scrub.c 109.9 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71 72
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			*raid_map;
	u64			map_length;
};

A
Arne Jansen 已提交
73
struct scrub_page {
74 75
	struct scrub_block	*sblock;
	struct page		*page;
76
	struct btrfs_device	*dev;
77
	struct list_head	list;
A
Arne Jansen 已提交
78 79
	u64			flags;  /* extent flags */
	u64			generation;
80 81
	u64			logical;
	u64			physical;
82
	u64			physical_for_dev_replace;
83
	atomic_t		ref_count;
84 85 86 87 88
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
89
	u8			csum[BTRFS_CSUM_SIZE];
90 91

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
92 93 94 95
};

struct scrub_bio {
	int			index;
96
	struct scrub_ctx	*sctx;
97
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
98 99 100 101
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
102 103 104 105 106
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
107
	int			page_count;
A
Arne Jansen 已提交
108 109 110 111
	int			next_free;
	struct btrfs_work	work;
};

112
struct scrub_block {
113
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
114 115 116
	int			page_count;
	atomic_t		outstanding_pages;
	atomic_t		ref_count; /* free mem on transition to zero */
117
	struct scrub_ctx	*sctx;
118
	struct scrub_parity	*sparity;
119 120 121 122
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
123
		unsigned int	generation_error:1; /* also sets header_error */
124 125 126 127

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
128 129 130
	};
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

	atomic_t		ref_count;

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

164 165 166 167 168 169 170 171
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

172
struct scrub_ctx {
173
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
175 176
	int			first_free;
	int			curr;
177 178
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
179 180 181 182 183
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
184
	int			readonly;
185
	int			pages_per_rd_bio;
186 187
	u32			sectorsize;
	u32			nodesize;
188 189

	int			is_dev_replace;
190
	struct scrub_wr_ctx	wr_ctx;
191

A
Arne Jansen 已提交
192 193 194 195 196 197 198
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
};

199
struct scrub_fixup_nodatasum {
200
	struct scrub_ctx	*sctx;
201
	struct btrfs_device	*dev;
202 203 204 205 206 207
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

208 209 210 211 212 213 214
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

215 216 217 218 219 220
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
221
	struct list_head	inodes;
222 223 224
	struct btrfs_work	work;
};

225 226 227 228 229 230 231 232 233
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

234 235 236 237
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
238
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
239
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
240
				     struct btrfs_fs_info *fs_info,
241
				     struct scrub_block *original_sblock,
242
				     u64 length, u64 logical,
243
				     struct scrub_block *sblocks_for_recheck);
244 245 246
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
247
				u16 csum_size, int retry_failed_mirror);
248 249 250 251 252 253 254 255 256 257 258
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write);
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
259 260 261
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
262 263 264 265 266
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
267 268
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
269 270
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
271 272
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
273
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
274
		       u64 physical, struct btrfs_device *dev, u64 flags,
275 276
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
277
static void scrub_bio_end_io(struct bio *bio, int err);
278 279
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
299
				      struct scrub_copy_nocow_ctx *ctx);
300 301 302
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
303
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
304
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
S
Stefan Behrens 已提交
305 306


307 308 309 310 311 312 313 314 315 316 317
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
}

318
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
319 320 321 322 323 324 325 326 327
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

328 329 330 331 332 333 334 335 336 337 338 339 340
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);

	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
362 363 364 365 366 367 368 369 370 371

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
}

393
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
394
{
395
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
396
		struct btrfs_ordered_sum *sum;
397
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
398 399 400 401 402 403
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

404
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
405 406 407
{
	int i;

408
	if (!sctx)
A
Arne Jansen 已提交
409 410
		return;

411 412
	scrub_free_wr_ctx(&sctx->wr_ctx);

413
	/* this can happen when scrub is cancelled */
414 415
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
416 417

		for (i = 0; i < sbio->page_count; i++) {
418
			WARN_ON(!sbio->pagev[i]->page);
419 420 421 422 423
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

424
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
425
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
426 427 428 429 430 431

		if (!sbio)
			break;
		kfree(sbio);
	}

432 433
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
434 435 436
}

static noinline_for_stack
437
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
438
{
439
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
440 441
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
442 443
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
444

445 446 447 448 449 450 451 452 453 454 455 456
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
457 458
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
459
		goto nomem;
460
	sctx->is_dev_replace = is_dev_replace;
461
	sctx->pages_per_rd_bio = pages_per_rd_bio;
462
	sctx->curr = -1;
463
	sctx->dev_root = dev->dev_root;
464
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
465 466 467 468 469
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
470
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
471 472

		sbio->index = i;
473
		sbio->sctx = sctx;
474
		sbio->page_count = 0;
475 476
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
477

478
		if (i != SCRUB_BIOS_PER_SCTX - 1)
479
			sctx->bios[i]->next_free = i + 1;
480
		else
481 482 483 484 485
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
486 487
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
488 489 490 491 492 493 494
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
495 496 497 498 499 500 501

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
502
	return sctx;
A
Arne Jansen 已提交
503 504

nomem:
505
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
506 507 508
	return ERR_PTR(-ENOMEM);
}

509 510
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
511 512 513 514 515 516 517
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
518
	struct scrub_warning *swarn = warn_ctx;
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

	ret = inode_item_info(inum, 0, local_root, swarn->path);
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
547 548 549 550 551
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
552 553 554 555 556 557 558 559 560 561
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
562
		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
563 564
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
565
			swarn->logical, rcu_str_deref(swarn->dev->name),
566 567
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
568
			(char *)(unsigned long)ipath->fspath->val[i]);
569 570 571 572 573

	free_ipath(ipath);
	return 0;

err:
574
	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
575 576
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
577
		swarn->logical, rcu_str_deref(swarn->dev->name),
578 579 580 581 582 583
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

584
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
585
{
586 587
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
588 589 590 591 592
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
593 594 595
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
596
	u64 ref_root;
597
	u32 item_size;
598
	u8 ref_level;
599
	int ret;
600

601
	WARN_ON(sblock->page_count < 1);
602
	dev = sblock->pagev[0]->dev;
603 604
	fs_info = sblock->sctx->dev_root->fs_info;

605
	path = btrfs_alloc_path();
606 607
	if (!path)
		return;
608

609 610
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
611
	swarn.errstr = errstr;
612
	swarn.dev = NULL;
613

614 615
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
616 617 618
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
619
	extent_item_pos = swarn.logical - found_key.objectid;
620 621 622 623 624 625
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

626
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
627
		do {
628 629 630
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
631
			printk_in_rcu(KERN_WARNING
632
				"BTRFS: %s at logical %llu on dev %s, "
633
				"sector %llu: metadata %s (level %d) in tree "
634 635
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
636 637 638 639 640
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
641
		btrfs_release_path(path);
642
	} else {
643
		btrfs_release_path(path);
644
		swarn.path = path;
645
		swarn.dev = dev;
646 647
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
648 649 650 651 652 653 654
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

655
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
656
{
657
	struct page *page = NULL;
658
	unsigned long index;
659
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
660
	int ret;
661
	int corrected = 0;
662
	struct btrfs_key key;
663
	struct inode *inode = NULL;
664
	struct btrfs_fs_info *fs_info;
665 666
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
667
	int srcu_index;
668 669 670 671

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
672 673 674 675 676 677 678

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
679
		return PTR_ERR(local_root);
680
	}
681 682 683 684

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
685 686
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
687 688 689 690 691 692
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
719
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
720
					fixup->logical, page,
721
					offset - page_offset(page),
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
756 757

	iput(inode);
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
777
	struct scrub_ctx *sctx;
778 779 780 781 782
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
783
	sctx = fixup->sctx;
784 785 786

	path = btrfs_alloc_path();
	if (!path) {
787 788 789
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

818 819 820
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
821 822 823 824 825

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
826 827 828
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
829 830 831
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
832 833
		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
834
			fixup->logical, rcu_str_deref(fixup->dev->name));
835 836 837 838 839
	}

	btrfs_free_path(path);
	kfree(fixup);

840
	scrub_pending_trans_workers_dec(sctx);
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
		kfree(recover->bbio);
		kfree(recover->raid_map);
		kfree(recover);
	}
}

A
Arne Jansen 已提交
857
/*
858 859 860 861 862 863
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
864
 */
865
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
866
{
867
	struct scrub_ctx *sctx = sblock_to_check->sctx;
868
	struct btrfs_device *dev;
869 870 871 872 873 874 875 876 877 878 879 880 881 882
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
883
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
884 885 886
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
887
	fs_info = sctx->dev_root->fs_info;
888 889 890 891 892 893 894 895 896 897 898
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
899
	length = sblock_to_check->page_count * PAGE_SIZE;
900 901 902 903 904
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
905
			BTRFS_EXTENT_FLAG_DATA);
906 907 908
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
909

910 911 912 913 914
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
				     sizeof(*sblocks_for_recheck),
				     GFP_NOFS);
	if (!sblocks_for_recheck) {
948 949 950 951 952
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
953
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
954
		goto out;
A
Arne Jansen 已提交
955 956
	}

957
	/* setup the context, map the logical blocks and alloc the pages */
958
	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
959 960
					logical, sblocks_for_recheck);
	if (ret) {
961 962 963 964
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
965
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
966 967 968 969
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
970

971
	/* build and submit the bios for the failed mirror, check checksums */
972
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
973
			    csum, generation, sctx->csum_size, 1);
A
Arne Jansen 已提交
974

975 976 977 978 979 980 981 982 983 984
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
985 986
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
987
		sblock_to_check->data_corrected = 1;
988
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
989

990 991
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
992
		goto out;
A
Arne Jansen 已提交
993 994
	}

995
	if (!sblock_bad->no_io_error_seen) {
996 997 998
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
999 1000
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1001
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1002
	} else if (sblock_bad->checksum_error) {
1003 1004 1005
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1006 1007
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1008
		btrfs_dev_stat_inc_and_print(dev,
1009
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1010
	} else if (sblock_bad->header_error) {
1011 1012 1013
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1014 1015 1016
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1017
		if (sblock_bad->generation_error)
1018
			btrfs_dev_stat_inc_and_print(dev,
1019 1020
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1021
			btrfs_dev_stat_inc_and_print(dev,
1022
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1023
	}
A
Arne Jansen 已提交
1024

1025 1026 1027 1028
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1029

1030 1031
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1032

1033 1034 1035
nodatasum_case:
		WARN_ON(sctx->is_dev_replace);

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1046
		fixup_nodatasum->sctx = sctx;
1047
		fixup_nodatasum->dev = dev;
1048 1049 1050
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1051
		scrub_pending_trans_workers_inc(sctx);
1052 1053
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1054 1055
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1056
		goto out;
A
Arne Jansen 已提交
1057 1058
	}

1059 1060
	/*
	 * now build and submit the bios for the other mirrors, check
1061 1062
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1078
		struct scrub_block *sblock_other;
1079

1080 1081 1082 1083 1084
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1085 1086
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
1087
				    sctx->csum_size, 0);
1088 1089

		if (!sblock_other->header_error &&
1090 1091
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1092 1093 1094 1095 1096 1097 1098 1099 1100
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
			} else {
				int force_write = is_metadata || have_csum;

				ret = scrub_repair_block_from_good_copy(
						sblock_bad, sblock_other,
						force_write);
			}
1101 1102 1103 1104
			if (0 == ret)
				goto corrected_error;
		}
	}
A
Arne Jansen 已提交
1105 1106

	/*
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	 * for dev_replace, pick good pages and write to the target device.
	 */
	if (sctx->is_dev_replace) {
		success = 1;
		for (page_num = 0; page_num < sblock_bad->page_count;
		     page_num++) {
			int sub_success;

			sub_success = 0;
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				struct scrub_block *sblock_other =
					sblocks_for_recheck + mirror_index;
				struct scrub_page *page_other =
					sblock_other->pagev[page_num];

				if (!page_other->io_error) {
					ret = scrub_write_page_to_dev_replace(
							sblock_other, page_num);
					if (ret == 0) {
						/* succeeded for this page */
						sub_success = 1;
						break;
					} else {
						btrfs_dev_replace_stats_inc(
							&sctx->dev_root->
							fs_info->dev_replace.
							num_write_errors);
					}
				}
			}

			if (!sub_success) {
				/*
				 * did not find a mirror to fetch the page
				 * from. scrub_write_page_to_dev_replace()
				 * handles this case (page->io_error), by
				 * filling the block with zeros before
				 * submitting the write request
				 */
				success = 0;
				ret = scrub_write_page_to_dev_replace(
						sblock_bad, page_num);
				if (ret)
					btrfs_dev_replace_stats_inc(
						&sctx->dev_root->fs_info->
						dev_replace.num_write_errors);
			}
		}

		goto out;
	}

	/*
	 * for regular scrub, repair those pages that are errored.
	 * In case of I/O errors in the area that is supposed to be
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1186 1187
	 */

1188 1189 1190 1191 1192 1193
	/* can only fix I/O errors from here on */
	if (sblock_bad->no_io_error_seen)
		goto did_not_correct_error;

	success = 1;
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1194
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1195 1196

		if (!page_bad->io_error)
A
Arne Jansen 已提交
1197
			continue;
1198 1199 1200 1201 1202 1203 1204

		for (mirror_index = 0;
		     mirror_index < BTRFS_MAX_MIRRORS &&
		     sblocks_for_recheck[mirror_index].page_count > 0;
		     mirror_index++) {
			struct scrub_block *sblock_other = sblocks_for_recheck +
							   mirror_index;
1205 1206
			struct scrub_page *page_other = sblock_other->pagev[
							page_num];
1207 1208 1209 1210 1211 1212 1213 1214 1215

			if (!page_other->io_error) {
				ret = scrub_repair_page_from_good_copy(
					sblock_bad, sblock_other, page_num, 0);
				if (0 == ret) {
					page_bad->io_error = 0;
					break; /* succeeded for this page */
				}
			}
I
Ilya Dryomov 已提交
1216
		}
A
Arne Jansen 已提交
1217

1218 1219 1220 1221
		if (page_bad->io_error) {
			/* did not find a mirror to copy the page from */
			success = 0;
		}
A
Arne Jansen 已提交
1222 1223
	}

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	if (success) {
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1235 1236
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
1237
					    generation, sctx->csum_size, 1);
1238
			if (!sblock_bad->header_error &&
1239 1240 1241 1242 1243 1244 1245
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1246 1247
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1248
			sblock_to_check->data_corrected = 1;
1249
			spin_unlock(&sctx->stat_lock);
1250
			printk_ratelimited_in_rcu(KERN_ERR
1251
				"BTRFS: fixed up error at logical %llu on dev %s\n",
1252
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1253
		}
1254 1255
	} else {
did_not_correct_error:
1256 1257 1258
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1259
		printk_ratelimited_in_rcu(KERN_ERR
1260
			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1261
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1262
	}
A
Arne Jansen 已提交
1263

1264 1265 1266 1267 1268 1269
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1270
			struct scrub_recover *recover;
1271 1272
			int page_index;

1273 1274 1275
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1276 1277 1278 1279 1280 1281
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1282 1283
				scrub_page_put(sblock->pagev[page_index]);
			}
1284 1285 1286
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1287

1288 1289
	return 0;
}
A
Arne Jansen 已提交
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio, u64 *raid_map)
{
	if (raid_map) {
		if (raid_map[bbio->num_stripes - 1] == RAID6_Q_STRIPE)
			return 3;
		else
			return 2;
	} else {
		return (int)bbio->num_stripes;
	}
}

static inline void scrub_stripe_index_and_offset(u64 logical, u64 *raid_map,
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

	if (raid_map) {
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1332
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1333
				     struct btrfs_fs_info *fs_info,
1334
				     struct scrub_block *original_sblock,
1335 1336 1337
				     u64 length, u64 logical,
				     struct scrub_block *sblocks_for_recheck)
{
1338 1339 1340 1341 1342 1343 1344
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 *raid_map;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1345 1346
	int page_index;
	int mirror_index;
1347
	int nmirrors;
1348 1349 1350
	int ret;

	/*
1351
	 * note: the two members ref_count and outstanding_pages
1352 1353 1354 1355 1356 1357
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	page_index = 0;
	while (length > 0) {
1358 1359 1360 1361
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
		raid_map = NULL;
A
Arne Jansen 已提交
1362

1363 1364 1365 1366
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1367 1368
		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
				       &mapped_length, &bbio, 0, &raid_map);
1369 1370
		if (ret || !bbio || mapped_length < sublen) {
			kfree(bbio);
1371
			kfree(raid_map);
1372 1373
			return -EIO;
		}
A
Arne Jansen 已提交
1374

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
			kfree(bbio);
			kfree(raid_map);
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->raid_map = raid_map;
		recover->map_length = mapped_length;

1387
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1388 1389 1390

		nmirrors = scrub_nr_raid_mirrors(bbio, raid_map);
		for (mirror_index = 0; mirror_index < nmirrors;
1391 1392 1393 1394 1395 1396 1397 1398
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			if (mirror_index >= BTRFS_MAX_MIRRORS)
				continue;

			sblock = sblocks_for_recheck + mirror_index;
1399 1400 1401 1402
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1403 1404 1405
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1406
				scrub_put_recover(recover);
1407 1408
				return -ENOMEM;
			}
1409 1410 1411
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

			scrub_stripe_index_and_offset(logical, raid_map,
						      mapped_length,
						      bbio->num_stripes,
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1423 1424 1425 1426
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1427 1428
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1429
			sblock->page_count++;
1430 1431 1432
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1433 1434 1435

			scrub_get_recover(recover);
			page->recover = recover;
1436
		}
1437
		scrub_put_recover(recover);
1438 1439 1440 1441 1442 1443
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1444 1445
}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
struct scrub_bio_ret {
	struct completion event;
	int error;
};

static void scrub_bio_wait_endio(struct bio *bio, int error)
{
	struct scrub_bio_ret *ret = bio->bi_private;

	ret->error = error;
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
	return page->recover && page->recover->raid_map;
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
				    page->recover->raid_map,
				    page->recover->map_length,
1480
				    page->mirror_num, 0);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1491 1492 1493 1494 1495 1496 1497
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1498 1499 1500
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
1501
				u16 csum_size, int retry_failed_mirror)
I
Ilya Dryomov 已提交
1502
{
1503
	int page_num;
I
Ilya Dryomov 已提交
1504

1505 1506 1507
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1508

1509 1510
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1511
		struct scrub_page *page = sblock->pagev[page_num];
1512

1513
		if (page->dev->bdev == NULL) {
1514 1515 1516 1517 1518
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1519
		WARN_ON(!page->page);
1520
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1521 1522 1523 1524 1525
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1526
		bio->bi_bdev = page->dev->bdev;
1527

1528
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1529 1530 1531 1532 1533 1534 1535 1536 1537
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;

			if (btrfsic_submit_bio_wait(READ, bio))
				sblock->no_io_error_seen = 0;
		}
1538

1539 1540
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1541

1542 1543 1544 1545 1546
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1547
	return;
A
Arne Jansen 已提交
1548 1549
}

M
Miao Xie 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1560 1561 1562 1563 1564
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1565
{
1566 1567 1568 1569 1570
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1571
	WARN_ON(!sblock->pagev[0]->page);
1572 1573 1574
	if (is_metadata) {
		struct btrfs_header *h;

1575
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1576 1577
		h = (struct btrfs_header *)mapped_buffer;

1578
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
M
Miao Xie 已提交
1579
		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1580
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1581
			   BTRFS_UUID_SIZE)) {
1582
			sblock->header_error = 1;
1583
		} else if (generation != btrfs_stack_header_generation(h)) {
1584 1585 1586
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1587 1588 1589 1590
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1591

1592
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1593
	}
A
Arne Jansen 已提交
1594

1595 1596
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1597
			crc = btrfs_csum_data(
1598 1599 1600
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1601
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1602

1603
		kunmap_atomic(mapped_buffer);
1604 1605 1606
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1607
		WARN_ON(!sblock->pagev[page_num]->page);
1608

1609
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1610 1611 1612 1613 1614
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1615 1616
}

1617 1618 1619 1620 1621 1622
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write)
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1623

1624 1625
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1626

1627 1628 1629 1630 1631 1632
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
							   page_num,
							   force_write);
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1633
	}
1634 1635 1636 1637 1638 1639 1640 1641

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1642 1643
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1644

1645 1646
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1647 1648 1649 1650 1651
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1652
		if (!page_bad->dev->bdev) {
1653 1654 1655
			printk_ratelimited(KERN_WARNING "BTRFS: "
				"scrub_repair_page_from_good_copy(bdev == NULL) "
				"is unexpected!\n");
1656 1657 1658
			return -EIO;
		}

1659
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1660 1661
		if (!bio)
			return -EIO;
1662
		bio->bi_bdev = page_bad->dev->bdev;
1663
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1664 1665 1666 1667 1668

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1669
		}
1670

1671
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1672 1673
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1674 1675 1676
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1677 1678 1679
			bio_put(bio);
			return -EIO;
		}
1680
		bio_put(bio);
A
Arne Jansen 已提交
1681 1682
	}

1683 1684 1685
	return 0;
}

1686 1687 1688 1689
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

1690 1691 1692 1693 1694 1695 1696
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1752
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1763
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

1822 1823
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1824
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1856 1857 1858 1859
{
	u64 flags;
	int ret;

1860 1861
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1873 1874

	return ret;
A
Arne Jansen 已提交
1875 1876
}

1877
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1878
{
1879
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1880
	u8 csum[BTRFS_CSUM_SIZE];
1881 1882 1883
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1884 1885
	u32 crc = ~(u32)0;
	int fail = 0;
1886 1887
	u64 len;
	int index;
A
Arne Jansen 已提交
1888

1889
	BUG_ON(sblock->page_count < 1);
1890
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1891 1892
		return 0;

1893 1894
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1895
	buffer = kmap_atomic(page);
1896

1897
	len = sctx->sectorsize;
1898 1899 1900 1901
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1902
		crc = btrfs_csum_data(buffer, crc, l);
1903
		kunmap_atomic(buffer);
1904 1905 1906 1907 1908
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1909 1910
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1911
		buffer = kmap_atomic(page);
1912 1913
	}

A
Arne Jansen 已提交
1914
	btrfs_csum_final(crc, csum);
1915
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1916 1917 1918 1919 1920
		fail = 1;

	return fail;
}

1921
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1922
{
1923
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1924
	struct btrfs_header *h;
1925
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1926
	struct btrfs_fs_info *fs_info = root->fs_info;
1927 1928 1929 1930 1931 1932
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1933 1934 1935
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1936 1937 1938 1939
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1940
	page = sblock->pagev[0]->page;
1941
	mapped_buffer = kmap_atomic(page);
1942
	h = (struct btrfs_header *)mapped_buffer;
1943
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1944 1945 1946 1947 1948 1949 1950

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1951
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1952 1953
		++fail;

1954
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1955 1956
		++fail;

M
Miao Xie 已提交
1957
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
A
Arne Jansen 已提交
1958 1959 1960 1961 1962 1963
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1964
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1965 1966 1967 1968 1969 1970
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1971
		crc = btrfs_csum_data(p, crc, l);
1972
		kunmap_atomic(mapped_buffer);
1973 1974 1975 1976 1977
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1978 1979
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1980
		mapped_buffer = kmap_atomic(page);
1981 1982 1983 1984 1985
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1986
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1987 1988 1989 1990 1991
		++crc_fail;

	return fail || crc_fail;
}

1992
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1993 1994
{
	struct btrfs_super_block *s;
1995
	struct scrub_ctx *sctx = sblock->sctx;
1996 1997 1998 1999 2000 2001
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
2002
	u32 crc = ~(u32)0;
2003 2004
	int fail_gen = 0;
	int fail_cor = 0;
2005 2006
	u64 len;
	int index;
A
Arne Jansen 已提交
2007

2008
	BUG_ON(sblock->page_count < 1);
2009
	page = sblock->pagev[0]->page;
2010
	mapped_buffer = kmap_atomic(page);
2011
	s = (struct btrfs_super_block *)mapped_buffer;
2012
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
2013

2014
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2015
		++fail_cor;
A
Arne Jansen 已提交
2016

2017
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2018
		++fail_gen;
A
Arne Jansen 已提交
2019

M
Miao Xie 已提交
2020
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2021
		++fail_cor;
A
Arne Jansen 已提交
2022

2023 2024 2025 2026 2027 2028 2029
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2030
		crc = btrfs_csum_data(p, crc, l);
2031
		kunmap_atomic(mapped_buffer);
2032 2033 2034 2035 2036
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2037 2038
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2039
		mapped_buffer = kmap_atomic(page);
2040 2041 2042 2043 2044
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2045
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2046
		++fail_cor;
A
Arne Jansen 已提交
2047

2048
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2049 2050 2051 2052 2053
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2054 2055 2056
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2057
		if (fail_cor)
2058
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2059 2060
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2061
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2062
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2063 2064
	}

2065
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2066 2067
}

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
static void scrub_block_get(struct scrub_block *sblock)
{
	atomic_inc(&sblock->ref_count);
}

static void scrub_block_put(struct scrub_block *sblock)
{
	if (atomic_dec_and_test(&sblock->ref_count)) {
		int i;

2078 2079 2080
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2081
		for (i = 0; i < sblock->page_count; i++)
2082
			scrub_page_put(sblock->pagev[i]);
2083 2084 2085 2086
		kfree(sblock);
	}
}

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
static void scrub_page_get(struct scrub_page *spage)
{
	atomic_inc(&spage->ref_count);
}

static void scrub_page_put(struct scrub_page *spage)
{
	if (atomic_dec_and_test(&spage->ref_count)) {
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2101
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2102 2103 2104
{
	struct scrub_bio *sbio;

2105
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2106
		return;
A
Arne Jansen 已提交
2107

2108 2109
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2110
	scrub_pending_bio_inc(sctx);
A
Arne Jansen 已提交
2111

2112 2113 2114 2115 2116 2117 2118 2119 2120
	if (!sbio->bio->bi_bdev) {
		/*
		 * this case should not happen. If btrfs_map_block() is
		 * wrong, it could happen for dev-replace operations on
		 * missing devices when no mirrors are available, but in
		 * this case it should already fail the mount.
		 * This case is handled correctly (but _very_ slowly).
		 */
		printk_ratelimited(KERN_WARNING
2121
			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
2122 2123 2124 2125
		bio_endio(sbio->bio, -EIO);
	} else {
		btrfsic_submit_bio(READ, sbio->bio);
	}
A
Arne Jansen 已提交
2126 2127
}

2128 2129
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2130
{
2131
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2132
	struct scrub_bio *sbio;
2133
	int ret;
A
Arne Jansen 已提交
2134 2135 2136 2137 2138

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2139 2140 2141 2142 2143 2144 2145 2146
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2147
		} else {
2148 2149
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2150 2151
		}
	}
2152
	sbio = sctx->bios[sctx->curr];
2153
	if (sbio->page_count == 0) {
2154 2155
		struct bio *bio;

2156 2157
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2158
		sbio->dev = spage->dev;
2159 2160
		bio = sbio->bio;
		if (!bio) {
2161
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2162 2163 2164 2165
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2166 2167 2168

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2169
		bio->bi_bdev = sbio->dev->bdev;
2170
		bio->bi_iter.bi_sector = sbio->physical >> 9;
2171
		sbio->err = 0;
2172 2173 2174
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2175 2176
		   spage->logical ||
		   sbio->dev != spage->dev) {
2177
		scrub_submit(sctx);
A
Arne Jansen 已提交
2178 2179
		goto again;
	}
2180

2181 2182 2183 2184 2185 2186 2187 2188
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2189
		scrub_submit(sctx);
2190 2191 2192
		goto again;
	}

2193
	scrub_block_get(sblock); /* one for the page added to the bio */
2194 2195
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2196
	if (sbio->page_count == sctx->pages_per_rd_bio)
2197
		scrub_submit(sctx);
2198 2199 2200 2201

	return 0;
}

2202
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2203
		       u64 physical, struct btrfs_device *dev, u64 flags,
2204 2205
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2206 2207 2208 2209 2210 2211
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2212 2213 2214
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2215
		return -ENOMEM;
A
Arne Jansen 已提交
2216
	}
2217

2218 2219
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2220
	atomic_set(&sblock->ref_count, 1);
2221
	sblock->sctx = sctx;
2222 2223 2224
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2225
		struct scrub_page *spage;
2226 2227
		u64 l = min_t(u64, len, PAGE_SIZE);

2228 2229 2230
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2231 2232 2233
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2234
			scrub_block_put(sblock);
2235 2236
			return -ENOMEM;
		}
2237 2238 2239
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2240
		spage->sblock = sblock;
2241
		spage->dev = dev;
2242 2243 2244 2245
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2246
		spage->physical_for_dev_replace = physical_for_dev_replace;
2247 2248 2249
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2250
			memcpy(spage->csum, csum, sctx->csum_size);
2251 2252 2253 2254
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2255 2256 2257
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2258 2259 2260
		len -= l;
		logical += l;
		physical += l;
2261
		physical_for_dev_replace += l;
2262 2263
	}

2264
	WARN_ON(sblock->page_count == 0);
2265
	for (index = 0; index < sblock->page_count; index++) {
2266
		struct scrub_page *spage = sblock->pagev[index];
2267 2268
		int ret;

2269
		ret = scrub_add_page_to_rd_bio(sctx, spage);
2270 2271
		if (ret) {
			scrub_block_put(sblock);
2272
			return ret;
2273
		}
2274
	}
A
Arne Jansen 已提交
2275

2276
	if (force)
2277
		scrub_submit(sctx);
A
Arne Jansen 已提交
2278

2279 2280
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2281 2282 2283
	return 0;
}

2284 2285 2286
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2287
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2288 2289 2290 2291

	sbio->err = err;
	sbio->bio = bio;

2292
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2293 2294 2295 2296 2297
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2298
	struct scrub_ctx *sctx = sbio->sctx;
2299 2300
	int i;

2301
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2323 2324 2325 2326
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2327 2328 2329 2330 2331 2332 2333 2334

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2335
	scrub_pending_bio_dec(sctx);
2336 2337
}

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
	int offset;
	int nsectors;
	int sectorsize = sparity->sctx->dev_root->sectorsize;

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
	offset = (int)do_div(start, sparity->stripe_len);
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2377 2378
static void scrub_block_complete(struct scrub_block *sblock)
{
2379 2380
	int corrupted = 0;

2381
	if (!sblock->no_io_error_seen) {
2382
		corrupted = 1;
2383
		scrub_handle_errored_block(sblock);
2384 2385 2386 2387 2388 2389
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2390 2391
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2392 2393
			scrub_write_block_to_dev_replace(sblock);
	}
2394 2395 2396 2397 2398 2399 2400 2401 2402

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2403 2404
}

2405
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2406 2407 2408
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2409
	unsigned long index;
A
Arne Jansen 已提交
2410 2411
	unsigned long num_sectors;

2412 2413
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2414 2415 2416 2417 2418 2419
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2420
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2421 2422 2423 2424 2425 2426 2427
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2428
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2429
	num_sectors = sum->len / sctx->sectorsize;
2430 2431
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2432 2433 2434
		list_del(&sum->list);
		kfree(sum);
	}
2435
	return 1;
A
Arne Jansen 已提交
2436 2437 2438
}

/* scrub extent tries to collect up to 64 kB for each bio */
2439
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2440
			u64 physical, struct btrfs_device *dev, u64 flags,
2441
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2442 2443 2444
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2445 2446 2447
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2448 2449 2450 2451 2452
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2453
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2454 2455 2456 2457 2458
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2459
	} else {
2460
		blocksize = sctx->sectorsize;
2461
		WARN_ON(1);
2462
	}
A
Arne Jansen 已提交
2463 2464

	while (len) {
2465
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2466 2467 2468 2469
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2470
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2471
			if (have_csum == 0)
2472
				++sctx->stat.no_csum;
2473 2474 2475 2476 2477 2478
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2479
		}
2480
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2481 2482 2483
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2484 2485 2486 2487 2488
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2489
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2490 2491 2492 2493
	}
	return 0;
}

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
	atomic_set(&sblock->ref_count, 1);
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
			have_csum = scrub_find_csum(sctx, logical, l, csum);
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
skip:
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2620 2621 2622 2623 2624 2625 2626 2627
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2628 2629
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
	int stripe_index;
	int rot;

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2640 2641 2642
	if (stripe_start)
		*stripe_start = last_offset;

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

		stripe_nr = *offset;
		do_div(stripe_nr, map->stripe_len);
		do_div(stripe_nr, nr_data_stripes(map));

		/* Work out the disk rotation on this stripe-set */
		rot = do_div(stripe_nr, map->num_stripes);
		/* calculate which stripe this data locates */
		rot += i;
2655
		stripe_index = rot % map->num_stripes;
2656 2657 2658 2659 2660 2661 2662 2663 2664
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

static void scrub_parity_bio_endio(struct bio *bio, int error)
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
	struct scrub_ctx *sctx = sparity->sctx;

	if (error)
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
	bio_put(bio);
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 *raid_map = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

	length = sparity->logic_end - sparity->logic_start + 1;
2717
	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
			       sparity->logic_start,
			       &length, &bbio, 0, &raid_map);
	if (ret || !bbio || !raid_map)
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
					      raid_map, length,
					      sparity->scrub_dev,
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
		raid56_parity_add_scrub_pages(rbio, spage->page,
					      spage->logical);

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
	kfree(bbio);
	kfree(raid_map);
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
	atomic_inc(&sparity->ref_count);
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
	if (!atomic_dec_and_test(&sparity->ref_count))
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

	nsectors = map->stripe_len / root->sectorsize;
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
	atomic_set(&sparity->ref_count, 1);
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->nodesize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

			if (key.objectid > logic_end) {
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logic_start &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
					   key.objectid, logic_start);
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

			scrub_remap_extent(fs_info, extent_logical,
					   extent_len, &extent_physical,
					   &extent_dev,
					   &extent_mirror_num);

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
			if (ret)
				goto out;

			scrub_free_csums(sctx);
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
						logic_end - logic_start + 1);
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

2982
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2983 2984
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2985 2986
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
2987
{
2988
	struct btrfs_path *path, *ppath;
2989
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
2990 2991 2992
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2993
	struct blk_plug plug;
A
Arne Jansen 已提交
2994 2995 2996 2997 2998 2999 3000 3001
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3002
	u64 logic_end;
3003
	u64 physical_end;
A
Arne Jansen 已提交
3004
	u64 generation;
3005
	int mirror_num;
A
Arne Jansen 已提交
3006 3007 3008 3009
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3010 3011
	u64 increment = map->stripe_len;
	u64 offset;
3012 3013 3014
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3015 3016
	u64 stripe_logical;
	u64 stripe_end;
3017 3018
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3019
	int stop_loop = 0;
D
David Woodhouse 已提交
3020

A
Arne Jansen 已提交
3021
	nstripes = length;
3022
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3023 3024 3025 3026 3027
	offset = 0;
	do_div(nstripes, map->stripe_len);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3028
		mirror_num = 1;
A
Arne Jansen 已提交
3029 3030 3031 3032
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3033
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3034 3035
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3036
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3037 3038
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3039
		mirror_num = num % map->num_stripes + 1;
3040 3041
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
3042
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3043 3044
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3045 3046
	} else {
		increment = map->stripe_len;
3047
		mirror_num = 1;
A
Arne Jansen 已提交
3048 3049 3050 3051 3052 3053
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3054 3055 3056 3057 3058 3059
	ppath = btrfs_alloc_path();
	if (!ppath) {
		btrfs_free_path(ppath);
		return -ENOMEM;
	}

3060 3061 3062 3063 3064
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3065 3066 3067 3068
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
A
Arne Jansen 已提交
3069 3070 3071
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3072 3073
	 */
	logical = base + offset;
3074 3075 3076 3077
	physical_end = physical + nstripes * map->stripe_len;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
			 BTRFS_BLOCK_GROUP_RAID6)) {
		get_raid56_logic_offset(physical_end, num,
3078
					map, &logic_end, NULL);
3079 3080 3081 3082
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3083
	wait_event(sctx->list_wait,
3084
		   atomic_read(&sctx->bios_in_flight) == 0);
3085
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3086 3087 3088 3089 3090

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
3091
	key_end.objectid = logic_end;
3092 3093
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
3094 3095 3096 3097 3098 3099 3100
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3101
	key_end.offset = logic_end;
A
Arne Jansen 已提交
3102 3103 3104 3105 3106 3107 3108
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3109 3110 3111 3112 3113

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3114
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3115 3116 3117 3118 3119

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3120 3121 3122 3123 3124
	while (physical < physical_end) {
		/* for raid56, we skip parity stripe */
		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
			ret = get_raid56_logic_offset(physical, num,
3125
					map, &logical, &stripe_logical);
3126
			logical += base;
3127 3128 3129 3130 3131 3132 3133 3134
			if (ret) {
				stripe_logical += base;
				stripe_end = stripe_logical + increment - 1;
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
						ppath, stripe_logical,
						stripe_end);
				if (ret)
					goto out;
3135
				goto skip;
3136
			}
3137
		}
A
Arne Jansen 已提交
3138 3139 3140 3141
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3142
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3143 3144 3145 3146 3147 3148 3149 3150
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3151
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3152
			scrub_submit(sctx);
3153 3154 3155
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3156
			wait_event(sctx->list_wait,
3157
				   atomic_read(&sctx->bios_in_flight) == 0);
3158
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3159
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3160 3161
		}

3162 3163 3164 3165
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3166
		key.objectid = logical;
L
Liu Bo 已提交
3167
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3168 3169 3170 3171

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3172

3173
		if (ret > 0) {
3174
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3175 3176
			if (ret < 0)
				goto out;
3177 3178 3179 3180 3181 3182 3183 3184 3185
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3186 3187
		}

L
Liu Bo 已提交
3188
		stop_loop = 0;
A
Arne Jansen 已提交
3189
		while (1) {
3190 3191
			u64 bytes;

A
Arne Jansen 已提交
3192 3193 3194 3195 3196 3197 3198 3199 3200
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3201
				stop_loop = 1;
A
Arne Jansen 已提交
3202 3203 3204 3205
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3206
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3207
				bytes = root->nodesize;
3208 3209 3210 3211
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3212 3213
				goto next;

L
Liu Bo 已提交
3214 3215 3216
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;
A
Arne Jansen 已提交
3217

L
Liu Bo 已提交
3218 3219 3220 3221 3222 3223
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3224 3225 3226 3227 3228 3229 3230 3231

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logical &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
3232 3233 3234
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
3235
				       key.objectid, logical);
A
Arne Jansen 已提交
3236 3237 3238
				goto next;
			}

L
Liu Bo 已提交
3239 3240 3241 3242
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3243 3244 3245
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3246 3247 3248
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3249
			}
L
Liu Bo 已提交
3250
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3251
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3252 3253
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3254 3255
			}

L
Liu Bo 已提交
3256
			extent_physical = extent_logical - logical + physical;
3257 3258 3259 3260 3261 3262 3263
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3264 3265 3266 3267 3268 3269 3270

			ret = btrfs_lookup_csums_range(csum_root, logical,
						logical + map->stripe_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

3271 3272 3273
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3274
					   extent_logical - logical + physical);
A
Arne Jansen 已提交
3275 3276 3277
			if (ret)
				goto out;

3278
			scrub_free_csums(sctx);
L
Liu Bo 已提交
3279 3280
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3281 3282 3283 3284 3285 3286
				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
					BTRFS_BLOCK_GROUP_RAID6)) {
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
								increment - 1;
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3306 3307 3308 3309
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3310 3311 3312 3313 3314
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3315
				if (physical >= physical_end) {
L
Liu Bo 已提交
3316 3317 3318 3319
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3320 3321 3322
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3323
		btrfs_release_path(path);
3324
skip:
A
Arne Jansen 已提交
3325 3326
		logical += increment;
		physical += map->stripe_len;
3327
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3328 3329 3330 3331 3332
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3333
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3334 3335
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3336
	}
3337
out:
A
Arne Jansen 已提交
3338
	/* push queued extents */
3339
	scrub_submit(sctx);
3340 3341 3342
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3343

3344
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3345
	btrfs_free_path(path);
3346
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3347 3348 3349
	return ret < 0 ? ret : 0;
}

3350
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3351 3352 3353
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
3354
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
3355 3356
{
	struct btrfs_mapping_tree *map_tree =
3357
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
3358 3359 3360
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3361
	int ret = 0;
A
Arne Jansen 已提交
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3378
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3379
		    map->stripes[i].physical == dev_offset) {
3380
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3381 3382
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3394
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3395 3396
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3397 3398 3399
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3400
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3412
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3413 3414 3415 3416 3417 3418 3419 3420 3421

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

3422
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3423 3424 3425 3426 3427 3428
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3429 3430 3431 3432 3433 3434 3435 3436 3437
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
		}
A
Arne Jansen 已提交
3438 3439 3440 3441 3442 3443

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3444
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3445 3446
			break;

3447
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3459 3460
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3471 3472 3473 3474 3475 3476

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3477 3478 3479
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3480
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3502 3503 3504 3505 3506 3507 3508 3509
		atomic_inc(&fs_info->scrubs_paused);
		wake_up(&fs_info->scrub_pause_wait);

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3510 3511
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3512 3513 3514 3515 3516 3517 3518
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

		mutex_lock(&fs_info->scrub_lock);
		__scrub_blocked_if_needed(fs_info);
		atomic_dec(&fs_info->scrubs_paused);
		mutex_unlock(&fs_info->scrub_lock);
		wake_up(&fs_info->scrub_pause_wait);
3519

A
Arne Jansen 已提交
3520 3521 3522
		btrfs_put_block_group(cache);
		if (ret)
			break;
3523 3524
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3525 3526 3527 3528 3529 3530 3531
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
3532

3533 3534
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3535
skip:
A
Arne Jansen 已提交
3536
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3537
		btrfs_release_path(path);
A
Arne Jansen 已提交
3538 3539 3540
	}

	btrfs_free_path(path);
3541 3542 3543 3544 3545 3546

	/*
	 * ret can still be 1 from search_slot or next_leaf,
	 * that's not an error
	 */
	return ret < 0 ? ret : 0;
A
Arne Jansen 已提交
3547 3548
}

3549 3550
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3551 3552 3553 3554 3555
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3556
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3557

3558
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3559 3560
		return -EIO;

3561 3562 3563 3564 3565
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
3566 3567 3568

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3569 3570
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3571 3572
			break;

3573
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3574
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3575
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3576 3577 3578
		if (ret)
			return ret;
	}
3579
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3580 3581 3582 3583 3584 3585 3586

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3587 3588
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3589
{
3590
	int ret = 0;
3591 3592
	int flags = WQ_FREEZABLE | WQ_UNBOUND;
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3593

A
Arne Jansen 已提交
3594
	if (fs_info->scrub_workers_refcnt == 0) {
3595
		if (is_dev_replace)
3596 3597 3598
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
3599
		else
3600 3601 3602 3603 3604
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
		if (!fs_info->scrub_workers) {
			ret = -ENOMEM;
3605
			goto out;
3606 3607 3608 3609 3610 3611
		}
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
		if (!fs_info->scrub_wr_completion_workers) {
			ret = -ENOMEM;
3612
			goto out;
3613 3614 3615 3616 3617
		}
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
		if (!fs_info->scrub_nocow_workers) {
			ret = -ENOMEM;
3618
			goto out;
3619
		}
A
Arne Jansen 已提交
3620
	}
A
Arne Jansen 已提交
3621
	++fs_info->scrub_workers_refcnt;
3622 3623
out:
	return ret;
A
Arne Jansen 已提交
3624 3625
}

3626
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3627
{
3628
	if (--fs_info->scrub_workers_refcnt == 0) {
3629 3630 3631
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3632
	}
A
Arne Jansen 已提交
3633 3634 3635
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3636 3637
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3638
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3639
{
3640
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3641 3642
	int ret;
	struct btrfs_device *dev;
3643
	struct rcu_string *name;
A
Arne Jansen 已提交
3644

3645
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3646 3647
		return -EINVAL;

3648
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3649 3650 3651 3652 3653
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3654 3655
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3656
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3657 3658 3659
		return -EINVAL;
	}

3660
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3661
		/* not supported for data w/o checksums */
3662 3663 3664
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
3665
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3666 3667 3668
		return -EINVAL;
	}

3669 3670 3671 3672 3673 3674 3675 3676
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
3677 3678
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3679 3680 3681 3682 3683 3684 3685
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3686

3687 3688
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3689
	if (!dev || (dev->missing && !is_dev_replace)) {
3690
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3691 3692 3693
		return -ENODEV;
	}

3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3704
	mutex_lock(&fs_info->scrub_lock);
3705
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3706
		mutex_unlock(&fs_info->scrub_lock);
3707 3708
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3709 3710
	}

3711 3712 3713 3714 3715
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
3716
		mutex_unlock(&fs_info->scrub_lock);
3717
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3718 3719
		return -EINPROGRESS;
	}
3720
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3721 3722 3723 3724 3725 3726 3727 3728

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3729
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3730
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3731
		mutex_unlock(&fs_info->scrub_lock);
3732 3733
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3734
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3735
	}
3736 3737
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3738
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3739

3740 3741 3742 3743
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3744
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3745 3746 3747
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3748
	if (!is_dev_replace) {
3749 3750 3751 3752
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3753
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3754
		ret = scrub_supers(sctx, dev);
3755
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3756
	}
A
Arne Jansen 已提交
3757 3758

	if (!ret)
3759 3760
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3761

3762
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3763 3764 3765
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3766
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3767

A
Arne Jansen 已提交
3768
	if (progress)
3769
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3770 3771 3772

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3773
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3774 3775
	mutex_unlock(&fs_info->scrub_lock);

3776
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
3777 3778 3779 3780

	return ret;
}

3781
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3798
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3799 3800 3801 3802 3803 3804 3805
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3806
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3827 3828
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3829
{
3830
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3831 3832

	mutex_lock(&fs_info->scrub_lock);
3833 3834
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3835 3836 3837
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3838
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3849

A
Arne Jansen 已提交
3850 3851 3852 3853
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3854
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3855 3856

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3857
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3858
	if (dev)
3859 3860 3861
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3862 3863
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3864
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3865
}
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
		kfree(bbio);
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
	kfree(bbio);
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3942 3943
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
3944
	INIT_LIST_HEAD(&nocow_ctx->inodes);
3945 3946
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
3947 3948 3949 3950

	return 0;
}

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4003
					  record_inode_for_nocow, nocow_ctx);
4004
	if (ret != 0 && ret != -ENOENT) {
4005 4006
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
4007 4008
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
4009 4010 4011 4012
		not_written = 1;
		goto out;
	}

4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4031
out:
4032 4033 4034 4035 4036 4037 4038 4039
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4052 4053
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4054
{
4055
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4056
	struct btrfs_key key;
4057 4058
	struct inode *inode;
	struct page *page;
4059
	struct btrfs_root *local_root;
4060 4061 4062 4063
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	struct extent_state *cached_state = NULL;
	struct extent_io_tree *io_tree;
4064
	u64 physical_for_dev_replace;
4065 4066
	u64 len = nocow_ctx->len;
	u64 lockstart = offset, lockend = offset + len - 1;
4067
	unsigned long index;
4068
	int srcu_index;
4069 4070
	int ret = 0;
	int err = 0;
4071 4072 4073 4074

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4075 4076 4077

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4078
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4079 4080
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4081
		return PTR_ERR(local_root);
4082
	}
4083 4084 4085 4086 4087

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4088
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4089 4090 4091
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4092 4093 4094 4095
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

4096
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > nocow_ctx->logical ||
	    em->block_start + em->block_len < nocow_ctx->logical + len) {
		free_extent_map(em);
		goto out_unlock;
	}
	free_extent_map(em);

4123 4124
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
4125
again:
4126 4127
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4128
			btrfs_err(fs_info, "find_or_create_page() failed");
4129
			ret = -ENOMEM;
4130
			goto out;
4131 4132 4133 4134 4135 4136 4137
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4138 4139 4140
			err = extent_read_full_page_nolock(io_tree, page,
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4141 4142
			if (err) {
				ret = err;
4143 4144
				goto next_page;
			}
4145

4146
			lock_page(page);
4147 4148 4149 4150 4151 4152 4153
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4154
				unlock_page(page);
4155 4156 4157
				page_cache_release(page);
				goto again;
			}
4158 4159 4160 4161 4162
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4163 4164 4165 4166
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4167
next_page:
4168 4169 4170 4171 4172 4173
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

4174 4175 4176 4177
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
		len -= PAGE_CACHE_SIZE;
	}
4178 4179 4180 4181
	ret = COPY_COMPLETE;
out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
4182
out:
4183
	mutex_unlock(&inode->i_mutex);
4184
	iput(inode);
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
4200
			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4201 4202
		return -EIO;
	}
4203
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4204 4205 4206 4207 4208 4209
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4210 4211
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4212 4213 4214 4215 4216 4217 4218 4219 4220
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4221
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4222 4223 4224 4225 4226
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}