fw-card.c 14.8 KB
Newer Older
1 2
/*
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

S
Stefan Richter 已提交
19
#include <linux/bug.h>
20 21
#include <linux/completion.h>
#include <linux/crc-itu-t.h>
22
#include <linux/device.h>
23
#include <linux/errno.h>
24 25
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
26 27
#include <linux/jiffies.h>
#include <linux/kernel.h>
28
#include <linux/kref.h>
S
Stefan Richter 已提交
29
#include <linux/list.h>
30
#include <linux/module.h>
31
#include <linux/mutex.h>
S
Stefan Richter 已提交
32 33 34 35 36 37
#include <linux/spinlock.h>
#include <linux/timer.h>
#include <linux/workqueue.h>

#include <asm/atomic.h>
#include <asm/byteorder.h>
38

39
#include "core.h"
40

41
int fw_compute_block_crc(u32 *block)
42
{
43 44 45 46 47 48 49
	__be32 be32_block[256];
	int i, length;

	length = (*block >> 16) & 0xff;
	for (i = 0; i < length; i++)
		be32_block[i] = cpu_to_be32(block[i + 1]);
	*block |= crc_itu_t(0, (u8 *) be32_block, length * 4);
50

51
	return length;
52 53
}

54
static DEFINE_MUTEX(card_mutex);
55 56 57 58 59
static LIST_HEAD(card_list);

static LIST_HEAD(descriptor_list);
static int descriptor_count;

60 61 62 63 64 65 66 67 68 69 70 71 72 73
#define BIB_CRC(v)		((v) <<  0)
#define BIB_CRC_LENGTH(v)	((v) << 16)
#define BIB_INFO_LENGTH(v)	((v) << 24)

#define BIB_LINK_SPEED(v)	((v) <<  0)
#define BIB_GENERATION(v)	((v) <<  4)
#define BIB_MAX_ROM(v)		((v) <<  8)
#define BIB_MAX_RECEIVE(v)	((v) << 12)
#define BIB_CYC_CLK_ACC(v)	((v) << 16)
#define BIB_PMC			((1) << 27)
#define BIB_BMC			((1) << 28)
#define BIB_ISC			((1) << 29)
#define BIB_CMC			((1) << 30)
#define BIB_IMC			((1) << 31)
74

75
static u32 *generate_config_rom(struct fw_card *card, size_t *config_rom_length)
76 77 78 79 80
{
	struct fw_descriptor *desc;
	static u32 config_rom[256];
	int i, j, length;

81 82
	/*
	 * Initialize contents of config rom buffer.  On the OHCI
83 84 85
	 * controller, block reads to the config rom accesses the host
	 * memory, but quadlet read access the hardware bus info block
	 * registers.  That's just crack, but it means we should make
J
Jay Fenlason 已提交
86
	 * sure the contents of bus info block in host memory matches
87 88
	 * the version stored in the OHCI registers.
	 */
89

90
	memset(config_rom, 0, sizeof(config_rom));
91
	config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
92 93 94
	config_rom[1] = 0x31333934;

	config_rom[2] =
95 96 97 98 99
		BIB_LINK_SPEED(card->link_speed) |
		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
		BIB_MAX_ROM(2) |
		BIB_MAX_RECEIVE(card->max_receive) |
		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC;
100 101 102 103 104 105 106 107 108 109 110
	config_rom[3] = card->guid >> 32;
	config_rom[4] = card->guid;

	/* Generate root directory. */
	i = 5;
	config_rom[i++] = 0;
	config_rom[i++] = 0x0c0083c0; /* node capabilities */
	j = i + descriptor_count;

	/* Generate root directory entries for descriptors. */
	list_for_each_entry (desc, &descriptor_list, link) {
111 112
		if (desc->immediate > 0)
			config_rom[i++] = desc->immediate;
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
		config_rom[i] = desc->key | (j - i);
		i++;
		j += desc->length;
	}

	/* Update root directory length. */
	config_rom[5] = (i - 5 - 1) << 16;

	/* End of root directory, now copy in descriptors. */
	list_for_each_entry (desc, &descriptor_list, link) {
		memcpy(&config_rom[i], desc->data, desc->length * 4);
		i += desc->length;
	}

	/* Calculate CRCs for all blocks in the config rom.  This
	 * assumes that CRC length and info length are identical for
	 * the bus info block, which is always the case for this
	 * implementation. */
131 132
	for (i = 0; i < j; i += length + 1)
		length = fw_compute_block_crc(config_rom + i);
133 134 135 136 137 138

	*config_rom_length = j;

	return config_rom;
}

139
static void update_config_roms(void)
140 141 142 143 144 145 146 147 148 149 150
{
	struct fw_card *card;
	u32 *config_rom;
	size_t length;

	list_for_each_entry (card, &card_list, link) {
		config_rom = generate_config_rom(card, &length);
		card->driver->set_config_rom(card, config_rom, length);
	}
}

151
int fw_core_add_descriptor(struct fw_descriptor *desc)
152 153 154
{
	size_t i;

155 156
	/*
	 * Check descriptor is valid; the length of all blocks in the
157
	 * descriptor has to add up to exactly the length of the
158 159
	 * block.
	 */
160 161 162 163 164
	i = 0;
	while (i < desc->length)
		i += (desc->data[i] >> 16) + 1;

	if (i != desc->length)
165
		return -EINVAL;
166

167
	mutex_lock(&card_mutex);
168

169
	list_add_tail(&desc->link, &descriptor_list);
170
	descriptor_count++;
171 172
	if (desc->immediate > 0)
		descriptor_count++;
173 174
	update_config_roms();

175
	mutex_unlock(&card_mutex);
176 177 178 179

	return 0;
}

180
void fw_core_remove_descriptor(struct fw_descriptor *desc)
181
{
182
	mutex_lock(&card_mutex);
183 184 185

	list_del(&desc->link);
	descriptor_count--;
186 187
	if (desc->immediate > 0)
		descriptor_count--;
188 189
	update_config_roms();

190
	mutex_unlock(&card_mutex);
191 192
}

193
static int set_broadcast_channel(struct device *dev, void *data)
194
{
195
	fw_device_set_broadcast_channel(fw_device(dev), (long)data);
196 197 198
	return 0;
}

199
static void allocate_broadcast_channel(struct fw_card *card, int generation)
200
{
201 202 203 204 205
	int channel, bandwidth = 0;

	fw_iso_resource_manage(card, generation, 1ULL << 31,
			       &channel, &bandwidth, true);
	if (channel == 31) {
206 207 208
		card->broadcast_channel_allocated = true;
		device_for_each_child(card->device, (void *)(long)generation,
				      set_broadcast_channel);
209 210 211
	}
}

212 213 214 215
static const char gap_count_table[] = {
	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
};

216
void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
217 218 219 220 221 222 223 224 225
{
	int scheduled;

	fw_card_get(card);
	scheduled = schedule_delayed_work(&card->work, delay);
	if (!scheduled)
		fw_card_put(card);
}

226
static void fw_card_bm_work(struct work_struct *work)
227
{
228
	struct fw_card *card = container_of(work, struct fw_card, work.work);
229 230
	struct fw_device *root_device;
	struct fw_node *root_node;
231
	unsigned long flags;
232 233
	int root_id, new_root_id, irm_id, local_id;
	int gap_count, generation, grace, rcode;
234
	bool do_reset = false;
235 236
	bool root_device_is_running;
	bool root_device_is_cmc;
J
Jay Fenlason 已提交
237
	__be32 lock_data[2];
238 239

	spin_lock_irqsave(&card->lock, flags);
240

241
	if (card->local_node == NULL) {
242
		spin_unlock_irqrestore(&card->lock, flags);
243
		goto out_put_card;
244
	}
245 246

	generation = card->generation;
247 248
	root_node = card->root_node;
	fw_node_get(root_node);
249
	root_device = root_node->data;
250 251 252
	root_device_is_running = root_device &&
			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
	root_device_is_cmc = root_device && root_device->cmc;
253 254 255
	root_id  = root_node->node_id;
	irm_id   = card->irm_node->node_id;
	local_id = card->local_node->node_id;
256 257 258

	grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));

259
	if (is_next_generation(generation, card->bm_generation) ||
260
	    (card->bm_generation != generation && grace)) {
261 262
		/*
		 * This first step is to figure out who is IRM and
263 264 265 266 267 268 269
		 * then try to become bus manager.  If the IRM is not
		 * well defined (e.g. does not have an active link
		 * layer or does not responds to our lock request, we
		 * will have to do a little vigilante bus management.
		 * In that case, we do a goto into the gap count logic
		 * so that when we do the reset, we still optimize the
		 * gap count.  That could well save a reset in the
270 271
		 * next generation.
		 */
272

273 274
		if (!card->irm_node->link_on) {
			new_root_id = local_id;
275 276 277 278 279
			fw_notify("IRM has link off, making local node (%02x) root.\n",
				  new_root_id);
			goto pick_me;
		}

J
Jay Fenlason 已提交
280
		lock_data[0] = cpu_to_be32(0x3f);
281
		lock_data[1] = cpu_to_be32(local_id);
282 283 284

		spin_unlock_irqrestore(&card->lock, flags);

J
Jay Fenlason 已提交
285 286 287 288
		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
				irm_id, generation, SCODE_100,
				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
				lock_data, sizeof(lock_data));
289

J
Jay Fenlason 已提交
290 291
		if (rcode == RCODE_GENERATION)
			/* Another bus reset, BM work has been rescheduled. */
292
			goto out;
293

J
Jay Fenlason 已提交
294
		if (rcode == RCODE_COMPLETE &&
295
		    lock_data[0] != cpu_to_be32(0x3f)) {
296 297 298 299 300

			/* Somebody else is BM.  Only act as IRM. */
			if (local_id == irm_id)
				allocate_broadcast_channel(card, generation);

301
			goto out;
302
		}
303 304

		spin_lock_irqsave(&card->lock, flags);
J
Jay Fenlason 已提交
305 306

		if (rcode != RCODE_COMPLETE) {
307 308
			/*
			 * The lock request failed, maybe the IRM
309 310
			 * isn't really IRM capable after all. Let's
			 * do a bus reset and pick the local node as
311 312
			 * root, and thus, IRM.
			 */
313
			new_root_id = local_id;
314 315 316 317 318
			fw_notify("BM lock failed, making local node (%02x) root.\n",
				  new_root_id);
			goto pick_me;
		}
	} else if (card->bm_generation != generation) {
319
		/*
320 321
		 * We weren't BM in the last generation, and the last
		 * bus reset is less than 125ms ago.  Reschedule this job.
322
		 */
323
		spin_unlock_irqrestore(&card->lock, flags);
324
		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
325
		goto out;
326 327
	}

328 329
	/*
	 * We're bus manager for this generation, so next step is to
330
	 * make sure we have an active cycle master and do gap count
331 332
	 * optimization.
	 */
333
	card->bm_generation = generation;
334

335
	if (root_device == NULL) {
336 337 338 339
		/*
		 * Either link_on is false, or we failed to read the
		 * config rom.  In either case, pick another root.
		 */
340
		new_root_id = local_id;
341
	} else if (!root_device_is_running) {
342 343 344 345
		/*
		 * If we haven't probed this device yet, bail out now
		 * and let's try again once that's done.
		 */
346
		spin_unlock_irqrestore(&card->lock, flags);
347
		goto out;
348
	} else if (root_device_is_cmc) {
349 350
		/*
		 * FIXME: I suppose we should set the cmstr bit in the
351 352
		 * STATE_CLEAR register of this node, as described in
		 * 1394-1995, 8.4.2.6.  Also, send out a force root
353 354
		 * packet for this node.
		 */
355
		new_root_id = root_id;
356
	} else {
357 358
		/*
		 * Current root has an active link layer and we
359
		 * successfully read the config rom, but it's not
360 361
		 * cycle master capable.
		 */
362
		new_root_id = local_id;
363 364
	}

365
 pick_me:
366 367 368 369 370
	/*
	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
	 * the typically much larger 1394b beta repeater delays though.
	 */
	if (!card->beta_repeaters_present &&
371 372
	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
		gap_count = gap_count_table[root_node->max_hops];
373 374 375
	else
		gap_count = 63;

376
	/*
377 378
	 * Finally, figure out if we should do a reset or not.  If we have
	 * done less than 5 resets with the same physical topology and we
379 380
	 * have either a new root or a new gap count setting, let's do it.
	 */
381

382 383
	if (card->bm_retries++ < 5 &&
	    (card->gap_count != gap_count || new_root_id != root_id))
384
		do_reset = true;
385 386 387

	spin_unlock_irqrestore(&card->lock, flags);

388 389
	if (do_reset) {
		fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
390 391
			  card->index, new_root_id, gap_count);
		fw_send_phy_config(card, new_root_id, generation, gap_count);
392
		fw_core_initiate_bus_reset(card, 1);
393 394 395 396
		/* Will allocate broadcast channel after the reset. */
	} else {
		if (local_id == irm_id)
			allocate_broadcast_channel(card, generation);
397
	}
398

399 400
 out:
	fw_node_put(root_node);
401 402
 out_put_card:
	fw_card_put(card);
403 404
}

405
static void flush_timer_callback(unsigned long data)
406 407 408 409 410 411
{
	struct fw_card *card = (struct fw_card *)data;

	fw_flush_transactions(card);
}

412 413 414
void fw_card_initialize(struct fw_card *card,
			const struct fw_card_driver *driver,
			struct device *device)
415
{
416
	static atomic_t index = ATOMIC_INIT(-1);
417

418
	card->index = atomic_inc_return(&index);
419
	card->driver = driver;
420
	card->device = device;
421 422
	card->current_tlabel = 0;
	card->tlabel_mask = 0;
423
	card->color = 0;
424
	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
425

426 427
	kref_init(&card->kref);
	init_completion(&card->done);
428
	INIT_LIST_HEAD(&card->transaction_list);
429 430 431 432 433 434
	spin_lock_init(&card->lock);
	setup_timer(&card->flush_timer,
		    flush_timer_callback, (unsigned long)card);

	card->local_node = NULL;

435
	INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
436 437 438
}
EXPORT_SYMBOL(fw_card_initialize);

439 440
int fw_card_add(struct fw_card *card,
		u32 max_receive, u32 link_speed, u64 guid)
441 442 443
{
	u32 *config_rom;
	size_t length;
444
	int ret;
445 446 447 448 449

	card->max_receive = max_receive;
	card->link_speed = link_speed;
	card->guid = guid;

450
	mutex_lock(&card_mutex);
451
	config_rom = generate_config_rom(card, &length);
452
	list_add_tail(&card->link, &card_list);
453
	mutex_unlock(&card_mutex);
454

455 456
	ret = card->driver->enable(card, config_rom, length);
	if (ret < 0) {
457 458 459 460
		mutex_lock(&card_mutex);
		list_del(&card->link);
		mutex_unlock(&card_mutex);
	}
461 462

	return ret;
463 464 465 466
}
EXPORT_SYMBOL(fw_card_add);


467 468
/*
 * The next few functions implements a dummy driver that use once a
469 470 471
 * card driver shuts down an fw_card.  This allows the driver to
 * cleanly unload, as all IO to the card will be handled by the dummy
 * driver instead of calling into the (possibly) unloaded module.  The
472 473
 * dummy driver just fails all IO.
 */
474

475
static int dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
476 477 478 479 480
{
	BUG();
	return -1;
}

481 482
static int dummy_update_phy_reg(struct fw_card *card, int address,
				int clear_bits, int set_bits)
483 484 485 486
{
	return -ENODEV;
}

487 488
static int dummy_set_config_rom(struct fw_card *card,
				u32 *config_rom, size_t length)
489
{
490 491 492 493
	/*
	 * We take the card out of card_list before setting the dummy
	 * driver, so this should never get called.
	 */
494 495 496 497
	BUG();
	return -1;
}

498
static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
499
{
500
	packet->callback(packet, card, -ENODEV);
501 502
}

503
static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
504
{
505
	packet->callback(packet, card, -ENODEV);
506 507
}

508
static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
509 510 511 512
{
	return -ENOENT;
}

513 514
static int dummy_enable_phys_dma(struct fw_card *card,
				 int node_id, int generation)
515 516 517 518 519 520 521 522
{
	return -ENODEV;
}

static struct fw_card_driver dummy_driver = {
	.enable          = dummy_enable,
	.update_phy_reg  = dummy_update_phy_reg,
	.set_config_rom  = dummy_set_config_rom,
523
	.send_request    = dummy_send_request,
524
	.cancel_packet   = dummy_cancel_packet,
525
	.send_response   = dummy_send_response,
526
	.enable_phys_dma = dummy_enable_phys_dma,
527 528
};

529
void fw_card_release(struct kref *kref)
530 531 532 533 534 535
{
	struct fw_card *card = container_of(kref, struct fw_card, kref);

	complete(&card->done);
}

536
void fw_core_remove_card(struct fw_card *card)
537
{
538 539
	card->driver->update_phy_reg(card, 4,
				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
540 541
	fw_core_initiate_bus_reset(card, 1);

542
	mutex_lock(&card_mutex);
543
	list_del_init(&card->link);
544
	mutex_unlock(&card_mutex);
545 546 547 548 549

	/* Set up the dummy driver. */
	card->driver = &dummy_driver;

	fw_destroy_nodes(card);
550 551 552 553

	/* Wait for all users, especially device workqueue jobs, to finish. */
	fw_card_put(card);
	wait_for_completion(&card->done);
554

555
	WARN_ON(!list_empty(&card->transaction_list));
556
	del_timer_sync(&card->flush_timer);
557 558 559
}
EXPORT_SYMBOL(fw_core_remove_card);

560
int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
561
{
562 563 564 565
	int reg = short_reset ? 5 : 1;
	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;

	return card->driver->update_phy_reg(card, reg, 0, bit);
566 567
}
EXPORT_SYMBOL(fw_core_initiate_bus_reset);