
369
			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
370 371 372
		}							\
	} while (0)

373 374 375 376 377 378 379 380 381 382
#define rcu_sleep_check()						\
	do {								\
		rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),	\
				   "Illegal context switch in RCU-bh"	\
				   " read-side critical section");	\
		rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),	\
				   "Illegal context switch in RCU-sched"\
				   " read-side critical section");	\
	} while (0)

383 384
#else /* #ifdef CONFIG_PROVE_RCU */

385 386
#define rcu_lockdep_assert(c, s) do { } while (0)
#define rcu_sleep_check() do { } while (0)
387 388 389 390 391 392 393 394 395 396 397

#endif /* #else #ifdef CONFIG_PROVE_RCU */

/*
 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 * and rcu_assign_pointer().  Some of these could be folded into their
 * callers, but they are left separate in order to ease introduction of
 * multiple flavors of pointers to match the multiple flavors of RCU
 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
 * the future.
 */
398 399 400 401 402 403 404 405

#ifdef __CHECKER__
#define rcu_dereference_sparse(p, space) \
	((void)(((typeof(*p) space *)p) == p))
#else /* #ifdef __CHECKER__ */
#define rcu_dereference_sparse(p, space)
#endif /* #else #ifdef __CHECKER__ */

406 407 408
#define __rcu_access_pointer(p, space) \
	({ \
		typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
409
		rcu_dereference_sparse(p, space); \
410 411 412 413 414
		((typeof(*p) __force __kernel *)(_________p1)); \
	})
#define __rcu_dereference_check(p, c, space) \
	({ \
		typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
415 416
		rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
				      " usage"); \
417
		rcu_dereference_sparse(p, space); \
418 419 420 421 422
		smp_read_barrier_depends(); \
		((typeof(*p) __force __kernel *)(_________p1)); \
	})
#define __rcu_dereference_protected(p, c, space) \
	({ \
423 424
		rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
				      " usage"); \
425
		rcu_dereference_sparse(p, space); \
426 427 428
		((typeof(*p) __force __kernel *)(p)); \
	})

429 430 431 432 433 434
#define __rcu_access_index(p, space) \
	({ \
		typeof(p) _________p1 = ACCESS_ONCE(p); \
		rcu_dereference_sparse(p, space); \
		(_________p1); \
	})
435 436 437
#define __rcu_dereference_index_check(p, c) \
	({ \
		typeof(p) _________p1 = ACCESS_ONCE(p); \
438 439 440
		rcu_lockdep_assert(c, \
				   "suspicious rcu_dereference_index_check()" \
				   " usage"); \
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
		smp_read_barrier_depends(); \
		(_________p1); \
	})
#define __rcu_assign_pointer(p, v, space) \
	({ \
		if (!__builtin_constant_p(v) || \
		    ((v) != NULL)) \
			smp_wmb(); \
		(p) = (typeof(*v) __force space *)(v); \
	})


/**
 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 * @p: The pointer to read
 *
 * Return the value of the specified RCU-protected pointer, but omit the
 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 * when the value of this pointer is accessed, but the pointer is not
 * dereferenced, for example, when testing an RCU-protected pointer against
 * NULL.  Although rcu_access_pointer() may also be used in cases where
 * update-side locks prevent the value of the pointer from changing, you
 * should instead use rcu_dereference_protected() for this use case.
 */
#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)

467
/**
468
 * rcu_dereference_check() - rcu_dereference with debug checking
469 470
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
471
 *
472
 * Do an rcu_dereference(), but check that the conditions under which the
473 474 475 476 477
 * dereference will take place are correct.  Typically the conditions
 * indicate the various locking conditions that should be held at that
 * point.  The check should return true if the conditions are satisfied.
 * An implicit check for being in an RCU read-side critical section
 * (rcu_read_lock()) is included.
478 479 480
 *
 * For example:
 *
481
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
482 483
 *
 * could be used to indicate to lockdep that foo->bar may only be dereferenced
484
 * if either rcu_read_lock() is held, or that the lock required to replace
485 486 487 488 489 490
 * the bar struct at foo->bar is held.
 *
 * Note that the list of conditions may also include indications of when a lock
 * need not be held, for example during initialisation or destruction of the
 * target struct:
 *
491
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
492
 *					      atomic_read(&foo->usage) == 0);
493 494 495 496 497 498
 *
 * Inserts memory barriers on architectures that require them
 * (currently only the Alpha), prevents the compiler from refetching
 * (and from merging fetches), and, more importantly, documents exactly
 * which pointers are protected by RCU and checks that the pointer is
 * annotated as __rcu.
499 500
 */
#define rcu_dereference_check(p, c) \
501 502 503 504 505 506 507 508 509 510 511
	__rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)

/**
 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
 *
 * This is the RCU-bh counterpart to rcu_dereference_check().
 */
#define rcu_dereference_bh_check(p, c) \
	__rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
512

513
/**
514 515 516 517 518 519 520 521 522 523 524 525
 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
 *
 * This is the RCU-sched counterpart to rcu_dereference_check().
 */
#define rcu_dereference_sched_check(p, c) \
	__rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
				__rcu)

#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/

526 527 528 529 530 531 532 533 534 535 536 537 538 539
/**
 * rcu_access_index() - fetch RCU index with no dereferencing
 * @p: The index to read
 *
 * Return the value of the specified RCU-protected index, but omit the
 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 * when the value of this index is accessed, but the index is not
 * dereferenced, for example, when testing an RCU-protected index against
 * -1.  Although rcu_access_index() may also be used in cases where
 * update-side locks prevent the value of the index from changing, you
 * should instead use rcu_dereference_index_protected() for this use case.
 */
#define rcu_access_index(p) __rcu_access_index((p), __rcu)

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
/**
 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
 *
 * Similar to rcu_dereference_check(), but omits the sparse checking.
 * This allows rcu_dereference_index_check() to be used on integers,
 * which can then be used as array indices.  Attempting to use
 * rcu_dereference_check() on an integer will give compiler warnings
 * because the sparse address-space mechanism relies on dereferencing
 * the RCU-protected pointer.  Dereferencing integers is not something
 * that even gcc will put up with.
 *
 * Note that this function does not implicitly check for RCU read-side
 * critical sections.  If this function gains lots of uses, it might
 * make sense to provide versions for each flavor of RCU, but it does
 * not make sense as of early 2010.
 */
#define rcu_dereference_index_check(p, c) \
	__rcu_dereference_index_check((p), (c))

/**
 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
565 566 567 568 569 570 571 572
 *
 * Return the value of the specified RCU-protected pointer, but omit
 * both the smp_read_barrier_depends() and the ACCESS_ONCE().  This
 * is useful in cases where update-side locks prevent the value of the
 * pointer from changing.  Please note that this primitive does -not-
 * prevent the compiler from repeating this reference or combining it
 * with other references, so it should not be used without protection
 * of appropriate locks.
573 574 575 576
 *
 * This function is only for update-side use.  Using this function
 * when protected only by rcu_read_lock() will result in infrequent
 * but very ugly failures.
577 578
 */
#define rcu_dereference_protected(p, c) \
579
	__rcu_dereference_protected((p), (c), __rcu)
580

581

582
/**
583 584
 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 * @p: The pointer to read, prior to dereferencing
585
 *
586
 * This is a simple wrapper around rcu_dereference_check().
587
 */
588
#define rcu_dereference(p) rcu_dereference_check(p, 0)
589

L
Linus Torvalds 已提交
590
/**
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 * @p: The pointer to read, prior to dereferencing
 *
 * Makes rcu_dereference_check() do the dirty work.
 */
#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)

/**
 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 * @p: The pointer to read, prior to dereferencing
 *
 * Makes rcu_dereference_check() do the dirty work.
 */
#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)

/**
 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
L
Linus Torvalds 已提交
608
 *
609
 * When synchronize_rcu() is invoked on one CPU while other CPUs
L
Linus Torvalds 已提交
610
 * are within RCU read-side critical sections, then the
611
 * synchronize_rcu() is guaranteed to block until after all the other
L
Linus Torvalds 已提交
612 613 614 615 616 617
 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 * on one CPU while other CPUs are within RCU read-side critical
 * sections, invocation of the corresponding RCU callback is deferred
 * until after the all the other CPUs exit their critical sections.
 *
 * Note, however, that RCU callbacks are permitted to run concurrently
618
 * with new RCU read-side critical sections.  One way that this can happen
L
Linus Torvalds 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632
 * is via the following sequence of events: (1) CPU 0 enters an RCU
 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 * callback is invoked.  This is legal, because the RCU read-side critical
 * section that was running concurrently with the call_rcu() (and which
 * therefore might be referencing something that the corresponding RCU
 * callback would free up) has completed before the corresponding
 * RCU callback is invoked.
 *
 * RCU read-side critical sections may be nested.  Any deferred actions
 * will be deferred until the outermost RCU read-side critical section
 * completes.
 *
633 634 635 636 637 638 639 640 641 642 643 644 645 646
 * You can avoid reading and understanding the next paragraph by
 * following this rule: don't put anything in an rcu_read_lock() RCU
 * read-side critical section that would block in a !PREEMPT kernel.
 * But if you want the full story, read on!
 *
 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
 * is illegal to block while in an RCU read-side critical section.  In
 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
 * be preempted, but explicit blocking is illegal.  Finally, in preemptible
 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds,
 * RCU read-side critical sections may be preempted and they may also
 * block, but only when acquiring spinlocks that are subject to priority
 * inheritance.
L
Linus Torvalds 已提交
647
 */
648 649 650 651 652 653
static inline void rcu_read_lock(void)
{
	__rcu_read_lock();
	__acquire(RCU);
	rcu_read_acquire();
}
L
Linus Torvalds 已提交
654 655 656 657 658 659 660 661 662 663

/*
 * So where is rcu_write_lock()?  It does not exist, as there is no
 * way for writers to lock out RCU readers.  This is a feature, not
 * a bug -- this property is what provides RCU's performance benefits.
 * Of course, writers must coordinate with each other.  The normal
 * spinlock primitives work well for this, but any other technique may be
 * used as well.  RCU does not care how the writers keep out of each
 * others' way, as long as they do so.
 */
664 665

/**
666
 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
667 668 669
 *
 * See rcu_read_lock() for more information.
 */
670 671 672 673 674 675
static inline void rcu_read_unlock(void)
{
	rcu_read_release();
	__release(RCU);
	__rcu_read_unlock();
}
L
Linus Torvalds 已提交
676 677

/**
678
 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
L
Linus Torvalds 已提交
679 680
 *
 * This is equivalent of rcu_read_lock(), but to be used when updates
681 682 683 684 685 686 687
 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
 * softirq handler to be a quiescent state, a process in RCU read-side
 * critical section must be protected by disabling softirqs. Read-side
 * critical sections in interrupt context can use just rcu_read_lock(),
 * though this should at least be commented to avoid confusing people
 * reading the code.
L
Linus Torvalds 已提交
688
 */
689 690 691 692
static inline void rcu_read_lock_bh(void)
{
	__rcu_read_lock_bh();
	__acquire(RCU_BH);
693
	rcu_read_acquire_bh();
694
}
L
Linus Torvalds 已提交
695 696 697 698 699 700

/*
 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 *
 * See rcu_read_lock_bh() for more information.
 */
701 702
static inline void rcu_read_unlock_bh(void)
{
703
	rcu_read_release_bh();
704 705 706
	__release(RCU_BH);
	__rcu_read_unlock_bh();
}
L
Linus Torvalds 已提交
707

708
/**
709
 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
710
 *
711 712 713 714
 * This is equivalent of rcu_read_lock(), but to be used when updates
 * are being done using call_rcu_sched() or synchronize_rcu_sched().
 * Read-side critical sections can also be introduced by anything that
 * disables preemption, including local_irq_disable() and friends.
715
 */
716 717 718
static inline void rcu_read_lock_sched(void)
{
	preempt_disable();
719
	__acquire(RCU_SCHED);
720
	rcu_read_acquire_sched();
721
}
722 723

/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
724
static inline notrace void rcu_read_lock_sched_notrace(void)
725 726
{
	preempt_disable_notrace();
727
	__acquire(RCU_SCHED);
728
}
729 730 731 732 733 734

/*
 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
 *
 * See rcu_read_lock_sched for more information.
 */
735 736
static inline void rcu_read_unlock_sched(void)
{
737
	rcu_read_release_sched();
738
	__release(RCU_SCHED);
739 740
	preempt_enable();
}
741 742

/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
743
static inline notrace void rcu_read_unlock_sched_notrace(void)
744
{
745
	__release(RCU_SCHED);
746 747
	preempt_enable_notrace();
}
748

L
Linus Torvalds 已提交
749
/**
750 751 752
 * rcu_assign_pointer() - assign to RCU-protected pointer
 * @p: pointer to assign to
 * @v: value to assign (publish)
753
 *
754 755 756
 * Assigns the specified value to the specified RCU-protected
 * pointer, ensuring that any concurrent RCU readers will see
 * any prior initialization.  Returns the value assigned.
L
Linus Torvalds 已提交
757 758 759 760 761 762 763 764
 *
 * Inserts memory barriers on architectures that require them
 * (pretty much all of them other than x86), and also prevents
 * the compiler from reordering the code that initializes the
 * structure after the pointer assignment.  More importantly, this
 * call documents which pointers will be dereferenced by RCU read-side
 * code.
 */
765
#define rcu_assign_pointer(p, v) \
766 767 768 769 770 771 772 773 774 775
	__rcu_assign_pointer((p), (v), __rcu)

/**
 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 *
 * Initialize an RCU-protected pointer in such a way to avoid RCU-lockdep
 * splats.
 */
#define RCU_INIT_POINTER(p, v) \
		p = (typeof(*v) __force __rcu *)(v)
L
Linus Torvalds 已提交
776

L
Lai Jiangshan 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
static __always_inline bool __is_kfree_rcu_offset(unsigned long offset)
{
	return offset < 4096;
}

static __always_inline
void __kfree_rcu(struct rcu_head *head, unsigned long offset)
{
	typedef void (*rcu_callback)(struct rcu_head *);

	BUILD_BUG_ON(!__builtin_constant_p(offset));

	/* See the kfree_rcu() header comment. */
	BUILD_BUG_ON(!__is_kfree_rcu_offset(offset));

	call_rcu(head, (rcu_callback)offset);
}

/**
 * kfree_rcu() - kfree an object after a grace period.
 * @ptr:	pointer to kfree
 * @rcu_head:	the name of the struct rcu_head within the type of @ptr.
 *
 * Many rcu callbacks functions just call kfree() on the base structure.
 * These functions are trivial, but their size adds up, and furthermore
 * when they are used in a kernel module, that module must invoke the
 * high-latency rcu_barrier() function at module-unload time.
 *
 * The kfree_rcu() function handles this issue.  Rather than encoding a
 * function address in the embedded rcu_head structure, kfree_rcu() instead
 * encodes the offset of the rcu_head structure within the base structure.
 * Because the functions are not allowed in the low-order 4096 bytes of
 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 * If the offset is larger than 4095 bytes, a compile-time error will
 * be generated in __kfree_rcu().  If this error is triggered, you can
 * either fall back to use of call_rcu() or rearrange the structure to
 * position the rcu_head structure into the first 4096 bytes.
 *
 * Note that the allowable offset might decrease in the future, for example,
 * to allow something like kmem_cache_free_rcu().
 */
#define kfree_rcu(ptr, rcu_head)					\
	__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))

L
Linus Torvalds 已提交
821
#endif /* __LINUX_RCUPDATE_H */