rt.c 47.1 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#include "sched.h"

#include <linux/slab.h>

10 11
int sched_rr_timeslice = RR_TIMESLICE;

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

struct rt_bandwidth def_rt_bandwidth;

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

	raw_spin_lock_init(&rt_b->rt_runtime_lock);

	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	raw_spin_lock(&rt_b->rt_runtime_lock);
	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
	raw_spin_unlock(&rt_b->rt_runtime_lock);
}

void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

#if defined CONFIG_SMP
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
	plist_head_init(&rt_rq->pushable_tasks);
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
	rt_rq->rt_runtime = 0;
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
}

89
#ifdef CONFIG_RT_GROUP_SCHED
90 91 92 93
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
94 95 96

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

97 98
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
99 100 101
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
102 103 104 105 106 107 108 109 110 111 112 113 114
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
void free_rt_sched_group(struct task_group *tg)
{
	int i;

	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
	rt_rq->tg = tg;

	tg->rt_rq[cpu] = rt_rq;
	tg->rt_se[cpu] = rt_se;

	if (!rt_se)
		return;

	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

	rt_se->my_q = rt_rq;
	rt_se->parent = parent;
	INIT_LIST_HEAD(&rt_se->run_list);
}

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);

	for_each_possible_cpu(i) {
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_rq)
			goto err;

		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_se)
			goto err_free_rq;

		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
	}

	return 1;

err_free_rq:
	kfree(rt_rq);
err:
	return 0;
}

200 201
#else /* CONFIG_RT_GROUP_SCHED */

202 203
#define rt_entity_is_task(rt_se) (1)

204 205 206 207 208
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

209 210 211 212 213 214 215 216 217 218 219 220 221
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

222 223 224 225 226 227
void free_rt_sched_group(struct task_group *tg) { }

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}
228 229
#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
230
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
231

232
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
233
{
234
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
235
}
I
Ingo Molnar 已提交
236

S
Steven Rostedt 已提交
237 238
static inline void rt_set_overload(struct rq *rq)
{
239 240 241
	if (!rq->online)
		return;

242
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
243 244 245 246 247 248 249 250
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
251
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
252
}
I
Ingo Molnar 已提交
253

S
Steven Rostedt 已提交
254 255
static inline void rt_clear_overload(struct rq *rq)
{
256 257 258
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
259
	/* the order here really doesn't matter */
260
	atomic_dec(&rq->rd->rto_count);
261
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
262
}
263

264
static void update_rt_migration(struct rt_rq *rt_rq)
265
{
266
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
267 268 269
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
270
		}
271 272 273
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
274
	}
275
}
S
Steven Rostedt 已提交
276

277 278
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
279 280
	struct task_struct *p;

281 282 283
	if (!rt_entity_is_task(rt_se))
		return;

284
	p = rt_task_of(rt_se);
285 286 287
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
288
	if (p->nr_cpus_allowed > 1)
289 290 291 292 293 294 295
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
296 297
	struct task_struct *p;

298 299 300
	if (!rt_entity_is_task(rt_se))
		return;

301
	p = rt_task_of(rt_se);
302 303 304
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
305
	if (p->nr_cpus_allowed > 1)
306 307 308 309 310
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

311 312 313 314 315
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

316 317 318 319 320
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
321 322 323 324

	/* Update the highest prio pushable task */
	if (p->prio < rq->rt.highest_prio.next)
		rq->rt.highest_prio.next = p->prio;
325 326 327 328 329 330
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);

331 332 333 334 335 336 337
	/* Update the new highest prio pushable task */
	if (has_pushable_tasks(rq)) {
		p = plist_first_entry(&rq->rt.pushable_tasks,
				      struct task_struct, pushable_tasks);
		rq->rt.highest_prio.next = p->prio;
	} else
		rq->rt.highest_prio.next = MAX_RT_PRIO;
338 339
}

340 341
#else

342
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
343
{
P
Peter Zijlstra 已提交
344 345
}

346 347 348 349
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

350
static inline
351 352 353 354
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

355
static inline
356 357 358
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
359

S
Steven Rostedt 已提交
360 361
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
362 363 364 365 366
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

367
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
368

P
Peter Zijlstra 已提交
369
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
370 371
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
372
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
373

P
Peter Zijlstra 已提交
374 375 376 377 378 379
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
380 381
}

C
Cheng Xu 已提交
382 383
typedef struct task_group *rt_rq_iter_t;

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
C
Cheng Xu 已提交
401

402 403 404 405 406 407 408 409 410 411 412
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_add_rcu(&rt_rq->leaf_rt_rq_list,
			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_del_rcu(&rt_rq->leaf_rt_rq_list);
}

P
Peter Zijlstra 已提交
413
#define for_each_leaf_rt_rq(rt_rq, rq) \
414
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
415 416 417 418 419 420 421 422 423

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

424
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
425 426
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
427
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
428
{
429
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
430 431
	struct sched_rt_entity *rt_se;

432 433 434
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
435

436 437
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
438
			enqueue_rt_entity(rt_se, false);
439
		if (rt_rq->highest_prio.curr < curr->prio)
440
			resched_task(curr);
P
Peter Zijlstra 已提交
441 442 443
	}
}

P
Peter Zijlstra 已提交
444
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
445
{
446
	struct sched_rt_entity *rt_se;
447
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
448

449
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
450 451 452 453 454

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

472
#ifdef CONFIG_SMP
473
static inline const struct cpumask *sched_rt_period_mask(void)
474
{
N
Nathan Zimmer 已提交
475
	return this_rq()->rd->span;
476
}
P
Peter Zijlstra 已提交
477
#else
478
static inline const struct cpumask *sched_rt_period_mask(void)
479
{
480
	return cpu_online_mask;
481 482
}
#endif
P
Peter Zijlstra 已提交
483

484 485
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
486
{
487 488
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
489

P
Peter Zijlstra 已提交
490 491 492 493 494
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

495
#else /* !CONFIG_RT_GROUP_SCHED */
496 497 498

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
499 500 501 502 503 504
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
505 506
}

C
Cheng Xu 已提交
507 508 509 510 511
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

512 513 514 515 516 517 518 519
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

P
Peter Zijlstra 已提交
520 521 522 523 524 525 526 527 528 529 530
#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
531
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
532
{
533 534
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
535 536
}

P
Peter Zijlstra 已提交
537
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
538 539 540
{
}

P
Peter Zijlstra 已提交
541 542 543 544
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
545

546
static inline const struct cpumask *sched_rt_period_mask(void)
547
{
548
	return cpu_online_mask;
549 550 551 552 553 554 555 556
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
557 558 559 560 561
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

562
#endif /* CONFIG_RT_GROUP_SCHED */
563

P
Peter Zijlstra 已提交
564
#ifdef CONFIG_SMP
565 566 567
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
568
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
569 570
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
571
	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
P
Peter Zijlstra 已提交
572 573 574
	int i, weight, more = 0;
	u64 rt_period;

575
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
576

577
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
578
	rt_period = ktime_to_ns(rt_b->rt_period);
579
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
580 581 582 583 584 585
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

586
		raw_spin_lock(&iter->rt_runtime_lock);
587 588 589 590 591
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
592 593 594
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

595 596 597 598
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
599 600
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
601
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
602 603 604 605 606 607
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
608
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
609 610 611
				break;
			}
		}
P
Peter Zijlstra 已提交
612
next:
613
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
614
	}
615
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
616 617 618

	return more;
}
P
Peter Zijlstra 已提交
619

620 621 622
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
623 624 625
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
626
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
627 628 629 630 631
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
632
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
633 634 635 636
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

637 638
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
639 640 641 642 643
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
644 645 646
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
647
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
648

649 650 651 652 653
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
654 655
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

656 657 658
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
659
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
660 661 662
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

663 664 665
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
666
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
667 668
				continue;

669
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
670 671 672 673 674 675 676 677
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
678
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
679 680 681 682 683

			if (!want)
				break;
		}

684
		raw_spin_lock(&rt_rq->rt_runtime_lock);
685 686 687 688
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
689 690
		BUG_ON(want);
balanced:
691 692 693 694
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
695
		rt_rq->rt_runtime = RUNTIME_INF;
696
		rt_rq->rt_throttled = 0;
697 698
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
699 700 701 702 703 704 705
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

706
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
707
	__disable_runtime(rq);
708
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
709 710 711 712
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
713
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
714 715 716 717 718
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

719 720 721
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
722
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
723 724
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

725 726
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
727 728
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
729
		rt_rq->rt_throttled = 0;
730 731
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
732 733 734 735 736 737 738
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

739
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
740
	__enable_runtime(rq);
741
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
742 743
}

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
		disable_runtime(cpu_rq(cpu));
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		enable_runtime(cpu_rq(cpu));
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}

766 767 768 769
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

770 771 772
	if (!sched_feat(RT_RUNTIME_SHARE))
		return more;

773
	if (rt_rq->rt_time > rt_rq->rt_runtime) {
774
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
775
		more = do_balance_runtime(rt_rq);
776
		raw_spin_lock(&rt_rq->rt_runtime_lock);
777 778 779 780
	}

	return more;
}
781
#else /* !CONFIG_SMP */
782 783 784 785
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
786
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
787

788 789
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
790
	int i, idle = 1, throttled = 0;
791
	const struct cpumask *span;
792 793

	span = sched_rt_period_mask();
794 795 796 797 798 799 800 801 802 803 804 805 806
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * FIXME: isolated CPUs should really leave the root task group,
	 * whether they are isolcpus or were isolated via cpusets, lest
	 * the timer run on a CPU which does not service all runqueues,
	 * potentially leaving other CPUs indefinitely throttled.  If
	 * isolation is really required, the user will turn the throttle
	 * off to kill the perturbations it causes anyway.  Meanwhile,
	 * this maintains functionality for boot and/or troubleshooting.
	 */
	if (rt_b == &root_task_group.rt_bandwidth)
		span = cpu_online_mask;
#endif
807
	for_each_cpu(i, span) {
808 809 810 811
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

812
		raw_spin_lock(&rq->lock);
813 814 815
		if (rt_rq->rt_time) {
			u64 runtime;

816
			raw_spin_lock(&rt_rq->rt_runtime_lock);
817 818 819 820 821 822 823
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
824 825 826 827 828 829 830

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
831 832 833
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
834
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
835
		} else if (rt_rq->rt_nr_running) {
836
			idle = 0;
837 838 839
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
840 841
		if (rt_rq->rt_throttled)
			throttled = 1;
842 843 844

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
845
		raw_spin_unlock(&rq->lock);
846 847
	}

848 849 850
	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
		return 1;

851 852
	return idle;
}
P
Peter Zijlstra 已提交
853

P
Peter Zijlstra 已提交
854 855
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
856
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
857 858 859
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
860
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
861 862 863 864 865
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
866
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
867
{
P
Peter Zijlstra 已提交
868
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
869 870

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
871
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
872

873
	if (runtime >= sched_rt_period(rt_rq))
P
Peter Zijlstra 已提交
874 875
		return 0;

876 877 878 879
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
880

P
Peter Zijlstra 已提交
881
	if (rt_rq->rt_time > runtime) {
882 883 884 885 886 887 888
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		/*
		 * Don't actually throttle groups that have no runtime assigned
		 * but accrue some time due to boosting.
		 */
		if (likely(rt_b->rt_runtime)) {
889 890
			static bool once = false;

891
			rt_rq->rt_throttled = 1;
892 893 894 895 896

			if (!once) {
				once = true;
				printk_sched("sched: RT throttling activated\n");
			}
897 898 899 900 901 902 903 904 905
		} else {
			/*
			 * In case we did anyway, make it go away,
			 * replenishment is a joke, since it will replenish us
			 * with exactly 0 ns.
			 */
			rt_rq->rt_time = 0;
		}

P
Peter Zijlstra 已提交
906
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
907
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
908 909
			return 1;
		}
P
Peter Zijlstra 已提交
910 911 912 913 914
	}

	return 0;
}

I
Ingo Molnar 已提交
915 916 917 918
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
919
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
920 921
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
922 923
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
924 925
	u64 delta_exec;

P
Peter Zijlstra 已提交
926
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
927 928
		return;

929
	delta_exec = rq->clock_task - curr->se.exec_start;
930 931
	if (unlikely((s64)delta_exec <= 0))
		return;
I
Ingo Molnar 已提交
932

933 934
	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
935 936

	curr->se.sum_exec_runtime += delta_exec;
937 938
	account_group_exec_runtime(curr, delta_exec);

939
	curr->se.exec_start = rq->clock_task;
940
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
941

942 943
	sched_rt_avg_update(rq, delta_exec);

944 945 946
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
947 948 949
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

950
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
951
			raw_spin_lock(&rt_rq->rt_runtime_lock);
952 953 954
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
955
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
956
		}
D
Dhaval Giani 已提交
957
	}
I
Ingo Molnar 已提交
958 959
}

960
#if defined CONFIG_SMP
961

962 963
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
964
{
G
Gregory Haskins 已提交
965
	struct rq *rq = rq_of_rt_rq(rt_rq);
966

967 968
	if (rq->online && prio < prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
969
}
970

971 972 973 974
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
975

976 977
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
978 979
}

980 981
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
982
static inline
983 984 985 986 987
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
988

989
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
1006
	if (rt_rq->rt_nr_running) {
1007

1008
		WARN_ON(prio < prev_prio);
1009

1010
		/*
1011 1012
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
1013
		 */
1014
		if (prio == prev_prio) {
1015 1016 1017
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
1018
				sched_find_first_bit(array->bitmap);
1019 1020
		}

1021
	} else
1022
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1023

1024 1025
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
1026

1027 1028 1029 1030 1031 1032
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1033

1034
#ifdef CONFIG_RT_GROUP_SCHED
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
1049 1050 1051 1052
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
1091 1092
}

1093
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
1094
{
P
Peter Zijlstra 已提交
1095 1096 1097
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
1098
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
1099

1100 1101 1102 1103 1104 1105 1106
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
1107
		return;
1108

1109 1110 1111
	if (!rt_rq->rt_nr_running)
		list_add_leaf_rt_rq(rt_rq);

1112 1113 1114 1115
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
1116
	__set_bit(rt_se_prio(rt_se), array->bitmap);
1117

P
Peter Zijlstra 已提交
1118 1119 1120
	inc_rt_tasks(rt_se, rt_rq);
}

1121
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
1131 1132
	if (!rt_rq->rt_nr_running)
		list_del_leaf_rt_rq(rt_rq);
P
Peter Zijlstra 已提交
1133 1134 1135 1136 1137 1138
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
1139
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1140
{
1141
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
1142

1143 1144 1145 1146 1147 1148 1149
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
1150 1151 1152 1153
			__dequeue_rt_entity(rt_se);
	}
}

1154
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1155 1156 1157
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
1158
		__enqueue_rt_entity(rt_se, head);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
1169
			__enqueue_rt_entity(rt_se, false);
1170
	}
I
Ingo Molnar 已提交
1171 1172 1173 1174 1175
}

/*
 * Adding/removing a task to/from a priority array:
 */
1176
static void
1177
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
1178 1179 1180
{
	struct sched_rt_entity *rt_se = &p->rt;

1181
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
1182 1183
		rt_se->timeout = 0;

1184
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1185

1186
	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1187
		enqueue_pushable_task(rq, p);
1188 1189

	inc_nr_running(rq);
P
Peter Zijlstra 已提交
1190 1191
}

1192
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1193
{
P
Peter Zijlstra 已提交
1194
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
1195

1196
	update_curr_rt(rq);
1197
	dequeue_rt_entity(rt_se);
1198

1199
	dequeue_pushable_task(rq, p);
1200 1201

	dec_nr_running(rq);
I
Ingo Molnar 已提交
1202 1203 1204
}

/*
1205 1206
 * Put task to the head or the end of the run list without the overhead of
 * dequeue followed by enqueue.
I
Ingo Molnar 已提交
1207
 */
1208 1209
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
1210
{
1211
	if (on_rt_rq(rt_se)) {
1212 1213 1214 1215 1216 1217 1218
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
1219
	}
P
Peter Zijlstra 已提交
1220 1221
}

1222
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
1223
{
P
Peter Zijlstra 已提交
1224 1225
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1226

P
Peter Zijlstra 已提交
1227 1228
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
1229
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
1230
	}
I
Ingo Molnar 已提交
1231 1232
}

P
Peter Zijlstra 已提交
1233
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
1234
{
1235
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
1236 1237
}

1238
#ifdef CONFIG_SMP
1239 1240
static int find_lowest_rq(struct task_struct *task);

1241
static int
1242
select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1243
{
1244 1245 1246 1247 1248
	struct task_struct *curr;
	struct rq *rq;
	int cpu;

	cpu = task_cpu(p);
1249

1250
	if (p->nr_cpus_allowed == 1)
1251 1252
		goto out;

1253 1254 1255 1256
	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1257 1258 1259 1260 1261
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1262
	/*
1263
	 * If the current task on @p's runqueue is an RT task, then
1264 1265 1266 1267
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1268 1269 1270 1271 1272 1273 1274 1275 1276
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1277 1278 1279 1280 1281 1282
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1283
	 */
1284
	if (curr && unlikely(rt_task(curr)) &&
1285
	    (curr->nr_cpus_allowed < 2 ||
1286
	     curr->prio <= p->prio) &&
1287
	    (p->nr_cpus_allowed > 1)) {
1288
		int target = find_lowest_rq(p);
1289

1290 1291
		if (target != -1)
			cpu = target;
1292
	}
1293
	rcu_read_unlock();
1294

1295
out:
1296
	return cpu;
1297
}
1298 1299 1300

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
1301
	if (rq->curr->nr_cpus_allowed == 1)
1302 1303
		return;

1304
	if (p->nr_cpus_allowed != 1
1305 1306
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1307

1308 1309
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1320 1321
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1322 1323 1324
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1325
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1326
{
1327
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1328
		resched_task(rq->curr);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1345
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1346
		check_preempt_equal_prio(rq, p);
1347
#endif
I
Ingo Molnar 已提交
1348 1349
}

P
Peter Zijlstra 已提交
1350 1351
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1352
{
P
Peter Zijlstra 已提交
1353 1354
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1355 1356 1357 1358
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1359
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1360 1361

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1362
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1363

P
Peter Zijlstra 已提交
1364 1365
	return next;
}
I
Ingo Molnar 已提交
1366

1367
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1368 1369 1370 1371
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1372

P
Peter Zijlstra 已提交
1373 1374
	rt_rq = &rq->rt;

1375
	if (!rt_rq->rt_nr_running)
P
Peter Zijlstra 已提交
1376 1377
		return NULL;

P
Peter Zijlstra 已提交
1378
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1379 1380 1381 1382
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1383
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1384 1385 1386 1387
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1388
	p->se.exec_start = rq->clock_task;
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1401
#ifdef CONFIG_SMP
1402 1403 1404 1405 1406
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1407
#endif
1408

P
Peter Zijlstra 已提交
1409
	return p;
I
Ingo Molnar 已提交
1410 1411
}

1412
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1413
{
1414
	update_curr_rt(rq);
1415 1416 1417 1418 1419

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
1420
	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1421
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1422 1423
}

1424
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1425

S
Steven Rostedt 已提交
1426 1427 1428
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

1429 1430 1431
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1432
	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1433 1434 1435 1436
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1437
/* Return the second highest RT task, NULL otherwise */
1438
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1439
{
P
Peter Zijlstra 已提交
1440 1441 1442 1443
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1444 1445
	int idx;

P
Peter Zijlstra 已提交
1446 1447 1448
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1449
next_idx:
P
Peter Zijlstra 已提交
1450 1451
		if (idx >= MAX_RT_PRIO)
			continue;
1452
		if (next && next->prio <= idx)
P
Peter Zijlstra 已提交
1453 1454
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
1455 1456 1457 1458 1459 1460
			struct task_struct *p;

			if (!rt_entity_is_task(rt_se))
				continue;

			p = rt_task_of(rt_se);
P
Peter Zijlstra 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1470 1471
	}

S
Steven Rostedt 已提交
1472 1473 1474
	return next;
}

1475
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1476

G
Gregory Haskins 已提交
1477 1478 1479
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1480
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1481 1482
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1483

1484 1485 1486 1487
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1488
	if (task->nr_cpus_allowed == 1)
1489
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1490

1491 1492
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1502
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1503 1504 1505 1506 1507 1508
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1509 1510
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1511

1512
	rcu_read_lock();
R
Rusty Russell 已提交
1513 1514 1515
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1516

R
Rusty Russell 已提交
1517 1518 1519 1520 1521
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1522 1523
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1524
				return this_cpu;
1525
			}
R
Rusty Russell 已提交
1526 1527 1528

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1529 1530
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1531
				return best_cpu;
1532
			}
G
Gregory Haskins 已提交
1533 1534
		}
	}
1535
	rcu_read_unlock();
G
Gregory Haskins 已提交
1536 1537 1538 1539 1540 1541

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1542 1543 1544 1545 1546 1547 1548
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1549 1550 1551
}

/* Will lock the rq it finds */
1552
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1553 1554 1555
{
	struct rq *lowest_rq = NULL;
	int tries;
1556
	int cpu;
S
Steven Rostedt 已提交
1557

1558 1559 1560
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1561
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1562 1563
			break;

1564 1565
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1566
		/* if the prio of this runqueue changed, try again */
1567
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1568 1569 1570 1571 1572 1573
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1574
			if (unlikely(task_rq(task) != rq ||
1575
				     !cpumask_test_cpu(lowest_rq->cpu,
1576
						       tsk_cpus_allowed(task)) ||
1577
				     task_running(rq, task) ||
P
Peter Zijlstra 已提交
1578
				     !task->on_rq)) {
1579

1580
				double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1581 1582 1583 1584 1585 1586
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1587
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1588 1589 1590
			break;

		/* try again */
1591
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1592 1593 1594 1595 1596 1597
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
1610
	BUG_ON(p->nr_cpus_allowed <= 1);
1611

P
Peter Zijlstra 已提交
1612
	BUG_ON(!p->on_rq);
1613 1614 1615 1616 1617
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1618 1619 1620 1621 1622
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1623
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1624 1625 1626
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1627
	int ret = 0;
S
Steven Rostedt 已提交
1628

G
Gregory Haskins 已提交
1629 1630 1631
	if (!rq->rt.overloaded)
		return 0;

1632
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1633 1634 1635
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1636
retry:
1637
	if (unlikely(next_task == rq->curr)) {
1638
		WARN_ON(1);
S
Steven Rostedt 已提交
1639
		return 0;
1640
	}
S
Steven Rostedt 已提交
1641 1642 1643 1644 1645 1646

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1647 1648
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1649 1650 1651
		return 0;
	}

1652
	/* We might release rq lock */
S
Steven Rostedt 已提交
1653 1654 1655
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1656
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1657 1658 1659
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1660
		 * find_lock_lowest_rq releases rq->lock
1661 1662 1663 1664 1665
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1666
		 */
1667
		task = pick_next_pushable_task(rq);
1668 1669
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1670 1671 1672 1673
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1674 1675
			 */
			goto out;
S
Steven Rostedt 已提交
1676
		}
1677

1678 1679 1680 1681
		if (!task)
			/* No more tasks, just exit */
			goto out;

1682
		/*
1683
		 * Something has shifted, try again.
1684
		 */
1685 1686 1687
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1688 1689
	}

1690
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1691 1692
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1693
	ret = 1;
S
Steven Rostedt 已提交
1694 1695 1696

	resched_task(lowest_rq->curr);

1697
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1698 1699 1700 1701

out:
	put_task_struct(next_task);

1702
	return ret;
S
Steven Rostedt 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1712 1713
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1714
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1715
	struct task_struct *p;
1716 1717
	struct rq *src_rq;

1718
	if (likely(!rt_overloaded(this_rq)))
1719 1720
		return 0;

1721
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1722 1723 1724 1725
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1738 1739 1740
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1741
		 * alter this_rq
1742
		 */
1743
		double_lock_balance(this_rq, src_rq);
1744 1745 1746 1747

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1748 1749
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1750 1751 1752 1753 1754 1755 1756

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1757
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1758
			WARN_ON(p == src_rq->curr);
P
Peter Zijlstra 已提交
1759
			WARN_ON(!p->on_rq);
1760 1761 1762 1763 1764 1765 1766

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1767
			 * current task on the run queue
1768
			 */
1769
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1770
				goto skip;
1771 1772 1773 1774 1775 1776 1777 1778 1779

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1780
			 * in another runqueue. (low likelihood
1781 1782 1783
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1784
skip:
1785
		double_unlock_balance(this_rq, src_rq);
1786 1787 1788 1789 1790
	}

	return ret;
}

1791
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1792 1793
{
	/* Try to pull RT tasks here if we lower this rq's prio */
Y
Yong Zhang 已提交
1794
	if (rq->rt.highest_prio.curr > prev->prio)
1795 1796 1797
		pull_rt_task(rq);
}

1798
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1799
{
1800
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1801 1802
}

1803 1804 1805 1806
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1807
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1808
{
1809
	if (!task_running(rq, p) &&
1810
	    !test_tsk_need_resched(rq->curr) &&
1811
	    has_pushable_tasks(rq) &&
1812
	    p->nr_cpus_allowed > 1 &&
1813
	    rt_task(rq->curr) &&
1814
	    (rq->curr->nr_cpus_allowed < 2 ||
1815
	     rq->curr->prio <= p->prio))
1816 1817 1818
		push_rt_tasks(rq);
}

1819
static void set_cpus_allowed_rt(struct task_struct *p,
1820
				const struct cpumask *new_mask)
1821
{
1822 1823
	struct rq *rq;
	int weight;
1824 1825 1826

	BUG_ON(!rt_task(p));

1827 1828
	if (!p->on_rq)
		return;
1829

1830
	weight = cpumask_weight(new_mask);
1831

1832 1833 1834 1835
	/*
	 * Only update if the process changes its state from whether it
	 * can migrate or not.
	 */
1836
	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1837
		return;
1838

1839
	rq = task_rq(p);
1840

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	/*
	 * The process used to be able to migrate OR it can now migrate
	 */
	if (weight <= 1) {
		if (!task_current(rq, p))
			dequeue_pushable_task(rq, p);
		BUG_ON(!rq->rt.rt_nr_migratory);
		rq->rt.rt_nr_migratory--;
	} else {
		if (!task_current(rq, p))
			enqueue_pushable_task(rq, p);
		rq->rt.rt_nr_migratory++;
1853
	}
1854 1855

	update_rt_migration(&rq->rt);
1856
}
1857

1858
/* Assumes rq->lock is held */
1859
static void rq_online_rt(struct rq *rq)
1860 1861 1862
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1863

P
Peter Zijlstra 已提交
1864 1865
	__enable_runtime(rq);

1866
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1867 1868 1869
}

/* Assumes rq->lock is held */
1870
static void rq_offline_rt(struct rq *rq)
1871 1872 1873
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1874

P
Peter Zijlstra 已提交
1875 1876
	__disable_runtime(rq);

1877
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1878
}
1879 1880 1881 1882 1883

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1884
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1885 1886 1887 1888 1889 1890 1891 1892
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
1893 1894 1895 1896 1897
	if (!p->on_rq || rq->rt.rt_nr_running)
		return;

	if (pull_rt_task(rq))
		resched_task(rq->curr);
1898
}
1899

1900
void init_sched_rt_class(void)
1901 1902 1903
{
	unsigned int i;

1904
	for_each_possible_cpu(i) {
1905
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1906
					GFP_KERNEL, cpu_to_node(i));
1907
	}
1908
}
1909 1910 1911 1912 1913 1914 1915
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1916
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1927
	if (p->on_rq && rq->curr != p) {
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1943 1944
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1945
{
P
Peter Zijlstra 已提交
1946
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1947 1948 1949
		return;

	if (rq->curr == p) {
1950 1951 1952 1953 1954 1955 1956 1957 1958
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1959 1960 1961
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1962
		 */
1963
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1964 1965 1966 1967 1968
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1969
#endif /* CONFIG_SMP */
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1981 1982 1983 1984
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

1985 1986 1987
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1988 1989 1990 1991

	if (soft != RLIM_INFINITY) {
		unsigned long next;

1992 1993 1994 1995 1996
		if (p->rt.watchdog_stamp != jiffies) {
			p->rt.timeout++;
			p->rt.watchdog_stamp = jiffies;
		}

1997
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1998
		if (p->rt.timeout > next)
1999
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2000 2001
	}
}
I
Ingo Molnar 已提交
2002

P
Peter Zijlstra 已提交
2003
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
2004
{
2005 2006
	struct sched_rt_entity *rt_se = &p->rt;

2007 2008
	update_curr_rt(rq);

2009 2010
	watchdog(rq, p);

I
Ingo Molnar 已提交
2011 2012 2013 2014 2015 2016 2017
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
2018
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
2019 2020
		return;

2021
	p->rt.time_slice = sched_rr_timeslice;
I
Ingo Molnar 已提交
2022

2023
	/*
2024 2025
	 * Requeue to the end of queue if we (and all of our ancestors) are the
	 * only element on the queue
2026
	 */
2027 2028 2029 2030 2031 2032
	for_each_sched_rt_entity(rt_se) {
		if (rt_se->run_list.prev != rt_se->run_list.next) {
			requeue_task_rt(rq, p, 0);
			set_tsk_need_resched(p);
			return;
		}
2033
	}
I
Ingo Molnar 已提交
2034 2035
}

2036 2037 2038 2039
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

2040
	p->se.exec_start = rq->clock_task;
2041 2042 2043

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
2044 2045
}

2046
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2047 2048 2049 2050 2051
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
2052
		return sched_rr_timeslice;
2053 2054 2055 2056
	else
		return 0;
}

2057
const struct sched_class rt_sched_class = {
2058
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

2068
#ifdef CONFIG_SMP
L
Li Zefan 已提交
2069 2070
	.select_task_rq		= select_task_rq_rt,

2071
	.set_cpus_allowed       = set_cpus_allowed_rt,
2072 2073
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
2074 2075
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
2076
	.task_woken		= task_woken_rt,
2077
	.switched_from		= switched_from_rt,
2078
#endif
I
Ingo Molnar 已提交
2079

2080
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
2081
	.task_tick		= task_tick_rt,
2082

2083 2084
	.get_rr_interval	= get_rr_interval_rt,

2085 2086
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
2087
};
2088 2089 2090 2091

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

2092
void print_rt_stats(struct seq_file *m, int cpu)
2093
{
C
Cheng Xu 已提交
2094
	rt_rq_iter_t iter;
2095 2096 2097
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
2098
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2099 2100 2101
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
2102
#endif /* CONFIG_SCHED_DEBUG */