kprobes.c 26.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 *  Kernel Probes (KProbes)
 *  arch/ia64/kernel/kprobes.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2002, 2004
 * Copyright (C) Intel Corporation, 2005
 *
 * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
 *              <anil.s.keshavamurthy@intel.com> adapted from i386
 */

#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/moduleloader.h>
32
#include <linux/kdebug.h>
33 34

#include <asm/pgtable.h>
35
#include <asm/sections.h>
36
#include <asm/uaccess.h>
37

38 39
extern void jprobe_inst_return(void);

40 41
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

enum instruction_type {A, I, M, F, B, L, X, u};
static enum instruction_type bundle_encoding[32][3] = {
  { M, I, I },				/* 00 */
  { M, I, I },				/* 01 */
  { M, I, I },				/* 02 */
  { M, I, I },				/* 03 */
  { M, L, X },				/* 04 */
  { M, L, X },				/* 05 */
  { u, u, u },  			/* 06 */
  { u, u, u },  			/* 07 */
  { M, M, I },				/* 08 */
  { M, M, I },				/* 09 */
  { M, M, I },				/* 0A */
  { M, M, I },				/* 0B */
  { M, F, I },				/* 0C */
  { M, F, I },				/* 0D */
  { M, M, F },				/* 0E */
  { M, M, F },				/* 0F */
  { M, I, B },				/* 10 */
  { M, I, B },				/* 11 */
  { M, B, B },				/* 12 */
  { M, B, B },				/* 13 */
  { u, u, u },  			/* 14 */
  { u, u, u },  			/* 15 */
  { B, B, B },				/* 16 */
  { B, B, B },				/* 17 */
  { M, M, B },				/* 18 */
  { M, M, B },				/* 19 */
  { u, u, u },  			/* 1A */
  { u, u, u },  			/* 1B */
  { M, F, B },				/* 1C */
  { M, F, B },				/* 1D */
  { u, u, u },  			/* 1E */
  { u, u, u },  			/* 1F */
};

79 80 81 82 83
/*
 * In this function we check to see if the instruction
 * is IP relative instruction and update the kprobe
 * inst flag accordingly
 */
84 85 86 87
static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
					      uint major_opcode,
					      unsigned long kprobe_inst,
					      struct kprobe *p)
88
{
R
Rusty Lynch 已提交
89 90
	p->ainsn.inst_flag = 0;
	p->ainsn.target_br_reg = 0;
T
Tony Luck 已提交
91
	p->ainsn.slot = slot;
92

93
	/* Check for Break instruction
B
bibo,mao 已提交
94
	 * Bits 37:40 Major opcode to be zero
95 96 97 98 99 100 101 102 103
	 * Bits 27:32 X6 to be zero
	 * Bits 32:35 X3 to be zero
	 */
	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
		/* is a break instruction */
	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
		return;
	}

104 105 106 107
	if (bundle_encoding[template][slot] == B) {
		switch (major_opcode) {
		  case INDIRECT_CALL_OPCODE:
	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
B
bibo,mao 已提交
108 109
			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
			break;
110 111 112
		  case IP_RELATIVE_PREDICT_OPCODE:
		  case IP_RELATIVE_BRANCH_OPCODE:
			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
B
bibo,mao 已提交
113
			break;
114
		  case IP_RELATIVE_CALL_OPCODE:
B
bibo,mao 已提交
115 116 117 118
			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
			break;
119
		}
B
bibo,mao 已提交
120
	} else if (bundle_encoding[template][slot] == X) {
121 122 123 124 125 126 127 128 129
		switch (major_opcode) {
		  case LONG_CALL_OPCODE:
			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
		  break;
		}
	}
	return;
}
130

131 132 133 134 135 136
/*
 * In this function we check to see if the instruction
 * (qp) cmpx.crel.ctype p1,p2=r2,r3
 * on which we are inserting kprobe is cmp instruction
 * with ctype as unc.
 */
137 138 139
static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
					    uint major_opcode,
					    unsigned long kprobe_inst)
140 141 142 143 144 145 146 147 148 149 150 151 152 153
{
	cmp_inst_t cmp_inst;
	uint ctype_unc = 0;

	if (!((bundle_encoding[template][slot] == I) ||
		(bundle_encoding[template][slot] == M)))
		goto out;

	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
		(major_opcode == 0xE)))
		goto out;

	cmp_inst.l = kprobe_inst;
	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
S
Simon Arlott 已提交
154
		/* Integer compare - Register Register (A6 type)*/
155 156 157 158
		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
				&&(cmp_inst.f.c == 1))
			ctype_unc = 1;
	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
S
Simon Arlott 已提交
159
		/* Integer compare - Immediate Register (A8 type)*/
160 161 162 163 164 165 166
		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
			ctype_unc = 1;
	}
out:
	return ctype_unc;
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
/*
 * In this function we check to see if the instruction
 * on which we are inserting kprobe is supported.
 * Returns qp value if supported
 * Returns -EINVAL if unsupported
 */
static int __kprobes unsupported_inst(uint template, uint  slot,
				      uint major_opcode,
				      unsigned long kprobe_inst,
				      unsigned long addr)
{
	int qp;

	qp = kprobe_inst & 0x3f;
	if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
		if (slot == 1 && qp)  {
			printk(KERN_WARNING "Kprobes on cmp unc"
					"instruction on slot 1 at <0x%lx>"
					"is not supported\n", addr);
			return -EINVAL;

		}
		qp = 0;
	}
	else if (bundle_encoding[template][slot] == I) {
		if (major_opcode == 0) {
			/*
			 * Check for Integer speculation instruction
			 * - Bit 33-35 to be equal to 0x1
			 */
			if (((kprobe_inst >> 33) & 0x7) == 1) {
				printk(KERN_WARNING
					"Kprobes on speculation inst at <0x%lx> not supported\n",
						addr);
				return -EINVAL;
			}
			/*
			 * IP relative mov instruction
			 *  - Bit 27-35 to be equal to 0x30
			 */
			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
				printk(KERN_WARNING
					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
						addr);
				return -EINVAL;

			}
		}
		else if ((major_opcode == 5) &&	!(kprobe_inst & (0xFUl << 33)) &&
				(kprobe_inst & (0x1UL << 12))) {
			/* test bit instructions, tbit,tnat,tf
			 * bit 33-36 to be equal to 0
			 * bit 12 to be equal to 1
			 */
			if (slot == 1 && qp) {
				printk(KERN_WARNING "Kprobes on test bit"
						"instruction on slot at <0x%lx>"
						"is not supported\n", addr);
				return -EINVAL;
			}
			qp = 0;
		}
	}
	else if (bundle_encoding[template][slot] == B) {
		if (major_opcode == 7) {
			/* IP-Relative Predict major code is 7 */
			printk(KERN_WARNING "Kprobes on IP-Relative"
					"Predict is not supported\n");
			return -EINVAL;
		}
		else if (major_opcode == 2) {
			/* Indirect Predict, major code is 2
			 * bit 27-32 to be equal to 10 or 11
			 */
			int x6=(kprobe_inst >> 27) & 0x3F;
			if ((x6 == 0x10) || (x6 == 0x11)) {
				printk(KERN_WARNING "Kprobes on"
					"Indirect Predict is not supported\n");
				return -EINVAL;
			}
		}
	}
	/* kernel does not use float instruction, here for safety kprobe
	 * will judge whether it is fcmp/flass/float approximation instruction
	 */
	else if (unlikely(bundle_encoding[template][slot] == F)) {
		if ((major_opcode == 4 || major_opcode == 5) &&
				(kprobe_inst  & (0x1 << 12))) {
			/* fcmp/fclass unc instruction */
			if (slot == 1 && qp) {
				printk(KERN_WARNING "Kprobes on fcmp/fclass "
					"instruction on slot at <0x%lx> "
					"is not supported\n", addr);
				return -EINVAL;

			}
			qp = 0;
		}
		if ((major_opcode == 0 || major_opcode == 1) &&
			(kprobe_inst & (0x1UL << 33))) {
			/* float Approximation instruction */
			if (slot == 1 && qp) {
				printk(KERN_WARNING "Kprobes on float Approx "
					"instr at <0x%lx> is not supported\n",
						addr);
				return -EINVAL;
			}
			qp = 0;
		}
	}
	return qp;
}

280 281 282 283
/*
 * In this function we override the bundle with
 * the break instruction at the given slot.
 */
284 285 286
static void __kprobes prepare_break_inst(uint template, uint  slot,
					 uint major_opcode,
					 unsigned long kprobe_inst,
287 288
					 struct kprobe *p,
					 int qp)
289 290
{
	unsigned long break_inst = BREAK_INST;
291
	bundle_t *bundle = &p->opcode.bundle;
292 293 294

	/*
	 * Copy the original kprobe_inst qualifying predicate(qp)
295
	 * to the break instruction
296
	 */
297
	break_inst |= qp;
298 299 300 301 302 303 304 305 306 307 308 309

	switch (slot) {
	  case 0:
		bundle->quad0.slot0 = break_inst;
		break;
	  case 1:
		bundle->quad0.slot1_p0 = break_inst;
		bundle->quad1.slot1_p1 = break_inst >> (64-46);
		break;
	  case 2:
		bundle->quad1.slot2 = break_inst;
		break;
R
Rusty Lynch 已提交
310
	}
311

312 313 314 315 316 317 318 319
	/*
	 * Update the instruction flag, so that we can
	 * emulate the instruction properly after we
	 * single step on original instruction
	 */
	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
}

320
static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
321 322 323 324 325 326
	       	unsigned long *kprobe_inst, uint *major_opcode)
{
	unsigned long kprobe_inst_p0, kprobe_inst_p1;
	unsigned int template;

	template = bundle->quad0.template;
327 328

	switch (slot) {
329
	  case 0:
B
bibo,mao 已提交
330 331 332
		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
		*kprobe_inst = bundle->quad0.slot0;
		  break;
333
	  case 1:
B
bibo,mao 已提交
334 335 336 337
		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
		kprobe_inst_p0 = bundle->quad0.slot1_p0;
		kprobe_inst_p1 = bundle->quad1.slot1_p1;
		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
338
		break;
339
	  case 2:
B
bibo,mao 已提交
340 341
		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
		*kprobe_inst = bundle->quad1.slot2;
342 343
		break;
	}
344
}
345

346
/* Returns non-zero if the addr is in the Interrupt Vector Table */
347
static int __kprobes in_ivt_functions(unsigned long addr)
348 349 350 351 352
{
	return (addr >= (unsigned long)__start_ivt_text
		&& addr < (unsigned long)__end_ivt_text);
}

353 354
static int __kprobes valid_kprobe_addr(int template, int slot,
				       unsigned long addr)
355 356
{
	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
357 358
		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
				"at 0x%lx\n", addr);
359
		return -EINVAL;
R
Rusty Lynch 已提交
360
	}
361

B
bibo,mao 已提交
362 363
	if (in_ivt_functions(addr)) {
		printk(KERN_WARNING "Kprobes can't be inserted inside "
364
				"IVT functions at 0x%lx\n", addr);
B
bibo,mao 已提交
365 366
		return -EINVAL;
	}
367

368 369 370
	return 0;
}

371
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
372
{
373 374 375 376
	unsigned int i;
	i = atomic_add_return(1, &kcb->prev_kprobe_index);
	kcb->prev_kprobe[i-1].kp = kprobe_running();
	kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
377 378
}

379
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
380
{
381 382 383 384
	unsigned int i;
	i = atomic_sub_return(1, &kcb->prev_kprobe_index);
	__get_cpu_var(current_kprobe) = kcb->prev_kprobe[i].kp;
	kcb->kprobe_status = kcb->prev_kprobe[i].status;
385 386
}

387
static void __kprobes set_current_kprobe(struct kprobe *p,
388
			struct kprobe_ctlblk *kcb)
389
{
390
	__get_cpu_var(current_kprobe) = p;
391 392
}

393 394 395 396 397 398 399 400 401 402 403 404
static void kretprobe_trampoline(void)
{
}

/*
 * At this point the target function has been tricked into
 * returning into our trampoline.  Lookup the associated instance
 * and then:
 *    - call the handler function
 *    - cleanup by marking the instance as unused
 *    - long jump back to the original return address
 */
405
int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
406 407
{
	struct kretprobe_instance *ri = NULL;
408
	struct hlist_head *head, empty_rp;
409
	struct hlist_node *node, *tmp;
410
	unsigned long flags, orig_ret_address = 0;
411 412 413
	unsigned long trampoline_address =
		((struct fnptr *)kretprobe_trampoline)->ip;

414
	INIT_HLIST_HEAD(&empty_rp);
415
	spin_lock_irqsave(&kretprobe_lock, flags);
416
	head = kretprobe_inst_table_head(current);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

	/*
	 * It is possible to have multiple instances associated with a given
	 * task either because an multiple functions in the call path
	 * have a return probe installed on them, and/or more then one return
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
	 *     - instances are always inserted at the head of the list
	 *     - when multiple return probes are registered for the same
	 *       function, the first instance's ret_addr will point to the
	 *       real return address, and all the rest will point to
	 *       kretprobe_trampoline
	 */
	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
432
		if (ri->task != current)
433
			/* another task is sharing our hash bucket */
434
			continue;
435 436 437 438 439

		if (ri->rp && ri->rp->handler)
			ri->rp->handler(ri, regs);

		orig_ret_address = (unsigned long)ri->ret_addr;
440
		recycle_rp_inst(ri, &empty_rp);
441 442 443 444 445 446 447 448 449 450

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
	}

451 452
	kretprobe_assert(ri, orig_ret_address, trampoline_address);

453 454
	regs->cr_iip = orig_ret_address;

455
	reset_current_kprobe();
456
	spin_unlock_irqrestore(&kretprobe_lock, flags);
457 458
	preempt_enable_no_resched();

459 460 461 462
	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
		hlist_del(&ri->hlist);
		kfree(ri);
	}
463 464 465 466 467
	/*
	 * By returning a non-zero value, we are telling
	 * kprobe_handler() that we don't want the post_handler
	 * to run (and have re-enabled preemption)
	 */
468
	return 1;
469 470
}

471
/* Called with kretprobe_lock held */
472
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
473
				      struct pt_regs *regs)
474
{
475
	ri->ret_addr = (kprobe_opcode_t *)regs->b0;
476

477 478
	/* Replace the return addr with trampoline addr */
	regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
479 480
}

481
int __kprobes arch_prepare_kprobe(struct kprobe *p)
482 483 484 485 486
{
	unsigned long addr = (unsigned long) p->addr;
	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
	unsigned long kprobe_inst=0;
	unsigned int slot = addr & 0xf, template, major_opcode = 0;
487
	bundle_t *bundle;
488
	int qp;
489

490
	bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
B
bibo,mao 已提交
491
	template = bundle->quad0.template;
492 493 494 495 496

	if(valid_kprobe_addr(template, slot, addr))
		return -EINVAL;

	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
B
bibo,mao 已提交
497 498
	if (slot == 1 && bundle_encoding[template][1] == L)
		slot++;
499 500 501 502

	/* Get kprobe_inst and major_opcode from the bundle */
	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);

503 504 505
	qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
	if (qp < 0)
		return -EINVAL;
R
Rusty Lynch 已提交
506

507 508 509 510 511
	p->ainsn.insn = get_insn_slot();
	if (!p->ainsn.insn)
		return -ENOMEM;
	memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
	memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
R
Rusty Lynch 已提交
512

513
	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
514

515
	return 0;
516 517
}

518
void __kprobes arch_arm_kprobe(struct kprobe *p)
R
Rusty Lynch 已提交
519
{
T
Tony Luck 已提交
520 521 522 523 524 525
	unsigned long arm_addr;
	bundle_t *src, *dest;

	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
	src = &p->opcode.bundle;
R
Rusty Lynch 已提交
526

527 528
	flush_icache_range((unsigned long)p->ainsn.insn,
			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
T
Tony Luck 已提交
529 530 531 532 533 534 535 536 537 538 539
	switch (p->ainsn.slot) {
		case 0:
			dest->quad0.slot0 = src->quad0.slot0;
			break;
		case 1:
			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
			break;
		case 2:
			dest->quad1.slot2 = src->quad1.slot2;
			break;
	}
540
	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
541 542
}

543
void __kprobes arch_disarm_kprobe(struct kprobe *p)
544
{
T
Tony Luck 已提交
545 546
	unsigned long arm_addr;
	bundle_t *src, *dest;
547

T
Tony Luck 已提交
548 549
	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
550
	/* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
T
Tony Luck 已提交
551 552 553 554 555 556 557 558 559 560 561 562
	src = &p->ainsn.insn->bundle;
	switch (p->ainsn.slot) {
		case 0:
			dest->quad0.slot0 = src->quad0.slot0;
			break;
		case 1:
			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
			break;
		case 2:
			dest->quad1.slot2 = src->quad1.slot2;
			break;
	}
563
	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
564 565
}

566 567 568
void __kprobes arch_remove_kprobe(struct kprobe *p)
{
	mutex_lock(&kprobe_mutex);
569
	free_insn_slot(p->ainsn.insn, 0);
570 571
	mutex_unlock(&kprobe_mutex);
}
572 573 574 575
/*
 * We are resuming execution after a single step fault, so the pt_regs
 * structure reflects the register state after we executed the instruction
 * located in the kprobe (p->ainsn.insn.bundle).  We still need to adjust
576 577 578
 * the ip to point back to the original stack address. To set the IP address
 * to original stack address, handle the case where we need to fixup the
 * relative IP address and/or fixup branch register.
579
 */
580
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
581
{
B
bibo,mao 已提交
582 583 584 585
	unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
	unsigned long template;
	int slot = ((unsigned long)p->addr & 0xf);
586

587
	template = p->ainsn.insn->bundle.quad0.template;
588

B
bibo,mao 已提交
589 590
	if (slot == 1 && bundle_encoding[template][1] == L)
		slot = 2;
591 592 593 594 595

	if (p->ainsn.inst_flag) {

		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
			/* Fix relative IP address */
B
bibo,mao 已提交
596 597
			regs->cr_iip = (regs->cr_iip - bundle_addr) +
					resume_addr;
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		}

		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
		/*
		 * Fix target branch register, software convention is
		 * to use either b0 or b6 or b7, so just checking
		 * only those registers
		 */
			switch (p->ainsn.target_br_reg) {
			case 0:
				if ((regs->b0 == bundle_addr) ||
					(regs->b0 == bundle_addr + 0x10)) {
					regs->b0 = (regs->b0 - bundle_addr) +
						resume_addr;
				}
				break;
			case 6:
				if ((regs->b6 == bundle_addr) ||
					(regs->b6 == bundle_addr + 0x10)) {
					regs->b6 = (regs->b6 - bundle_addr) +
						resume_addr;
				}
				break;
			case 7:
				if ((regs->b7 == bundle_addr) ||
					(regs->b7 == bundle_addr + 0x10)) {
					regs->b7 = (regs->b7 - bundle_addr) +
						resume_addr;
				}
				break;
			} /* end switch */
		}
		goto turn_ss_off;
	}
632

633
	if (slot == 2) {
B
bibo,mao 已提交
634 635 636 637 638 639 640
		if (regs->cr_iip == bundle_addr + 0x10) {
			regs->cr_iip = resume_addr + 0x10;
		}
	} else {
		if (regs->cr_iip == bundle_addr) {
			regs->cr_iip = resume_addr;
		}
641
	}
642

643
turn_ss_off:
B
bibo,mao 已提交
644 645
	/* Turn off Single Step bit */
	ia64_psr(regs)->ss = 0;
646 647
}

648
static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
649
{
650
	unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
651 652
	unsigned long slot = (unsigned long)p->addr & 0xf;

653 654 655 656 657
	/* single step inline if break instruction */
	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
	else
		regs->cr_iip = bundle_addr & ~0xFULL;
658 659 660 661 662 663 664 665 666 667

	if (slot > 2)
		slot = 0;

	ia64_psr(regs)->ri = slot;

	/* turn on single stepping */
	ia64_psr(regs)->ss = 1;
}

668 669 670 671 672 673 674 675 676 677 678 679 680
static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
{
	unsigned int slot = ia64_psr(regs)->ri;
	unsigned int template, major_opcode;
	unsigned long kprobe_inst;
	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
	bundle_t bundle;

	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
	template = bundle.quad0.template;

	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
	if (slot == 1 && bundle_encoding[template][1] == L)
B
bibo,mao 已提交
681
		slot++;
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

	/* Get Kprobe probe instruction at given slot*/
	get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);

	/* For break instruction,
	 * Bits 37:40 Major opcode to be zero
	 * Bits 27:32 X6 to be zero
	 * Bits 32:35 X3 to be zero
	 */
	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
		/* Not a break instruction */
		return 0;
	}

	/* Is a break instruction */
	return 1;
}

700
static int __kprobes pre_kprobes_handler(struct die_args *args)
701 702 703
{
	struct kprobe *p;
	int ret = 0;
704
	struct pt_regs *regs = args->regs;
705
	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
706 707 708 709 710 711 712 713
	struct kprobe_ctlblk *kcb;

	/*
	 * We don't want to be preempted for the entire
	 * duration of kprobe processing
	 */
	preempt_disable();
	kcb = get_kprobe_ctlblk();
714 715 716 717 718

	/* Handle recursion cases */
	if (kprobe_running()) {
		p = get_kprobe(addr);
		if (p) {
719
			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
720
	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
B
bibo,mao 已提交
721
				ia64_psr(regs)->ss = 0;
722 723
				goto no_kprobe;
			}
724 725 726 727 728 729
			/* We have reentered the pre_kprobe_handler(), since
			 * another probe was hit while within the handler.
			 * We here save the original kprobes variables and
			 * just single step on the instruction of the new probe
			 * without calling any user handlers.
			 */
730 731
			save_previous_kprobe(kcb);
			set_current_kprobe(p, kcb);
732
			kprobes_inc_nmissed_count(p);
733
			prepare_ss(p, regs);
734
			kcb->kprobe_status = KPROBE_REENTER;
735
			return 1;
736
		} else if (args->err == __IA64_BREAK_JPROBE) {
737 738 739
			/*
			 * jprobe instrumented function just completed
			 */
740
			p = __get_cpu_var(current_kprobe);
741 742 743
			if (p->break_handler && p->break_handler(p, regs)) {
				goto ss_probe;
			}
744 745 746 747 748 749 750
		} else if (!is_ia64_break_inst(regs)) {
			/* The breakpoint instruction was removed by
			 * another cpu right after we hit, no further
			 * handling of this interrupt is appropriate
			 */
			ret = 1;
			goto no_kprobe;
751 752 753
		} else {
			/* Not our break */
			goto no_kprobe;
754 755 756 757 758
		}
	}

	p = get_kprobe(addr);
	if (!p) {
759 760 761 762 763 764 765 766 767 768 769 770 771
		if (!is_ia64_break_inst(regs)) {
			/*
			 * The breakpoint instruction was removed right
			 * after we hit it.  Another cpu has removed
			 * either a probepoint or a debugger breakpoint
			 * at this address.  In either case, no further
			 * handling of this interrupt is appropriate.
			 */
			ret = 1;

		}

		/* Not one of our break, let kernel handle it */
772 773 774
		goto no_kprobe;
	}

775 776
	set_current_kprobe(p, kcb);
	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
777 778 779 780

	if (p->pre_handler && p->pre_handler(p, regs))
		/*
		 * Our pre-handler is specifically requesting that we just
781 782
		 * do a return.  This is used for both the jprobe pre-handler
		 * and the kretprobe trampoline
783 784 785 786 787
		 */
		return 1;

ss_probe:
	prepare_ss(p, regs);
788
	kcb->kprobe_status = KPROBE_HIT_SS;
789 790 791
	return 1;

no_kprobe:
792
	preempt_enable_no_resched();
793 794 795
	return ret;
}

796
static int __kprobes post_kprobes_handler(struct pt_regs *regs)
797
{
798 799 800 801
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
802 803
		return 0;

804 805 806
	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
807
	}
808

809
	resume_execution(cur, regs);
810

811
	/*Restore back the original saved kprobes variables and continue. */
812 813
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
814 815
		goto out;
	}
816
	reset_current_kprobe();
817 818

out:
819 820 821 822
	preempt_enable_no_resched();
	return 1;
}

823
static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
824
{
825 826 827
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

828

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
	switch(kcb->kprobe_status) {
	case KPROBE_HIT_SS:
	case KPROBE_REENTER:
		/*
		 * We are here because the instruction being single
		 * stepped caused a page fault. We reset the current
		 * kprobe and the instruction pointer points back to
		 * the probe address and allow the page fault handler
		 * to continue as a normal page fault.
		 */
		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
		if (kcb->kprobe_status == KPROBE_REENTER)
			restore_previous_kprobe(kcb);
		else
			reset_current_kprobe();
845
		preempt_enable_no_resched();
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
		break;
	case KPROBE_HIT_ACTIVE:
	case KPROBE_HIT_SSDONE:
		/*
		 * We increment the nmissed count for accounting,
		 * we can also use npre/npostfault count for accouting
		 * these specific fault cases.
		 */
		kprobes_inc_nmissed_count(cur);

		/*
		 * We come here because instructions in the pre/post
		 * handler caused the page_fault, this could happen
		 * if handler tries to access user space by
		 * copy_from_user(), get_user() etc. Let the
		 * user-specified handler try to fix it first.
		 */
		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
			return 1;
865 866 867 868 869 870
		/*
		 * In case the user-specified fault handler returned
		 * zero, try to fix up.
		 */
		if (ia64_done_with_exception(regs))
			return 1;
871 872 873 874 875 876 877

		/*
		 * Let ia64_do_page_fault() fix it.
		 */
		break;
	default:
		break;
878 879 880 881 882
	}

	return 0;
}

883 884
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
				       unsigned long val, void *data)
885 886
{
	struct die_args *args = (struct die_args *)data;
887 888
	int ret = NOTIFY_DONE;

889 890 891
	if (args->regs && user_mode(args->regs))
		return ret;

892 893
	switch(val) {
	case DIE_BREAK:
894
		/* err is break number from ia64_bad_break() */
T
Tony Luck 已提交
895 896 897
		if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
			|| args->err == __IA64_BREAK_JPROBE
			|| args->err == 0)
898 899
			if (pre_kprobes_handler(args))
				ret = NOTIFY_STOP;
900
		break;
901 902 903 904 905
	case DIE_FAULT:
		/* err is vector number from ia64_fault() */
		if (args->err == 36)
			if (post_kprobes_handler(args->regs))
				ret = NOTIFY_STOP;
906 907
		break;
	case DIE_PAGE_FAULT:
908 909 910 911
		/* kprobe_running() needs smp_processor_id() */
		preempt_disable();
		if (kprobe_running() &&
			kprobes_fault_handler(args->regs, args->trapnr))
912
			ret = NOTIFY_STOP;
913
		preempt_enable();
914 915 916
	default:
		break;
	}
917
	return ret;
918 919
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
struct param_bsp_cfm {
	unsigned long ip;
	unsigned long *bsp;
	unsigned long cfm;
};

static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
{
	unsigned long ip;
	struct param_bsp_cfm *lp = arg;

	do {
		unw_get_ip(info, &ip);
		if (ip == 0)
			break;
		if (ip == lp->ip) {
			unw_get_bsp(info, (unsigned long*)&lp->bsp);
			unw_get_cfm(info, (unsigned long*)&lp->cfm);
			return;
		}
	} while (unw_unwind(info) >= 0);
M
Matthew Wilcox 已提交
941
	lp->bsp = NULL;
942 943 944 945
	lp->cfm = 0;
	return;
}

946
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
947
{
948 949
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
950
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
951 952 953 954 955 956
	struct param_bsp_cfm pa;
	int bytes;

	/*
	 * Callee owns the argument space and could overwrite it, eg
	 * tail call optimization. So to be absolutely safe
S
Simon Arlott 已提交
957
	 * we save the argument space before transferring the control
958 959 960 961 962 963 964 965 966 967 968 969
	 * to instrumented jprobe function which runs in
	 * the process context
	 */
	pa.ip = regs->cr_iip;
	unw_init_running(ia64_get_bsp_cfm, &pa);
	bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
				- (char *)pa.bsp;
	memcpy( kcb->jprobes_saved_stacked_regs,
		pa.bsp,
		bytes );
	kcb->bsp = pa.bsp;
	kcb->cfm = pa.cfm;
970

971
	/* save architectural state */
972
	kcb->jprobe_saved_regs = *regs;
973 974 975 976 977 978 979 980 981 982

	/* after rfi, execute the jprobe instrumented function */
	regs->cr_iip = addr & ~0xFULL;
	ia64_psr(regs)->ri = addr & 0xf;
	regs->r1 = ((struct fnptr *)(jp->entry))->gp;

	/*
	 * fix the return address to our jprobe_inst_return() function
	 * in the jprobes.S file
	 */
B
bibo,mao 已提交
983
	regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
984 985

	return 1;
986 987
}

988
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
989
{
990
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
991
	int bytes;
992

993
	/* restoring architectural state */
994
	*regs = kcb->jprobe_saved_regs;
995 996 997 998 999 1000 1001 1002 1003 1004

	/* restoring the original argument space */
	flush_register_stack();
	bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
				- (char *)kcb->bsp;
	memcpy( kcb->bsp,
		kcb->jprobes_saved_stacked_regs,
		bytes );
	invalidate_stacked_regs();

1005
	preempt_enable_no_resched();
1006
	return 1;
1007
}
1008 1009 1010 1011 1012

static struct kprobe trampoline_p = {
	.pre_handler = trampoline_probe_handler
};

1013
int __init arch_init_kprobes(void)
1014 1015 1016 1017 1018
{
	trampoline_p.addr =
		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
	return register_kprobe(&trampoline_p);
}
1019 1020 1021 1022 1023 1024 1025 1026 1027

int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
	if (p->addr ==
		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
		return 1;

	return 0;
}