amd64_edac.c 84.3 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/k8.h>
3 4 5 6 7 8 9 10 11 12 13 14 15

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16 17
static struct msr *msrs;

18 19
/* Lookup table for all possible MC control instances */
struct amd64_pvt;
20 21
static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
22

23
/*
24 25
 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
 * later.
26
 */
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
static int ddr2_dbam_revCG[] = {
			   [0]		= 32,
			   [1]		= 64,
			   [2]		= 128,
			   [3]		= 256,
			   [4]		= 512,
			   [5]		= 1024,
			   [6]		= 2048,
};

static int ddr2_dbam_revD[] = {
			   [0]		= 32,
			   [1]		= 64,
			   [2 ... 3]	= 128,
			   [4]		= 256,
			   [5]		= 512,
			   [6]		= 256,
			   [7]		= 512,
			   [8 ... 9]	= 1024,
			   [10]		= 2048,
};

static int ddr2_dbam[] = { [0]		= 128,
			   [1]		= 256,
			   [2 ... 4]	= 512,
			   [5 ... 6]	= 1024,
			   [7 ... 8]	= 2048,
			   [9 ... 10]	= 4096,
			   [11]		= 8192,
};

static int ddr3_dbam[] = { [0]		= -1,
			   [1]		= 256,
			   [2]		= 512,
			   [3 ... 4]	= -1,
			   [5 ... 6]	= 1024,
			   [7 ... 8]	= 2048,
			   [9 ... 10]	= 4096,
			   [11]	= 8192,
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
};

/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */

struct scrubrate scrubrates[] = {
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
				       u32 min_scrubrate)
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
	 */
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
		if (scrubrates[i].scrubval < min_scrubrate)
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;

		/*
		 * if no suitable bandwidth found, turn off DRAM scrubbing
		 * entirely by falling back to the last element in the
		 * scrubrates array.
		 */
	}

	scrubval = scrubrates[i].scrubval;
	if (scrubval)
		edac_printk(KERN_DEBUG, EDAC_MC,
			    "Setting scrub rate bandwidth: %u\n",
			    scrubrates[i].bandwidth);
	else
		edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");

	pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);

	return 0;
}

static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 min_scrubrate = 0x0;

	switch (boot_cpu_data.x86) {
	case 0xf:
		min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
		break;
	case 0x10:
		min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
		break;
	case 0x11:
		min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
		break;

	default:
		amd64_printk(KERN_ERR, "Unsupported family!\n");
		break;
	}
	return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
			min_scrubrate);
}

static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
191
	int status = -1, i;
192

193
	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

	scrubval = scrubval & 0x001F;

	edac_printk(KERN_DEBUG, EDAC_MC,
		    "pci-read, sdram scrub control value: %d \n", scrubval);

	for (i = 0; ARRAY_SIZE(scrubrates); i++) {
		if (scrubrates[i].scrubval == scrubval) {
			*bw = scrubrates[i].bandwidth;
			status = 0;
			break;
		}
	}

	return status;
}

211 212 213
/* Map from a CSROW entry to the mask entry that operates on it */
static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
{
214
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
215 216 217
		return csrow;
	else
		return csrow >> 1;
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
}

/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
{
	if (dct == 0)
		return pvt->dcsb0[csrow];
	else
		return pvt->dcsb1[csrow];
}

/*
 * Return the 'mask' address the i'th CS entry. This function is needed because
 * there number of DCSM registers on Rev E and prior vs Rev F and later is
 * different.
 */
static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
{
	if (dct == 0)
		return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
	else
		return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
}


/*
 * In *base and *limit, pass back the full 40-bit base and limit physical
 * addresses for the node given by node_id.  This information is obtained from
 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
 * base and limit addresses are of type SysAddr, as defined at the start of
 * section 3.4.4 (p. 70).  They are the lowest and highest physical addresses
 * in the address range they represent.
 */
static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
			       u64 *base, u64 *limit)
{
	*base = pvt->dram_base[node_id];
	*limit = pvt->dram_limit[node_id];
}

/*
 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
 * with node_id
 */
static int amd64_base_limit_match(struct amd64_pvt *pvt,
					u64 sys_addr, int node_id)
{
	u64 base, limit, addr;

	amd64_get_base_and_limit(pvt, node_id, &base, &limit);

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

	return (addr >= base) && (addr <= limit);
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
	int node_id;
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
	intlv_en = pvt->dram_IntlvEn[0];

	if (intlv_en == 0) {
307
		for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
308
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
309
				goto found;
310
		}
311
		goto err_no_match;
312 313
	}

314 315 316
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
317 318
		amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
			     "IntlvEn field of DRAM Base Register for node 0: "
319
			     "this probably indicates a BIOS bug.\n", intlv_en);
320 321 322 323 324 325
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
326
		if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
327 328 329 330 331 332 333 334 335
			break;	/* intlv_sel field matches */

		if (++node_id >= DRAM_REG_COUNT)
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
		amd64_printk(KERN_WARNING,
336 337 338 339
			     "%s(): sys_addr 0x%llx falls outside base/limit "
			     "address range for node %d with node interleaving "
			     "enabled.\n",
			     __func__, sys_addr, node_id);
340 341 342 343 344 345 346 347 348 349 350 351
		return NULL;
	}

found:
	return edac_mc_find(node_id);

err_no_match:
	debugf2("sys_addr 0x%lx doesn't match any node\n",
		(unsigned long)sys_addr);

	return NULL;
}
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

/*
 * Extract the DRAM CS base address from selected csrow register.
 */
static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
{
	return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
				pvt->dcs_shift;
}

/*
 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
 */
static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
{
	u64 dcsm_bits, other_bits;
	u64 mask;

	/* Extract bits from DRAM CS Mask. */
	dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;

	other_bits = pvt->dcsm_mask;
	other_bits = ~(other_bits << pvt->dcs_shift);

	/*
	 * The extracted bits from DCSM belong in the spaces represented by
	 * the cleared bits in other_bits.
	 */
	mask = (dcsm_bits << pvt->dcs_shift) | other_bits;

	return mask;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

	/*
	 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
	 * base/mask register pair, test the condition shown near the start of
	 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
	 */
402
	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

		/* This DRAM chip select is disabled on this node */
		if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
			continue;

		base = base_from_dct_base(pvt, csrow);
		mask = ~mask_from_dct_mask(pvt, csrow);

		if ((input_addr & mask) == (base & mask)) {
			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
				(unsigned long)input_addr, csrow,
				pvt->mc_node_id);

			return csrow;
		}
	}

	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		(unsigned long)input_addr, pvt->mc_node_id);

	return -1;
}

/*
 * Return the base value defined by the DRAM Base register for the node
 * represented by mci.  This function returns the full 40-bit value despite the
 * fact that the register only stores bits 39-24 of the value. See section
 * 3.4.4.1 (BKDG #26094, K8, revA-E)
 */
static inline u64 get_dram_base(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	return pvt->dram_base[pvt->mc_node_id];
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 base;

	/* only revE and later have the DRAM Hole Address Register */
462
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
		debugf1("  revision %d for node %d does not support DHAR\n",
			pvt->ext_model, pvt->mc_node_id);
		return 1;
	}

	/* only valid for Fam10h */
	if (boot_cpu_data.x86 == 0x10 &&
	    (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
		return 1;
	}

	if ((pvt->dhar & DHAR_VALID) == 0) {
		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
			pvt->mc_node_id);
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

	base = dhar_base(pvt->dhar);

	*hole_base = base;
	*hole_size = (0x1ull << 32) - base;

	if (boot_cpu_data.x86 > 0xf)
		*hole_offset = f10_dhar_offset(pvt->dhar);
	else
		*hole_offset = k8_dhar_offset(pvt->dhar);

	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		pvt->mc_node_id, (unsigned long)*hole_base,
		(unsigned long)*hole_offset, (unsigned long)*hole_size);

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
	int ret = 0;

	dram_base = get_dram_base(mci);

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((sys_addr >= (1ull << 32)) &&
		    (sys_addr < ((1ull << 32) + hole_size))) {
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

			debugf2("using DHAR to translate SysAddr 0x%lx to "
				"DramAddr 0x%lx\n",
				(unsigned long)sys_addr,
				(unsigned long)dram_addr);

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
	dram_addr = (sys_addr & 0xffffffffffull) - dram_base;

	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
		(unsigned long)dram_addr);
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
	input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
	    (dram_addr & 0xfff);

	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		intlv_shift, (unsigned long)dram_addr,
		(unsigned long)input_addr);

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		(unsigned long)sys_addr, (unsigned long)input_addr);

	return input_addr;
}


/*
 * @input_addr is an InputAddr associated with the node represented by mci.
 * Translate @input_addr to a DramAddr and return the result.
 */
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int node_id, intlv_shift;
	u64 bits, dram_addr;
	u32 intlv_sel;

	/*
	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
	 * this procedure. When translating from a DramAddr to an InputAddr, the
	 * bits used for node interleaving are discarded.  Here we recover these
	 * bits from the IntlvSel field of the DRAM Limit register (section
	 * 3.4.4.2) for the node that input_addr is associated with.
	 */
	pvt = mci->pvt_info;
	node_id = pvt->mc_node_id;
	BUG_ON((node_id < 0) || (node_id > 7));

	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);

	if (intlv_shift == 0) {
		debugf1("    InputAddr 0x%lx translates to DramAddr of "
			"same value\n",	(unsigned long)input_addr);

		return input_addr;
	}

	bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
	    (input_addr & 0xfff);

	intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
	dram_addr = bits + (intlv_sel << 12);

	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
		"(%d node interleave bits)\n", (unsigned long)input_addr,
		(unsigned long)dram_addr, intlv_shift);

	return dram_addr;
}

/*
 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
 * @dram_addr to a SysAddr.
 */
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
	int ret = 0;

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((dram_addr >= hole_base) &&
		    (dram_addr < (hole_base + hole_size))) {
			sys_addr = dram_addr + hole_offset;

			debugf1("using DHAR to translate DramAddr 0x%lx to "
				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
				(unsigned long)sys_addr);

			return sys_addr;
		}
	}

	amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
	sys_addr = dram_addr + base;

	/*
	 * The sys_addr we have computed up to this point is a 40-bit value
	 * because the k8 deals with 40-bit values.  However, the value we are
	 * supposed to return is a full 64-bit physical address.  The AMD
	 * x86-64 architecture specifies that the most significant implemented
	 * address bit through bit 63 of a physical address must be either all
	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
	 * Programming.
	 */
	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);

	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
		pvt->mc_node_id, (unsigned long)dram_addr,
		(unsigned long)sys_addr);

	return sys_addr;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Translate
 * @input_addr to a SysAddr.
 */
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
					 u64 input_addr)
{
	return dram_addr_to_sys_addr(mci,
				     input_addr_to_dram_addr(mci, input_addr));
}

/*
 * Find the minimum and maximum InputAddr values that map to the given @csrow.
 * Pass back these values in *input_addr_min and *input_addr_max.
 */
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
			      u64 *input_addr_min, u64 *input_addr_max)
{
	struct amd64_pvt *pvt;
	u64 base, mask;

	pvt = mci->pvt_info;
759
	BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795

	base = base_from_dct_base(pvt, csrow);
	mask = mask_from_dct_mask(pvt, csrow);

	*input_addr_min = base & ~mask;
	*input_addr_max = base | mask | pvt->dcs_mask_notused;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
						    u32 *page, u32 *offset)
{
	*page = (u32) (error_address >> PAGE_SHIFT);
	*offset = ((u32) error_address) & ~PAGE_MASK;
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
		amd64_mc_printk(mci, KERN_ERR,
			     "Failed to translate InputAddr to csrow for "
			     "address 0x%lx\n", (unsigned long)sys_addr);
	return csrow;
}
796

797
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
798 799 800 801 802 803 804 805 806

static void amd64_cpu_display_info(struct amd64_pvt *pvt)
{
	if (boot_cpu_data.x86 == 0x11)
		edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
	else if (boot_cpu_data.x86 == 0x10)
		edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
	else if (boot_cpu_data.x86 == 0xf)
		edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
807
			(pvt->ext_model >= K8_REV_F) ?
808 809 810 811 812 813 814 815 816 817 818 819 820
			"Rev F or later" : "Rev E or earlier");
	else
		/* we'll hardly ever ever get here */
		edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
}

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
{
	int bit;
821
	enum dev_type edac_cap = EDAC_FLAG_NONE;
822

823
	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
824 825 826
		? 19
		: 17;

827
	if (pvt->dclr0 & BIT(bit))
828 829 830 831 832 833
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}


834
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
835

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
{
	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);

	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		(dclr & BIT(16)) ?  "un" : "",
		(dclr & BIT(19)) ? "yes" : "no");

	debugf1("  PAR/ERR parity: %s\n",
		(dclr & BIT(8)) ?  "enabled" : "disabled");

	debugf1("  DCT 128bit mode width: %s\n",
		(dclr & BIT(11)) ?  "128b" : "64b");

	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		(dclr & BIT(12)) ?  "yes" : "no",
		(dclr & BIT(13)) ?  "yes" : "no",
		(dclr & BIT(14)) ?  "yes" : "no",
		(dclr & BIT(15)) ?  "yes" : "no");
}

857 858 859 860 861
/* Display and decode various NB registers for debug purposes. */
static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
{
	int ganged;

862 863 864 865
	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);

	debugf1("  NB two channel DRAM capable: %s\n",
		(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
866

867 868 869 870 871
	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
		(pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
		(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");

	amd64_dump_dramcfg_low(pvt->dclr0, 0);
872

873
	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
874

875 876 877 878 879 880
	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
			"offset: 0x%08x\n",
			pvt->dhar,
			dhar_base(pvt->dhar),
			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
						   : f10_dhar_offset(pvt->dhar));
881

882 883
	debugf1("  DramHoleValid: %s\n",
		(pvt->dhar & DHAR_VALID) ? "yes" : "no");
884

885
	/* everything below this point is Fam10h and above */
886 887
	if (boot_cpu_data.x86 == 0xf) {
		amd64_debug_display_dimm_sizes(0, pvt);
888
		return;
889
	}
890

891
	/* Only if NOT ganged does dclr1 have valid info */
892 893
	if (!dct_ganging_enabled(pvt))
		amd64_dump_dramcfg_low(pvt->dclr1, 1);
894 895 896 897 898 899 900

	/*
	 * Determine if ganged and then dump memory sizes for first controller,
	 * and if NOT ganged dump info for 2nd controller.
	 */
	ganged = dct_ganging_enabled(pvt);

901
	amd64_debug_display_dimm_sizes(0, pvt);
902 903

	if (!ganged)
904
		amd64_debug_display_dimm_sizes(1, pvt);
905 906 907 908 909
}

/* Read in both of DBAM registers */
static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
{
910
	amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
911

912 913
	if (boot_cpu_data.x86 >= 0x10)
		amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
914 915
}

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
/*
 * NOTE: CPU Revision Dependent code: Rev E and Rev F
 *
 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
 * set the shift factor for the DCSB and DCSM values.
 *
 * ->dcs_mask_notused, RevE:
 *
 * To find the max InputAddr for the csrow, start with the base address and set
 * all bits that are "don't care" bits in the test at the start of section
 * 3.5.4 (p. 84).
 *
 * The "don't care" bits are all set bits in the mask and all bits in the gaps
 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
 * gaps.
 *
 * ->dcs_mask_notused, RevF and later:
 *
 * To find the max InputAddr for the csrow, start with the base address and set
 * all bits that are "don't care" bits in the test at the start of NPT section
 * 4.5.4 (p. 87).
 *
 * The "don't care" bits are all set bits in the mask and all bits in the gaps
 * between bit ranges [36:27] and [21:13].
 *
 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
 * which are all bits in the above-mentioned gaps.
 */
static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
{
947

948
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
949 950 951 952 953 954 955
		pvt->dcsb_base		= REV_E_DCSB_BASE_BITS;
		pvt->dcsm_mask		= REV_E_DCSM_MASK_BITS;
		pvt->dcs_mask_notused	= REV_E_DCS_NOTUSED_BITS;
		pvt->dcs_shift		= REV_E_DCS_SHIFT;
		pvt->cs_count		= 8;
		pvt->num_dcsm		= 8;
	} else {
956 957 958 959 960
		pvt->dcsb_base		= REV_F_F1Xh_DCSB_BASE_BITS;
		pvt->dcsm_mask		= REV_F_F1Xh_DCSM_MASK_BITS;
		pvt->dcs_mask_notused	= REV_F_F1Xh_DCS_NOTUSED_BITS;
		pvt->dcs_shift		= REV_F_F1Xh_DCS_SHIFT;

961 962 963 964 965 966
		if (boot_cpu_data.x86 == 0x11) {
			pvt->cs_count = 4;
			pvt->num_dcsm = 2;
		} else {
			pvt->cs_count = 8;
			pvt->num_dcsm = 4;
967 968 969 970 971 972 973 974 975
		}
	}
}

/*
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
 */
static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
{
976
	int cs, reg;
977 978 979

	amd64_set_dct_base_and_mask(pvt);

980
	for (cs = 0; cs < pvt->cs_count; cs++) {
981
		reg = K8_DCSB0 + (cs * 4);
982
		if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
983 984 985 986 987 988
			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
				cs, pvt->dcsb0[cs], reg);

		/* If DCT are NOT ganged, then read in DCT1's base */
		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
			reg = F10_DCSB1 + (cs * 4);
989 990
			if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
						&pvt->dcsb1[cs]))
991 992 993 994 995 996 997 998
				debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
					cs, pvt->dcsb1[cs], reg);
		} else {
			pvt->dcsb1[cs] = 0;
		}
	}

	for (cs = 0; cs < pvt->num_dcsm; cs++) {
999
		reg = K8_DCSM0 + (cs * 4);
1000
		if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
1001 1002 1003 1004 1005 1006
			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
				cs, pvt->dcsm0[cs], reg);

		/* If DCT are NOT ganged, then read in DCT1's mask */
		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
			reg = F10_DCSM1 + (cs * 4);
1007 1008
			if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
						&pvt->dcsm1[cs]))
1009 1010
				debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
					cs, pvt->dcsm1[cs], reg);
1011
		} else {
1012
			pvt->dcsm1[cs] = 0;
1013
		}
1014 1015 1016 1017 1018 1019 1020
	}
}

static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
{
	enum mem_type type;

1021
	if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
1022 1023 1024 1025
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1026 1027 1028 1029
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

1030
	debugf1("  Memory type is: %s\n", edac_mem_types[type]);
1031 1032 1033 1034

	return type;
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
/*
 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
 * and the later RevF memory controllers (DDR vs DDR2)
 *
 * Return:
 *      number of memory channels in operation
 * Pass back:
 *      contents of the DCL0_LOW register
 */
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
	int flag, err = 0;

1048
	err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1049 1050 1051
	if (err)
		return err;

1052
	if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
		/* RevF (NPT) and later */
		flag = pvt->dclr0 & F10_WIDTH_128;
	} else {
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;
	}

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

/* extract the ERROR ADDRESS for the K8 CPUs */
static u64 k8_get_error_address(struct mem_ctl_info *mci,
1068
				struct err_regs *info)
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
{
	return (((u64) (info->nbeah & 0xff)) << 32) +
			(info->nbeal & ~0x03);
}

/*
 * Read the Base and Limit registers for K8 based Memory controllers; extract
 * fields from the 'raw' reg into separate data fields
 *
 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
 */
static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
{
	u32 low;
	u32 off = dram << 3;	/* 8 bytes between DRAM entries */

1085
	amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
1086 1087

	/* Extract parts into separate data entries */
1088
	pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1089 1090 1091
	pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
	pvt->dram_rw_en[dram] = (low & 0x3);

1092
	amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
1093 1094 1095 1096 1097

	/*
	 * Extract parts into separate data entries. Limit is the HIGHEST memory
	 * location of the region, so lower 24 bits need to be all ones
	 */
1098
	pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1099 1100 1101 1102 1103
	pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
	pvt->dram_DstNode[dram] = (low & 0x7);
}

static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1104
					struct err_regs *info,
1105
					u64 sys_addr)
1106 1107 1108 1109 1110 1111 1112
{
	struct mem_ctl_info *src_mci;
	unsigned short syndrome;
	int channel, csrow;
	u32 page, offset;

	/* Extract the syndrome parts and form a 16-bit syndrome */
1113 1114
	syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
	syndrome |= LOW_SYNDROME(info->nbsh);
1115 1116 1117

	/* CHIPKILL enabled */
	if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1118
		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
		if (channel < 0) {
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
			amd64_mc_printk(mci, KERN_WARNING,
				       "unknown syndrome 0x%x - possible error "
				       "reporting race\n", syndrome);
			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1140
		channel = ((sys_addr & BIT(3)) != 0);
1141 1142 1143 1144 1145 1146
	}

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1147
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1148
	if (!src_mci) {
1149 1150
		amd64_mc_printk(mci, KERN_ERR,
			     "failed to map error address 0x%lx to a node\n",
1151
			     (unsigned long)sys_addr);
1152 1153 1154 1155
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1156 1157
	/* Now map the sys_addr to a CSROW */
	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1158 1159 1160
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
	} else {
1161
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1162 1163 1164 1165 1166 1167

		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
				  channel, EDAC_MOD_STR);
	}
}

1168
static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1169
{
1170
	int *dbam_map;
1171

1172 1173 1174 1175 1176 1177
	if (pvt->ext_model >= K8_REV_F)
		dbam_map = ddr2_dbam;
	else if (pvt->ext_model >= K8_REV_D)
		dbam_map = ddr2_dbam_revD;
	else
		dbam_map = ddr2_dbam_revCG;
1178

1179
	return dbam_map[cs_mode];
1180 1181
}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
static int f10_early_channel_count(struct amd64_pvt *pvt)
{
1192
	int dbams[] = { DBAM0, DBAM1 };
1193
	int i, j, channels = 0;
1194 1195 1196 1197 1198 1199 1200 1201 1202
	u32 dbam;

	/* If we are in 128 bit mode, then we are using 2 channels */
	if (pvt->dclr0 & F10_WIDTH_128) {
		channels = 2;
		return channels;
	}

	/*
1203 1204 1205
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1206 1207 1208 1209
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1210
	debugf0("Data width is not 128 bits - need more decoding\n");
1211

1212 1213 1214 1215 1216
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1217
	for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1218
		if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
1219 1220
			goto err_reg;

1221 1222 1223 1224 1225 1226
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1227 1228
	}

1229 1230 1231
	if (channels > 2)
		channels = 2;

1232
	debugf0("MCT channel count: %d\n", channels);
1233 1234 1235 1236 1237 1238 1239 1240

	return channels;

err_reg:
	return -1;

}

1241
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1242
{
1243 1244 1245 1246 1247 1248 1249 1250
	int *dbam_map;

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
		dbam_map = ddr3_dbam;
	else
		dbam_map = ddr2_dbam;

	return dbam_map[cs_mode];
1251 1252 1253 1254 1255 1256 1257
}

/* Enable extended configuration access via 0xCF8 feature */
static void amd64_setup(struct amd64_pvt *pvt)
{
	u32 reg;

1258
	amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

	pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
	reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
}

/* Restore the extended configuration access via 0xCF8 feature */
static void amd64_teardown(struct amd64_pvt *pvt)
{
	u32 reg;

1270
	amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1271 1272 1273 1274 1275 1276 1277 1278

	reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
	if (pvt->flags.cf8_extcfg)
		reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
}

static u64 f10_get_error_address(struct mem_ctl_info *mci,
1279
			struct err_regs *info)
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
{
	return (((u64) (info->nbeah & 0xffff)) << 32) +
			(info->nbeal & ~0x01);
}

/*
 * Read the Base and Limit registers for F10 based Memory controllers. Extract
 * fields from the 'raw' reg into separate data fields.
 *
 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
 */
static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
{
	u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;

	low_offset = K8_DRAM_BASE_LOW + (dram << 3);
	high_offset = F10_DRAM_BASE_HIGH + (dram << 3);

	/* read the 'raw' DRAM BASE Address register */
1299
	amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
1300 1301

	/* Read from the ECS data register */
1302
	amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
1303 1304 1305 1306 1307 1308 1309 1310 1311

	/* Extract parts into separate data entries */
	pvt->dram_rw_en[dram] = (low_base & 0x3);

	if (pvt->dram_rw_en[dram] == 0)
		return;

	pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;

1312
	pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1313
			       (((u64)low_base  & 0xFFFF0000) << 8);
1314 1315 1316 1317 1318

	low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
	high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);

	/* read the 'raw' LIMIT registers */
1319
	amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
1320 1321

	/* Read from the ECS data register for the HIGH portion */
1322
	amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
1323 1324 1325 1326 1327 1328 1329 1330

	pvt->dram_DstNode[dram] = (low_limit & 0x7);
	pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;

	/*
	 * Extract address values and form a LIMIT address. Limit is the HIGHEST
	 * memory location of the region, so low 24 bits need to be all ones.
	 */
1331
	pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1332
				(((u64) low_limit & 0xFFFF0000) << 8) |
1333
				0x00FFFFFF;
1334
}
1335 1336 1337 1338

static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
{

1339 1340
	if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
				&pvt->dram_ctl_select_low)) {
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
			"High range addresses at: 0x%x\n",
			pvt->dram_ctl_select_low,
			dct_sel_baseaddr(pvt));

		debugf0("  DCT mode: %s, All DCTs on: %s\n",
			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
			(dct_dram_enabled(pvt) ? "yes"   : "no"));

		if (!dct_ganging_enabled(pvt))
			debugf0("  Address range split per DCT: %s\n",
				(dct_high_range_enabled(pvt) ? "yes" : "no"));

		debugf0("  DCT data interleave for ECC: %s, "
			"DRAM cleared since last warm reset: %s\n",
			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			(dct_memory_cleared(pvt) ? "yes" : "no"));

		debugf0("  DCT channel interleave: %s, "
			"DCT interleave bits selector: 0x%x\n",
			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1362 1363 1364
			dct_sel_interleave_addr(pvt));
	}

1365 1366
	amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
			   &pvt->dram_ctl_select_high);
1367 1368
}

1369 1370 1371 1372
/*
 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
 * Interleaving Modes.
 */
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				int hi_range_sel, u32 intlv_en)
{
	u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;

	if (dct_ganging_enabled(pvt))
		cs = 0;
	else if (hi_range_sel)
		cs = dct_sel_high;
	else if (dct_interleave_enabled(pvt)) {
1383 1384 1385
		/*
		 * see F2x110[DctSelIntLvAddr] - channel interleave mode
		 */
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		if (dct_sel_interleave_addr(pvt) == 0)
			cs = sys_addr >> 6 & 1;
		else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
			temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			if (dct_sel_interleave_addr(pvt) & 1)
				cs = (sys_addr >> 9 & 1) ^ temp;
			else
				cs = (sys_addr >> 6 & 1) ^ temp;
		} else if (intlv_en & 4)
			cs = sys_addr >> 15 & 1;
		else if (intlv_en & 2)
			cs = sys_addr >> 14 & 1;
		else if (intlv_en & 1)
			cs = sys_addr >> 13 & 1;
		else
			cs = sys_addr >> 12 & 1;
	} else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
		cs = ~dct_sel_high & 1;
	else
		cs = 0;

	return cs;
}

static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
{
	if (intlv_en == 1)
		return 1;
	else if (intlv_en == 3)
		return 2;
	else if (intlv_en == 7)
		return 3;

	return 0;
}

1423 1424
/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1425 1426
						 u32 dct_sel_base_addr,
						 u64 dct_sel_base_off,
1427
						 u32 hole_valid, u32 hole_off,
1428 1429 1430 1431 1432 1433
						 u64 dram_base)
{
	u64 chan_off;

	if (hi_range_sel) {
		if (!(dct_sel_base_addr & 0xFFFFF800) &&
1434
		   hole_valid && (sys_addr >= 0x100000000ULL))
1435 1436 1437 1438
			chan_off = hole_off << 16;
		else
			chan_off = dct_sel_base_off;
	} else {
1439
		if (hole_valid && (sys_addr >= 0x100000000ULL))
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
			chan_off = hole_off << 16;
		else
			chan_off = dram_base & 0xFFFFF8000000ULL;
	}

	return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
			(chan_off & 0x0000FFFFFF800000ULL);
}

/* Hack for the time being - Can we get this from BIOS?? */
#define	CH0SPARE_RANK	0
#define	CH1SPARE_RANK	1

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
static inline int f10_process_possible_spare(int csrow,
				u32 cs, struct amd64_pvt *pvt)
{
	u32 swap_done;
	u32 bad_dram_cs;

	/* Depending on channel, isolate respective SPARING info */
	if (cs) {
		swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
		if (swap_done && (csrow == bad_dram_cs))
			csrow = CH1SPARE_RANK;
	} else {
		swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
		if (swap_done && (csrow == bad_dram_cs))
			csrow = CH0SPARE_RANK;
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	u32 cs_base, cs_mask;
	int cs_found = -EINVAL;
	int csrow;

	mci = mci_lookup[nid];
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

	debugf1("InputAddr=0x%x  channelselect=%d\n", in_addr, cs);

1502
	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

		cs_base = amd64_get_dct_base(pvt, cs, csrow);
		if (!(cs_base & K8_DCSB_CS_ENABLE))
			continue;

		/*
		 * We have an ENABLED CSROW, Isolate just the MASK bits of the
		 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
		 * of the actual address.
		 */
		cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;

		/*
		 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
		 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
		 */
		cs_mask = amd64_get_dct_mask(pvt, cs, csrow);

		debugf1("    CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
				csrow, cs_base, cs_mask);

		cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;

		debugf1("              Final CSMask=0x%x\n", cs_mask);
		debugf1("    (InputAddr & ~CSMask)=0x%x "
				"(CSBase & ~CSMask)=0x%x\n",
				(in_addr & ~cs_mask), (cs_base & ~cs_mask));

		if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
			cs_found = f10_process_possible_spare(csrow, cs, pvt);

			debugf1(" MATCH csrow=%d\n", cs_found);
			break;
		}
	}
	return cs_found;
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
/* For a given @dram_range, check if @sys_addr falls within it. */
static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
				  u64 sys_addr, int *nid, int *chan_sel)
{
	int node_id, cs_found = -EINVAL, high_range = 0;
	u32 intlv_en, intlv_sel, intlv_shift, hole_off;
	u32 hole_valid, tmp, dct_sel_base, channel;
	u64 dram_base, chan_addr, dct_sel_base_off;

	dram_base = pvt->dram_base[dram_range];
	intlv_en = pvt->dram_IntlvEn[dram_range];

	node_id = pvt->dram_DstNode[dram_range];
	intlv_sel = pvt->dram_IntlvSel[dram_range];

	debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
		dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);

	/*
	 * This assumes that one node's DHAR is the same as all the other
	 * nodes' DHAR.
	 */
	hole_off = (pvt->dhar & 0x0000FF80);
	hole_valid = (pvt->dhar & 0x1);
	dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;

	debugf1("   HoleOffset=0x%x  HoleValid=0x%x IntlvSel=0x%x\n",
			hole_off, hole_valid, intlv_sel);

	if (intlv_en ||
	    (intlv_sel != ((sys_addr >> 12) & intlv_en)))
		return -EINVAL;

	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
		high_range = 1;

	channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);

	chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
					     dct_sel_base_off, hole_valid,
					     hole_off, dram_base);

	intlv_shift = f10_map_intlv_en_to_shift(intlv_en);

	/* remove Node ID (in case of memory interleaving) */
	tmp = chan_addr & 0xFC0;

	chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;

	/* remove channel interleave and hash */
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
		if (dct_sel_interleave_addr(pvt) != 1)
			chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
		else {
			tmp = chan_addr & 0xFC0;
			chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
					| tmp;
		}
	}

	debugf1("   (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
		chan_addr, (u32)(chan_addr >> 8));

	cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);

	if (cs_found >= 0) {
		*nid = node_id;
		*chan_sel = channel;
	}
	return cs_found;
}

static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
				       int *node, int *chan_sel)
{
	int dram_range, cs_found = -EINVAL;
	u64 dram_base, dram_limit;

	for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {

		if (!pvt->dram_rw_en[dram_range])
			continue;

		dram_base = pvt->dram_base[dram_range];
		dram_limit = pvt->dram_limit[dram_range];

		if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {

			cs_found = f10_match_to_this_node(pvt, dram_range,
							  sys_addr, node,
							  chan_sel);
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1650 1651
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1652
 *
1653 1654
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1655 1656
 */
static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1657
				     struct err_regs *info,
1658 1659 1660 1661 1662 1663 1664 1665 1666
				     u64 sys_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 page, offset;
	unsigned short syndrome;
	int nid, csrow, chan = 0;

	csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);

1667 1668 1669 1670 1671 1672
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

	error_address_to_page_and_offset(sys_addr, &page, &offset);
1673

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
	syndrome |= LOW_SYNDROME(info->nbsh);

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
	if (dct_ganging_enabled(pvt) && pvt->nbcfg & K8_NBCFG_CHIPKILL)
		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1684

1685 1686 1687 1688
	if (chan >= 0)
		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
				  EDAC_MOD_STR);
	else
1689
		/*
1690
		 * Channel unknown, report all channels on this CSROW as failed.
1691
		 */
1692
		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1693
			edac_mc_handle_ce(mci, page, offset, syndrome,
1694
					  csrow, chan, EDAC_MOD_STR);
1695 1696 1697
}

/*
1698
 * debug routine to display the memory sizes of all logical DIMMs and its
1699 1700
 * CSROWs as well
 */
1701
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1702
{
1703
	int dimm, size0, size1, factor = 0;
1704 1705 1706
	u32 dbam;
	u32 *dcsb;

1707
	if (boot_cpu_data.x86 == 0xf) {
1708 1709 1710
		if (pvt->dclr0 & F10_WIDTH_128)
			factor = 1;

1711
		/* K8 families < revF not supported yet */
1712
	       if (pvt->ext_model < K8_REV_F)
1713 1714 1715 1716 1717 1718 1719
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
1720 1721 1722 1723

	dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
	dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;

1724 1725
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1726 1727 1728 1729 1730
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
		if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1731
			size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1732 1733 1734

		size1 = 0;
		if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1735
			size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1736

1737
		edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
1738 1739
			    dimm * 2,     size0 << factor,
			    dimm * 2 + 1, size1 << factor);
1740 1741 1742
	}
}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
/*
 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
 * (as per PCI DEVICE_IDs):
 *
 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
 * DEVICE ID, even though there is differences between the different Revisions
 * (CG,D,E,F).
 *
 * Family F10h and F11h.
 *
 */
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
		.ctl_name = "RevF",
		.addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
		.ops = {
1760 1761 1762 1763 1764
			.early_channel_count	= k8_early_channel_count,
			.get_error_address	= k8_get_error_address,
			.read_dram_base_limit	= k8_read_dram_base_limit,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1765 1766 1767 1768 1769 1770 1771
		}
	},
	[F10_CPUS] = {
		.ctl_name = "Family 10h",
		.addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
		.ops = {
1772 1773 1774 1775 1776 1777
			.early_channel_count	= f10_early_channel_count,
			.get_error_address	= f10_get_error_address,
			.read_dram_base_limit	= f10_read_dram_base_limit,
			.read_dram_ctl_register	= f10_read_dram_ctl_register,
			.map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow,
			.dbam_to_cs		= f10_dbam_to_chip_select,
1778 1779 1780 1781 1782 1783 1784
		}
	},
	[F11_CPUS] = {
		.ctl_name = "Family 11h",
		.addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
		.misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
		.ops = {
1785 1786 1787 1788 1789 1790
			.early_channel_count	= f10_early_channel_count,
			.get_error_address	= f10_get_error_address,
			.read_dram_base_limit	= f10_read_dram_base_limit,
			.read_dram_ctl_register	= f10_read_dram_ctl_register,
			.map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow,
			.dbam_to_cs		= f10_dbam_to_chip_select,
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
		}
	},
};

static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	dev = pci_get_device(vendor, device, dev);
	while (dev) {
		if ((dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
		dev = pci_get_device(vendor, device, dev);
	}

	return dev;
}

1812
/*
1813 1814 1815
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1816
 *
1817
 * Algorithm courtesy of Ross LaFetra from AMD.
1818
 */
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
static u16 x4_vectors[] = {
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1856 1857
};

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
static u16 x8_vectors[] = {
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
				 int v_dim)
1882
{
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
		int v_idx =  err_sym * v_dim;
		int v_end = (err_sym + 1) * v_dim;

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1901

1902 1903 1904
					if (!s)
						return err_sym;
				}
1905

1906 1907 1908 1909
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1910 1911 1912 1913 1914
	}

	debugf0("syndrome(%x) not found\n", syndrome);
	return -1;
}
1915

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 value = 0;
	int err_sym = 0;

	amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value);

	/* F3x180[EccSymbolSize]=1, x8 symbols */
	if (boot_cpu_data.x86 == 0x10 &&
	    boot_cpu_data.x86_model > 7 &&
	    value & BIT(25)) {
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors), 8);
		return map_err_sym_to_channel(err_sym, 8);
	} else {
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors), 4);
		return map_err_sym_to_channel(err_sym, 4);
	}
}

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
/*
 * Check for valid error in the NB Status High register. If so, proceed to read
 * NB Status Low, NB Address Low and NB Address High registers and store data
 * into error structure.
 *
 * Returns:
 *	- 1: if hardware regs contains valid error info
 *	- 0: if no valid error is indicated
 */
static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
1987
				     struct err_regs *regs)
1988 1989 1990 1991 1992 1993 1994
{
	struct amd64_pvt *pvt;
	struct pci_dev *misc_f3_ctl;

	pvt = mci->pvt_info;
	misc_f3_ctl = pvt->misc_f3_ctl;

1995 1996
	if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
		return 0;
1997 1998 1999 2000 2001

	if (!(regs->nbsh & K8_NBSH_VALID_BIT))
		return 0;

	/* valid error, read remaining error information registers */
2002 2003 2004 2005 2006
	if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
	    amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
	    amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
	    amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
		return 0;
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

	return 1;
}

/*
 * This function is called to retrieve the error data from hardware and store it
 * in the info structure.
 *
 * Returns:
 *	- 1: if a valid error is found
 *	- 0: if no error is found
 */
static int amd64_get_error_info(struct mem_ctl_info *mci,
2020
				struct err_regs *info)
2021 2022
{
	struct amd64_pvt *pvt;
2023
	struct err_regs regs;
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

	pvt = mci->pvt_info;

	if (!amd64_get_error_info_regs(mci, info))
		return 0;

	/*
	 * Here's the problem with the K8's EDAC reporting: There are four
	 * registers which report pieces of error information. They are shared
	 * between CEs and UEs. Furthermore, contrary to what is stated in the
	 * BKDG, the overflow bit is never used! Every error always updates the
	 * reporting registers.
	 *
	 * Can you see the race condition? All four error reporting registers
	 * must be read before a new error updates them! There is no way to read
	 * all four registers atomically. The best than can be done is to detect
	 * that a race has occured and then report the error without any kind of
	 * precision.
	 *
	 * What is still positive is that errors are still reported and thus
	 * problems can still be detected - just not localized because the
	 * syndrome and address are spread out across registers.
	 *
	 * Grrrrr!!!!!  Here's hoping that AMD fixes this in some future K8 rev.
	 * UEs and CEs should have separate register sets with proper overflow
	 * bits that are used! At very least the problem can be fixed by
	 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
	 * set the overflow bit - unless the current error is CE and the new
	 * error is UE which would be the only situation for overwriting the
	 * current values.
	 */

	regs = *info;

	/* Use info from the second read - most current */
	if (unlikely(!amd64_get_error_info_regs(mci, info)))
		return 0;

	/* clear the error bits in hardware */
	pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);

	/* Check for the possible race condition */
	if ((regs.nbsh != info->nbsh) ||
	     (regs.nbsl != info->nbsl) ||
	     (regs.nbeah != info->nbeah) ||
	     (regs.nbeal != info->nbeal)) {
		amd64_mc_printk(mci, KERN_WARNING,
				"hardware STATUS read access race condition "
				"detected!\n");
		return 0;
	}
	return 1;
}

/*
 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
 * ADDRESS and process.
 */
static void amd64_handle_ce(struct mem_ctl_info *mci,
2083
			    struct err_regs *info)
2084 2085
{
	struct amd64_pvt *pvt = mci->pvt_info;
2086
	u64 sys_addr;
2087 2088 2089 2090 2091 2092 2093 2094 2095

	/* Ensure that the Error Address is VALID */
	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
		amd64_mc_printk(mci, KERN_ERR,
			"HW has no ERROR_ADDRESS available\n");
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

2096
	sys_addr = pvt->ops->get_error_address(mci, info);
2097 2098

	amd64_mc_printk(mci, KERN_ERR,
2099
		"CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
2100

2101
	pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
2102 2103 2104 2105
}

/* Handle any Un-correctable Errors (UEs) */
static void amd64_handle_ue(struct mem_ctl_info *mci,
2106
			    struct err_regs *info)
2107
{
2108 2109
	struct amd64_pvt *pvt = mci->pvt_info;
	struct mem_ctl_info *log_mci, *src_mci = NULL;
2110
	int csrow;
2111
	u64 sys_addr;
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
	u32 page, offset;

	log_mci = mci;

	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
		amd64_mc_printk(mci, KERN_CRIT,
			"HW has no ERROR_ADDRESS available\n");
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

2123
	sys_addr = pvt->ops->get_error_address(mci, info);
2124 2125 2126 2127 2128

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
2129
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
2130 2131 2132
	if (!src_mci) {
		amd64_mc_printk(mci, KERN_CRIT,
			"ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2133
			(unsigned long)sys_addr);
2134 2135 2136 2137 2138 2139
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

	log_mci = src_mci;

2140
	csrow = sys_addr_to_csrow(log_mci, sys_addr);
2141 2142 2143
	if (csrow < 0) {
		amd64_mc_printk(mci, KERN_CRIT,
			"ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2144
			(unsigned long)sys_addr);
2145 2146
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
	} else {
2147
		error_address_to_page_and_offset(sys_addr, &page, &offset);
2148 2149 2150 2151
		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
	}
}

2152
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2153
					    struct err_regs *info)
2154
{
2155 2156
	u32 ec  = ERROR_CODE(info->nbsl);
	u32 xec = EXT_ERROR_CODE(info->nbsl);
B
Borislav Petkov 已提交
2157
	int ecc_type = (info->nbsh >> 13) & 0x3;
2158

2159 2160 2161
	/* Bail early out if this was an 'observed' error */
	if (PP(ec) == K8_NBSL_PP_OBS)
		return;
2162

2163 2164
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2165 2166
		return;

2167
	if (ecc_type == 2)
2168
		amd64_handle_ce(mci, info);
2169
	else if (ecc_type == 1)
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
		amd64_handle_ue(mci, info);

	/*
	 * If main error is CE then overflow must be CE.  If main error is UE
	 * then overflow is unknown.  We'll call the overflow a CE - if
	 * panic_on_ue is set then we're already panic'ed and won't arrive
	 * here. Else, then apparently someone doesn't think that UE's are
	 * catastrophic.
	 */
	if (info->nbsh & K8_NBSH_OVERFLOW)
2180
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
2181 2182
}

2183
void amd64_decode_bus_error(int node_id, struct err_regs *regs)
2184
{
2185
	struct mem_ctl_info *mci = mci_lookup[node_id];
2186

2187
	__amd64_decode_bus_error(mci, regs);
2188 2189 2190 2191 2192

	/*
	 * Check the UE bit of the NB status high register, if set generate some
	 * logs. If NOT a GART error, then process the event as a NO-INFO event.
	 * If it was a GART error, skip that process.
2193 2194
	 *
	 * FIXME: this should go somewhere else, if at all.
2195
	 */
2196 2197
	if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
		edac_mc_handle_ue_no_info(mci, "UE bit is set");
2198

2199 2200
}

2201 2202 2203 2204 2205 2206
/*
 * The main polling 'check' function, called FROM the edac core to perform the
 * error checking and if an error is encountered, error processing.
 */
static void amd64_check(struct mem_ctl_info *mci)
{
2207
	struct err_regs regs;
2208

2209 2210 2211 2212
	if (amd64_get_error_info(mci, &regs)) {
		struct amd64_pvt *pvt = mci->pvt_info;
		amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
	}
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
}

/*
 * Input:
 *	1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
 *	2) AMD Family index value
 *
 * Ouput:
 *	Upon return of 0, the following filled in:
 *
 *		struct pvt->addr_f1_ctl
 *		struct pvt->misc_f3_ctl
 *
 *	Filled in with related device funcitions of 'dram_f2_ctl'
 *	These devices are "reserved" via the pci_get_device()
 *
 *	Upon return of 1 (error status):
 *
 *		Nothing reserved
 */
static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
{
	const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];

	/* Reserve the ADDRESS MAP Device */
	pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
						    amd64_dev->addr_f1_ctl,
						    pvt->dram_f2_ctl);

	if (!pvt->addr_f1_ctl) {
		amd64_printk(KERN_ERR, "error address map device not found: "
			     "vendor %x device 0x%x (broken BIOS?)\n",
			     PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
		return 1;
	}

	/* Reserve the MISC Device */
	pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
						    amd64_dev->misc_f3_ctl,
						    pvt->dram_f2_ctl);

	if (!pvt->misc_f3_ctl) {
		pci_dev_put(pvt->addr_f1_ctl);
		pvt->addr_f1_ctl = NULL;

		amd64_printk(KERN_ERR, "error miscellaneous device not found: "
			     "vendor %x device 0x%x (broken BIOS?)\n",
			     PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
		return 1;
	}

	debugf1("    Addr Map device PCI Bus ID:\t%s\n",
		pci_name(pvt->addr_f1_ctl));
	debugf1("    DRAM MEM-CTL PCI Bus ID:\t%s\n",
		pci_name(pvt->dram_f2_ctl));
	debugf1("    Misc device PCI Bus ID:\t%s\n",
		pci_name(pvt->misc_f3_ctl));

	return 0;
}

static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
{
	pci_dev_put(pvt->addr_f1_ctl);
	pci_dev_put(pvt->misc_f3_ctl);
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
static void amd64_read_mc_registers(struct amd64_pvt *pvt)
{
	u64 msr_val;
2287
	int dram;
2288 2289 2290 2291 2292

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
2293 2294
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2295 2296 2297 2298

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
2299 2300
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2301 2302 2303 2304 2305
	} else
		debugf0("  TOP_MEM2 disabled.\n");

	amd64_cpu_display_info(pvt);

2306
	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323

	if (pvt->ops->read_dram_ctl_register)
		pvt->ops->read_dram_ctl_register(pvt);

	for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
		/*
		 * Call CPU specific READ function to get the DRAM Base and
		 * Limit values from the DCT.
		 */
		pvt->ops->read_dram_base_limit(pvt, dram);

		/*
		 * Only print out debug info on rows with both R and W Enabled.
		 * Normal processing, compiler should optimize this whole 'if'
		 * debug output block away.
		 */
		if (pvt->dram_rw_en[dram] != 0) {
2324 2325
			debugf1("  DRAM-BASE[%d]: 0x%016llx "
				"DRAM-LIMIT:  0x%016llx\n",
2326
				dram,
2327 2328 2329
				pvt->dram_base[dram],
				pvt->dram_limit[dram]);

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
			debugf1("        IntlvEn=%s %s %s "
				"IntlvSel=%d DstNode=%d\n",
				pvt->dram_IntlvEn[dram] ?
					"Enabled" : "Disabled",
				(pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
				(pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
				pvt->dram_IntlvSel[dram],
				pvt->dram_DstNode[dram]);
		}
	}

	amd64_read_dct_base_mask(pvt);

2343
	amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2344 2345
	amd64_read_dbam_reg(pvt);

2346 2347
	amd64_read_pci_cfg(pvt->misc_f3_ctl,
			   F10_ONLINE_SPARE, &pvt->online_spare);
2348

2349 2350
	amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
	amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2351 2352

	if (!dct_ganging_enabled(pvt)) {
2353 2354
		amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
		amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
2355 2356 2357 2358 2359 2360 2361 2362
	}
	amd64_dump_misc_regs(pvt);
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2363
 *	@csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
{
2395
	u32 cs_mode, nr_pages;
2396 2397 2398 2399 2400 2401 2402 2403

	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
2404
	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2405

2406
	nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2407 2408 2409 2410 2411 2412 2413

	/*
	 * If dual channel then double the memory size of single channel.
	 * Channel count is 1 or 2
	 */
	nr_pages <<= (pvt->channel_count - 1);

2414
	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	debugf0("    nr_pages= %u  channel-count = %d\n",
		nr_pages, pvt->channel_count);

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
static int amd64_init_csrows(struct mem_ctl_info *mci)
{
	struct csrow_info *csrow;
	struct amd64_pvt *pvt;
	u64 input_addr_min, input_addr_max, sys_addr;
2430
	int i, empty = 1;
2431 2432 2433

	pvt = mci->pvt_info;

2434
	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2435 2436 2437 2438 2439 2440

	debugf0("NBCFG= 0x%x  CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
		(pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
		(pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
		);

2441
	for (i = 0; i < pvt->cs_count; i++) {
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
		csrow = &mci->csrows[i];

		if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
			debugf1("----CSROW %d EMPTY for node %d\n", i,
				pvt->mc_node_id);
			continue;
		}

		debugf1("----CSROW %d VALID for MC node %d\n",
			i, pvt->mc_node_id);

		empty = 0;
		csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
		csrow->page_mask = ~mask_from_dct_mask(pvt, i);
		/* 8 bytes of resolution */

		csrow->mtype = amd64_determine_memory_type(pvt);

		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
			(unsigned long)input_addr_min,
			(unsigned long)input_addr_max);
		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
			(unsigned long)sys_addr, csrow->page_mask);
		debugf1("    nr_pages: %u  first_page: 0x%lx "
			"last_page: 0x%lx\n",
			(unsigned)csrow->nr_pages,
			csrow->first_page, csrow->last_page);

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
		if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
			csrow->edac_mode =
			    (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
			    EDAC_S4ECD4ED : EDAC_SECDED;
		else
			csrow->edac_mode = EDAC_NONE;
	}

	return empty;
}
2489

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
/* get all cores on this DCT */
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
static bool amd64_nb_mce_bank_enabled_on_node(int nid)
{
	cpumask_var_t mask;
2504
	int cpu, nbe;
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
		amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
			     __func__);
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2518 2519
		struct msr *reg = per_cpu_ptr(msrs, cpu);
		nbe = reg->l & K8_MSR_MCGCTL_NBE;
2520 2521

		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2522
			cpu, reg->q,
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
			(nbe ? "enabled" : "disabled"));

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
{
	cpumask_var_t cmask;
2538
	int cpu;
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
		amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
			     __func__);
		return false;
	}

	get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2552 2553
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2554
		if (on) {
2555
			if (reg->l & K8_MSR_MCGCTL_NBE)
2556 2557
				pvt->flags.ecc_report = 1;

2558
			reg->l |= K8_MSR_MCGCTL_NBE;
2559 2560 2561 2562 2563
		} else {
			/*
			 * Turn off ECC reporting only when it was off before
			 */
			if (!pvt->flags.ecc_report)
2564
				reg->l &= ~K8_MSR_MCGCTL_NBE;
2565 2566 2567 2568 2569 2570 2571 2572 2573
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2574 2575 2576 2577 2578 2579 2580
/*
 * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
 * enable it.
 */
static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2581
	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2582 2583 2584 2585 2586 2587 2588 2589

	if (!ecc_enable_override)
		return;

	amd64_printk(KERN_WARNING,
		"'ecc_enable_override' parameter is active, "
		"Enabling AMD ECC hardware now: CAUTION\n");

2590
	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2591 2592 2593 2594 2595 2596 2597 2598

	/* turn on UECCn and CECCEn bits */
	pvt->old_nbctl = value & mask;
	pvt->nbctl_mcgctl_saved = 1;

	value |= mask;
	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);

2599 2600 2601
	if (amd64_toggle_ecc_err_reporting(pvt, ON))
		amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
					   "MCGCTL!\n");
2602

2603
	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617

	debugf0("NBCFG(1)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");

	if (!(value & K8_NBCFG_ECC_ENABLE)) {
		amd64_printk(KERN_WARNING,
			"This node reports that DRAM ECC is "
			"currently Disabled; ENABLING now\n");

		/* Attempt to turn on DRAM ECC Enable */
		value |= K8_NBCFG_ECC_ENABLE;
		pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);

2618
		amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637

		if (!(value & K8_NBCFG_ECC_ENABLE)) {
			amd64_printk(KERN_WARNING,
				"Hardware rejects Enabling DRAM ECC checking\n"
				"Check memory DIMM configuration\n");
		} else {
			amd64_printk(KERN_DEBUG,
				"Hardware accepted DRAM ECC Enable\n");
		}
	}
	debugf0("NBCFG(2)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");

	pvt->ctl_error_info.nbcfg = value;
}

static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
{
2638
	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2639 2640 2641 2642

	if (!pvt->nbctl_mcgctl_saved)
		return;

2643
	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2644 2645 2646 2647 2648 2649
	value &= ~mask;
	value |= pvt->old_nbctl;

	/* restore the NB Enable MCGCTL bit */
	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);

2650 2651 2652
	if (amd64_toggle_ecc_err_reporting(pvt, OFF))
		amd64_printk(KERN_WARNING, "Error restoring ECC reporting over "
					   "MCGCTL!\n");
2653 2654 2655 2656 2657 2658 2659 2660
}

/*
 * EDAC requires that the BIOS have ECC enabled before taking over the
 * processing of ECC errors. This is because the BIOS can properly initialize
 * the memory system completely. A command line option allows to force-enable
 * hardware ECC later in amd64_enable_ecc_error_reporting().
 */
2661 2662 2663 2664 2665
static const char *ecc_warning =
	"WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
	" Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
	" Also, use of the override can cause unknown side effects.\n";

2666 2667 2668
static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
{
	u32 value;
2669 2670
	u8 ecc_enabled = 0;
	bool nb_mce_en = false;
2671

2672
	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2673 2674

	ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2675 2676 2677 2678 2679 2680
	if (!ecc_enabled)
		amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
			     "is currently disabled, set F3x%x[22] (%s).\n",
			     K8_NBCFG, pci_name(pvt->misc_f3_ctl));
	else
		amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
2681

2682 2683
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
	if (!nb_mce_en)
2684 2685 2686
		amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, pvt->mc_node_id);
2687

2688
	if (!ecc_enabled || !nb_mce_en) {
2689
		if (!ecc_enable_override) {
2690 2691 2692 2693
			amd64_printk(KERN_WARNING, "%s", ecc_warning);
			return -ENODEV;
		}
	} else
2694 2695 2696
		/* CLEAR the override, since BIOS controlled it */
		ecc_enable_override = 0;

2697
	return 0;
2698 2699
}

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
					  ARRAY_SIZE(amd64_inj_attrs) +
					  1];

struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };

static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
{
	unsigned int i = 0, j = 0;

	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
		sysfs_attrs[i] = amd64_dbg_attrs[i];

	for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
		sysfs_attrs[i] = amd64_inj_attrs[j];

	sysfs_attrs[i] = terminator;

	mci->mc_driver_sysfs_attributes = sysfs_attrs;
}

static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

	if (pvt->nbcap & K8_NBCAP_SECDED)
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

	if (pvt->nbcap & K8_NBCAP_CHIPKILL)
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
	mci->ctl_name		= get_amd_family_name(pvt->mc_type_index);
	mci->dev_name		= pci_name(pvt->dram_f2_ctl);
	mci->ctl_page_to_phys	= NULL;

	/* IMPORTANT: Set the polling 'check' function in this module */
	mci->edac_check		= amd64_check;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

/*
 * Init stuff for this DRAM Controller device.
 *
 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
 * Space feature MUST be enabled on ALL Processors prior to actually reading
 * from the ECS registers. Since the loading of the module can occur on any
 * 'core', and cores don't 'see' all the other processors ECS data when the
 * others are NOT enabled. Our solution is to first enable ECS access in this
 * routine on all processors, gather some data in a amd64_pvt structure and
 * later come back in a finish-setup function to perform that final
 * initialization. See also amd64_init_2nd_stage() for that.
 */
static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
				    int mc_type_index)
{
	struct amd64_pvt *pvt = NULL;
	int err = 0, ret;

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
		goto err_exit;

2772
	pvt->mc_node_id = get_node_id(dram_f2_ctl);
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826

	pvt->dram_f2_ctl	= dram_f2_ctl;
	pvt->ext_model		= boot_cpu_data.x86_model >> 4;
	pvt->mc_type_index	= mc_type_index;
	pvt->ops		= family_ops(mc_type_index);

	/*
	 * We have the dram_f2_ctl device as an argument, now go reserve its
	 * sibling devices from the PCI system.
	 */
	ret = -ENODEV;
	err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
	if (err)
		goto err_free;

	ret = -EINVAL;
	err = amd64_check_ecc_enabled(pvt);
	if (err)
		goto err_put;

	/*
	 * Key operation here: setup of HW prior to performing ops on it. Some
	 * setup is required to access ECS data. After this is performed, the
	 * 'teardown' function must be called upon error and normal exit paths.
	 */
	if (boot_cpu_data.x86 >= 0x10)
		amd64_setup(pvt);

	/*
	 * Save the pointer to the private data for use in 2nd initialization
	 * stage
	 */
	pvt_lookup[pvt->mc_node_id] = pvt;

	return 0;

err_put:
	amd64_free_mc_sibling_devices(pvt);

err_free:
	kfree(pvt);

err_exit:
	return ret;
}

/*
 * This is the finishing stage of the init code. Needs to be performed after all
 * MCs' hardware have been prepped for accessing extended config space.
 */
static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
{
	int node_id = pvt->mc_node_id;
	struct mem_ctl_info *mci;
2827
	int ret = -ENODEV;
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840

	amd64_read_mc_registers(pvt);

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
	 * tables in the 'mci' structure
	 */
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
		goto err_exit;

	ret = -ENOMEM;
2841
	mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	if (!mci)
		goto err_exit;

	mci->pvt_info = pvt;

	mci->dev = &pvt->dram_f2_ctl->dev;
	amd64_setup_mci_misc_attributes(mci);

	if (amd64_init_csrows(mci))
		mci->edac_cap = EDAC_FLAG_NONE;

	amd64_enable_ecc_error_reporting(mci);
	amd64_set_mc_sysfs_attributes(mci);

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
		debugf1("failed edac_mc_add_mc()\n");
		goto err_add_mc;
	}

	mci_lookup[node_id] = mci;
	pvt_lookup[node_id] = NULL;
2864 2865 2866 2867 2868 2869 2870

	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
	return 0;

err_add_mc:
	edac_mc_free(mci);

err_exit:
	debugf0("failure to init 2nd stage: ret=%d\n", ret);

	amd64_restore_ecc_error_reporting(pvt);

	if (boot_cpu_data.x86 > 0xf)
		amd64_teardown(pvt);

	amd64_free_mc_sibling_devices(pvt);

	kfree(pvt_lookup[pvt->mc_node_id]);
	pvt_lookup[node_id] = NULL;

	return ret;
}


static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
				 const struct pci_device_id *mc_type)
{
	int ret = 0;

2898
	debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
		get_amd_family_name(mc_type->driver_data));

	ret = pci_enable_device(pdev);
	if (ret < 0)
		ret = -EIO;
	else
		ret = amd64_probe_one_instance(pdev, mc_type->driver_data);

	if (ret < 0)
		debugf0("ret=%d\n", ret);

	return ret;
}

static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

	amd64_restore_ecc_error_reporting(pvt);

	if (boot_cpu_data.x86 > 0xf)
		amd64_teardown(pvt);

	amd64_free_mc_sibling_devices(pvt);

2932 2933 2934 2935
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

2936
	/* Free the EDAC CORE resources */
2937 2938 2939 2940
	mci->pvt_info = NULL;
	mci_lookup[pvt->mc_node_id] = NULL;

	kfree(pvt);
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
static const struct pci_device_id amd64_pci_table[] __devinitdata = {
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
		.driver_data	= K8_CPUS
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
		.driver_data	= F10_CPUS
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_11H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
		.driver_data	= F11_CPUS
	},
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
	.probe		= amd64_init_one_instance,
	.remove		= __devexit_p(amd64_remove_one_instance),
	.id_table	= amd64_pci_table,
};

static void amd64_setup_pci_device(void)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

	mci = mci_lookup[0];
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
			edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
						    EDAC_MOD_STR);

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
	int nb, err = -ENODEV;
3017
	bool load_ok = false;
3018 3019 3020 3021 3022 3023

	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");

	opstate_init();

	if (cache_k8_northbridges() < 0)
3024
		goto err_ret;
3025

3026
	msrs = msrs_alloc();
3027 3028
	if (!msrs)
		goto err_ret;
3029

3030 3031
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
3032
		goto err_pci;
3033 3034 3035 3036 3037 3038

	/*
	 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
	 * amd64_pvt structs. These will be used in the 2nd stage init function
	 * to finish initialization of the MC instances.
	 */
3039
	err = -ENODEV;
3040 3041 3042 3043 3044 3045
	for (nb = 0; nb < num_k8_northbridges; nb++) {
		if (!pvt_lookup[nb])
			continue;

		err = amd64_init_2nd_stage(pvt_lookup[nb]);
		if (err)
3046
			goto err_2nd_stage;
3047

3048 3049
		load_ok = true;
	}
3050

3051 3052 3053 3054
	if (load_ok) {
		amd64_setup_pci_device();
		return 0;
	}
3055

3056
err_2nd_stage:
3057
	pci_unregister_driver(&amd64_pci_driver);
3058 3059 3060 3061
err_pci:
	msrs_free(msrs);
	msrs = NULL;
err_ret:
3062 3063 3064 3065 3066 3067 3068 3069 3070
	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
3071 3072 3073

	msrs_free(msrs);
	msrs = NULL;
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");