cstate.c 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2005 Intel Corporation
 * 	Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
 * 	- Added _PDC for SMP C-states on Intel CPUs
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/acpi.h>
11
#include <linux/cpu.h>
12
#include <linux/sched.h>
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

#include <acpi/processor.h>
#include <asm/acpi.h>

/*
 * Initialize bm_flags based on the CPU cache properties
 * On SMP it depends on cache configuration
 * - When cache is not shared among all CPUs, we flush cache
 *   before entering C3.
 * - When cache is shared among all CPUs, we use bm_check
 *   mechanism as in UP case
 *
 * This routine is called only after all the CPUs are online
 */
void acpi_processor_power_init_bm_check(struct acpi_processor_flags *flags,
					unsigned int cpu)
{
30
	struct cpuinfo_x86 *c = &cpu_data(cpu);
31 32 33 34 35 36

	flags->bm_check = 0;
	if (num_online_cpus() == 1)
		flags->bm_check = 1;
	else if (c->x86_vendor == X86_VENDOR_INTEL) {
		/*
37 38 39
		 * Today all MP CPUs that support C3 share cache.
		 * And caches should not be flushed by software while
		 * entering C3 type state.
40 41 42
		 */
		flags->bm_check = 1;
	}
43 44 45 46 47 48 49 50

	/*
	 * On all recent Intel platforms, ARB_DISABLE is a nop.
	 * So, set bm_control to zero to indicate that ARB_DISABLE
	 * is not required while entering C3 type state on
	 * P4, Core and beyond CPUs
	 */
	if (c->x86_vendor == X86_VENDOR_INTEL &&
51
	    (c->x86 > 0xf || (c->x86 == 6 && c->x86_model >= 14)))
52
			flags->bm_control = 0;
53 54
}
EXPORT_SYMBOL(acpi_processor_power_init_bm_check);
55 56 57

/* The code below handles cstate entry with monitor-mwait pair on Intel*/

58
struct cstate_entry {
59 60 61 62 63
	struct {
		unsigned int eax;
		unsigned int ecx;
	} states[ACPI_PROCESSOR_MAX_POWER];
};
64
static struct cstate_entry *cpu_cstate_entry;	/* per CPU ptr */
65 66 67 68

static short mwait_supported[ACPI_PROCESSOR_MAX_POWER];

#define MWAIT_SUBSTATE_MASK	(0xf)
69
#define MWAIT_CSTATE_MASK	(0xf)
70 71 72 73 74 75 76 77 78 79
#define MWAIT_SUBSTATE_SIZE	(4)

#define CPUID_MWAIT_LEAF (5)
#define CPUID5_ECX_EXTENSIONS_SUPPORTED (0x1)
#define CPUID5_ECX_INTERRUPT_BREAK	(0x2)

#define MWAIT_ECX_INTERRUPT_BREAK	(0x1)

#define NATIVE_CSTATE_BEYOND_HALT	(2)

80
static long acpi_processor_ffh_cstate_probe_cpu(void *_cx)
81
{
82 83
	struct acpi_processor_cx *cx = _cx;
	long retval;
84 85 86 87 88 89 90 91
	unsigned int eax, ebx, ecx, edx;
	unsigned int edx_part;
	unsigned int cstate_type; /* C-state type and not ACPI C-state type */
	unsigned int num_cstate_subtype;

	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);

	/* Check whether this particular cx_type (in CST) is supported or not */
92 93
	cstate_type = ((cx->address >> MWAIT_SUBSTATE_SIZE) &
			MWAIT_CSTATE_MASK) + 1;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
	edx_part = edx >> (cstate_type * MWAIT_SUBSTATE_SIZE);
	num_cstate_subtype = edx_part & MWAIT_SUBSTATE_MASK;

	retval = 0;
	if (num_cstate_subtype < (cx->address & MWAIT_SUBSTATE_MASK)) {
		retval = -1;
		goto out;
	}

	/* mwait ecx extensions INTERRUPT_BREAK should be supported for C2/C3 */
	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK)) {
		retval = -1;
		goto out;
	}

	if (!mwait_supported[cstate_type]) {
		mwait_supported[cstate_type] = 1;
112 113 114
		printk(KERN_DEBUG
			"Monitor-Mwait will be used to enter C-%d "
			"state\n", cx->type);
115
	}
116 117 118
	snprintf(cx->desc,
			ACPI_CX_DESC_LEN, "ACPI FFH INTEL MWAIT 0x%x",
			cx->address);
119
out:
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
	return retval;
}

int acpi_processor_ffh_cstate_probe(unsigned int cpu,
		struct acpi_processor_cx *cx, struct acpi_power_register *reg)
{
	struct cstate_entry *percpu_entry;
	struct cpuinfo_x86 *c = &cpu_data(cpu);
	long retval;

	if (!cpu_cstate_entry || c->cpuid_level < CPUID_MWAIT_LEAF)
		return -1;

	if (reg->bit_offset != NATIVE_CSTATE_BEYOND_HALT)
		return -1;

	percpu_entry = per_cpu_ptr(cpu_cstate_entry, cpu);
	percpu_entry->states[cx->index].eax = 0;
	percpu_entry->states[cx->index].ecx = 0;

	/* Make sure we are running on right CPU */

	retval = work_on_cpu(cpu, acpi_processor_ffh_cstate_probe_cpu, cx);
	if (retval == 0) {
		/* Use the hint in CST */
		percpu_entry->states[cx->index].eax = cx->address;
		percpu_entry->states[cx->index].ecx = MWAIT_ECX_INTERRUPT_BREAK;
	}
148 149 150 151 152 153 154
	return retval;
}
EXPORT_SYMBOL_GPL(acpi_processor_ffh_cstate_probe);

void acpi_processor_ffh_cstate_enter(struct acpi_processor_cx *cx)
{
	unsigned int cpu = smp_processor_id();
155
	struct cstate_entry *percpu_entry;
156 157 158 159 160 161 162 163 164 165 166 167 168

	percpu_entry = per_cpu_ptr(cpu_cstate_entry, cpu);
	mwait_idle_with_hints(percpu_entry->states[cx->index].eax,
	                      percpu_entry->states[cx->index].ecx);
}
EXPORT_SYMBOL_GPL(acpi_processor_ffh_cstate_enter);

static int __init ffh_cstate_init(void)
{
	struct cpuinfo_x86 *c = &boot_cpu_data;
	if (c->x86_vendor != X86_VENDOR_INTEL)
		return -1;

169
	cpu_cstate_entry = alloc_percpu(struct cstate_entry);
170 171 172 173 174
	return 0;
}

static void __exit ffh_cstate_exit(void)
{
175 176
	free_percpu(cpu_cstate_entry);
	cpu_cstate_entry = NULL;
177 178 179 180
}

arch_initcall(ffh_cstate_init);
__exitcall(ffh_cstate_exit);