tree.c 105.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/ftrace_event.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61 62 63
#include <trace/events/rcu.h>

#include "rcu.h"
64

65 66 67 68 69 70
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

71 72
/* Data structures. */

73
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
74
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
75

76 77 78 79 80 81 82 83
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
84
#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
85 86
static char sname##_varname[] = #sname; \
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
87
struct rcu_state sname##_state = { \
88
	.level = { &sname##_state.node[0] }, \
89
	.call = cr, \
90
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
91 92
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
93
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
94 95
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
96
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
97
	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
98
	.name = sname##_varname, \
99
	.abbr = sabbr, \
100 101
}; \
DEFINE_PER_CPU(struct rcu_data, sname##_data)
102

103 104
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
105

106
static struct rcu_state *rcu_state;
107
LIST_HEAD(rcu_struct_flavors);
108

109 110
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
111
module_param(rcu_fanout_leaf, int, 0444);
112 113 114 115 116 117 118 119 120 121
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

122 123 124 125
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
126
 * optimize synchronize_sched() to a simple barrier().  When this variable
127 128 129 130
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
131 132 133
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

134 135 136 137 138 139 140 141 142 143 144 145 146 147
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

148 149
#ifdef CONFIG_RCU_BOOST

150 151 152 153 154
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
155
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
156
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
157
DEFINE_PER_CPU(char, rcu_cpu_has_work);
158

159 160
#endif /* #ifdef CONFIG_RCU_BOOST */

T
Thomas Gleixner 已提交
161
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
162 163
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
164

165 166 167 168 169 170 171 172 173 174 175 176
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

177 178 179 180 181 182 183 184 185 186
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

187
/*
188
 * Note a quiescent state.  Because we do not need to know
189
 * how many quiescent states passed, just if there was at least
190
 * one since the start of the grace period, this just sets a flag.
191
 * The caller must have disabled preemption.
192
 */
193
void rcu_sched_qs(int cpu)
194
{
195
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
196

197
	if (rdp->passed_quiesce == 0)
198
		trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
199
	rdp->passed_quiesce = 1;
200 201
}

202
void rcu_bh_qs(int cpu)
203
{
204
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
205

206
	if (rdp->passed_quiesce == 0)
207
		trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
208
	rdp->passed_quiesce = 1;
209
}
210

211 212 213
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
214
 * The caller must have disabled preemption.
215 216 217
 */
void rcu_note_context_switch(int cpu)
{
218
	trace_rcu_utilization(TPS("Start context switch"));
219
	rcu_sched_qs(cpu);
220
	rcu_preempt_note_context_switch(cpu);
221
	trace_rcu_utilization(TPS("End context switch"));
222
}
223
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
224

225
static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
226
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
227
	.dynticks = ATOMIC_INIT(1),
228 229 230 231
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
232
};
233

E
Eric Dumazet 已提交
234 235 236
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
237

E
Eric Dumazet 已提交
238 239 240
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
241

242 243
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
244 245 246 247

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

248 249
static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
				  struct rcu_data *rdp);
250 251 252 253
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
254
static void force_quiescent_state(struct rcu_state *rsp);
255
static int rcu_pending(int cpu);
256 257

/*
258
 * Return the number of RCU-sched batches processed thus far for debug & stats.
259
 */
260
long rcu_batches_completed_sched(void)
261
{
262
	return rcu_sched_state.completed;
263
}
264
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
265 266 267 268 269 270 271 272 273 274

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

275 276 277 278 279
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
280
	force_quiescent_state(&rcu_bh_state);
281 282 283
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

309 310 311 312 313
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
314
	force_quiescent_state(&rcu_sched_state);
315 316 317
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

318 319 320 321 322 323
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
324 325
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
326 327 328
}

/*
329 330 331
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
332 333 334 335
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
336
	int i;
P
Paul E. McKenney 已提交
337

338 339
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
340
	if (rcu_nocb_needs_gp(rsp))
341
		return 1;  /* Yes, a no-CBs CPU needs one. */
342 343 344 345 346 347 348 349 350 351
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
352 353 354 355 356 357 358 359 360 361
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

362
/*
363
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
364 365 366 367 368
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
369 370
static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
				bool user)
371
{
372
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
373
	if (!user && !is_idle_task(current)) {
374 375
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
376

377
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
378
		ftrace_dump(DUMP_ORIG);
379 380 381
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
382
	}
383
	rcu_prepare_for_idle(smp_processor_id());
384 385 386 387 388
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
389 390

	/*
391
	 * It is illegal to enter an extended quiescent state while
392 393 394 395 396 397 398 399
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
400
}
401

402 403 404
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
405
 */
406
static void rcu_eqs_enter(bool user)
407
{
408
	long long oldval;
409 410
	struct rcu_dynticks *rdtp;

411
	rdtp = this_cpu_ptr(&rcu_dynticks);
412
	oldval = rdtp->dynticks_nesting;
413 414 415 416 417
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
418
	rcu_eqs_enter_common(rdtp, oldval, user);
419
}
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
435 436 437
	unsigned long flags;

	local_irq_save(flags);
438
	rcu_eqs_enter(false);
439
	rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
440
	local_irq_restore(flags);
441
}
442
EXPORT_SYMBOL_GPL(rcu_idle_enter);
443

444
#ifdef CONFIG_RCU_USER_QS
445 446 447 448 449 450 451 452 453 454
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
455
	rcu_eqs_enter(1);
456
}
457
#endif /* CONFIG_RCU_USER_QS */
458

459 460 461 462 463 464
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
465
 *
466 467 468 469 470 471 472 473
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
474
 */
475
void rcu_irq_exit(void)
476 477
{
	unsigned long flags;
478
	long long oldval;
479 480 481
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
482
	rdtp = this_cpu_ptr(&rcu_dynticks);
483
	oldval = rdtp->dynticks_nesting;
484 485
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
486
	if (rdtp->dynticks_nesting)
487
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
488
	else
489
		rcu_eqs_enter_common(rdtp, oldval, true);
490
	rcu_sysidle_enter(rdtp, 1);
491 492 493 494
	local_irq_restore(flags);
}

/*
495
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
496 497 498 499 500
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
501 502
static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
			       int user)
503
{
504 505 506 507 508
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
509
	rcu_cleanup_after_idle(smp_processor_id());
510
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
511
	if (!user && !is_idle_task(current)) {
512 513
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
514

515
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
516
				  oldval, rdtp->dynticks_nesting);
517
		ftrace_dump(DUMP_ORIG);
518 519 520
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
521 522 523
	}
}

524 525 526
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
527
 */
528
static void rcu_eqs_exit(bool user)
529 530 531 532
{
	struct rcu_dynticks *rdtp;
	long long oldval;

533
	rdtp = this_cpu_ptr(&rcu_dynticks);
534
	oldval = rdtp->dynticks_nesting;
535 536 537 538 539
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
540
	rcu_eqs_exit_common(rdtp, oldval, user);
541
}
542 543 544 545 546 547 548 549 550 551 552 553 554 555

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
556 557 558
	unsigned long flags;

	local_irq_save(flags);
559
	rcu_eqs_exit(false);
560
	rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
561
	local_irq_restore(flags);
562
}
563
EXPORT_SYMBOL_GPL(rcu_idle_exit);
564

565
#ifdef CONFIG_RCU_USER_QS
566 567 568 569 570 571 572 573
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
574
	rcu_eqs_exit(1);
575
}
576
#endif /* CONFIG_RCU_USER_QS */
577

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
604
	rdtp = this_cpu_ptr(&rcu_dynticks);
605 606 607
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
608
	if (oldval)
609
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
610
	else
611
		rcu_eqs_exit_common(rdtp, oldval, true);
612
	rcu_sysidle_exit(rdtp, 1);
613 614 615 616 617 618 619 620 621 622 623 624
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
625
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
626

627 628
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
629
		return;
630 631 632 633 634 635
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
636 637 638 639 640 641 642 643 644 645 646
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
647
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
648

649 650
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
651
		return;
652 653 654 655 656
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
657 658 659
}

/**
660 661 662 663 664 665 666 667 668 669 670 671 672 673
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
bool __rcu_is_watching(void)
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
674
 *
675
 * If the current CPU is in its idle loop and is neither in an interrupt
676
 * or NMI handler, return true.
677
 */
678
bool rcu_is_watching(void)
679
{
680 681 682
	int ret;

	preempt_disable();
683
	ret = __rcu_is_watching();
684 685
	preempt_enable();
	return ret;
686
}
687
EXPORT_SYMBOL_GPL(rcu_is_watching);
688

689
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
690 691 692 693 694 695 696

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
697 698 699 700 701 702 703 704 705 706 707
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
708 709 710 711 712 713
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
714 715
	struct rcu_data *rdp;
	struct rcu_node *rnp;
716 717 718 719 720
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
721
	rdp = this_cpu_ptr(&rcu_sched_data);
722 723
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
724 725 726 727 728 729
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

730
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
731

732
/**
733
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
734
 *
735 736 737
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
738
 */
739
static int rcu_is_cpu_rrupt_from_idle(void)
740
{
741
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
742 743 744 745 746
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
747
 * is in dynticks idle mode, which is an extended quiescent state.
748
 */
749 750
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
751
{
752
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
753
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
754
	return (rdp->dynticks_snap & 0x1) == 0;
755 756 757 758 759 760
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
761
 * for this same CPU, or by virtue of having been offline.
762
 */
763 764
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
765
{
766 767
	unsigned int curr;
	unsigned int snap;
768

769 770
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
771 772 773 774 775 776 777 778 779

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
780
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
781
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
782 783 784 785
		rdp->dynticks_fqs++;
		return 1;
	}

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
801
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
802 803 804
		rdp->offline_fqs++;
		return 1;
	}
805 806 807 808 809 810 811 812 813 814

	/*
	 * There is a possibility that a CPU in adaptive-ticks state
	 * might run in the kernel with the scheduling-clock tick disabled
	 * for an extended time period.  Invoke rcu_kick_nohz_cpu() to
	 * force the CPU to restart the scheduling-clock tick in this
	 * CPU is in this state.
	 */
	rcu_kick_nohz_cpu(rdp->cpu);

815
	return 0;
816 817 818 819
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
820 821 822 823 824
	unsigned long j = ACCESS_ONCE(jiffies);

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
	rsp->jiffies_stall = j + rcu_jiffies_till_stall_check();
825 826
}

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
/*
 * Dump stacks of all tasks running on stalled CPUs.  This is a fallback
 * for architectures that do not implement trigger_all_cpu_backtrace().
 * The NMI-triggered stack traces are more accurate because they are
 * printed by the target CPU.
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

850 851 852 853 854
static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
855
	int ndetected = 0;
856
	struct rcu_node *rnp = rcu_get_root(rsp);
857
	long totqlen = 0;
858 859 860

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
861
	raw_spin_lock_irqsave(&rnp->lock, flags);
862
	delta = jiffies - rsp->jiffies_stall;
863
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
864
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
865 866
		return;
	}
867
	rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
868
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
869

870 871 872 873 874
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
875
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
876
	       rsp->name);
877
	print_cpu_stall_info_begin();
878
	rcu_for_each_leaf_node(rsp, rnp) {
879
		raw_spin_lock_irqsave(&rnp->lock, flags);
880
		ndetected += rcu_print_task_stall(rnp);
881 882 883 884 885 886 887 888
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
889
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
890
	}
891 892 893 894 895 896 897

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
898
	ndetected += rcu_print_task_stall(rnp);
899 900 901
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
902 903 904
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
	pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
905
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
906
	       rsp->gpnum, rsp->completed, totqlen);
907
	if (ndetected == 0)
908
		pr_err("INFO: Stall ended before state dump start\n");
909
	else if (!trigger_all_cpu_backtrace())
910
		rcu_dump_cpu_stacks(rsp);
911

912
	/* Complain about tasks blocking the grace period. */
913 914 915

	rcu_print_detail_task_stall(rsp);

916
	force_quiescent_state(rsp);  /* Kick them all. */
917 918 919 920
}

static void print_cpu_stall(struct rcu_state *rsp)
{
921
	int cpu;
922 923
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
924
	long totqlen = 0;
925

926 927 928 929 930
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
931
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
932 933 934
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
935 936 937 938
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
	pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
		jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
939 940
	if (!trigger_all_cpu_backtrace())
		dump_stack();
941

P
Paul E. McKenney 已提交
942
	raw_spin_lock_irqsave(&rnp->lock, flags);
943
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
944
		rsp->jiffies_stall = jiffies +
945
				     3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
946
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
947

948 949 950 951 952
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
953 954 955
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
956 957
	unsigned long j;
	unsigned long js;
958 959
	struct rcu_node *rnp;

960
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
961
		return;
962
	j = ACCESS_ONCE(jiffies);
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
	gpnum = ACCESS_ONCE(rsp->gpnum);
	smp_rmb(); /* Pick up ->gpnum first... */
983
	js = ACCESS_ONCE(rsp->jiffies_stall);
984 985 986 987 988 989 990 991
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
	gps = ACCESS_ONCE(rsp->gp_start);
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
	completed = ACCESS_ONCE(rsp->completed);
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
992
	rnp = rdp->mynode;
993
	if (rcu_gp_in_progress(rsp) &&
994
	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
995 996 997 998

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

999 1000
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1001

1002
		/* They had a few time units to dump stack, so complain. */
1003 1004 1005 1006
		print_other_cpu_stall(rsp);
	}
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1018 1019 1020 1021
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1022 1023
}

1024 1025 1026 1027 1028 1029 1030
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

1031 1032
	if (init_nocb_callback_list(rdp))
		return;
1033 1034 1035 1036 1037
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1067 1068 1069 1070 1071
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1072
				unsigned long c, const char *s)
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
 * rcu_node structure's ->need_future_gp field.
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
static unsigned long __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
{
	unsigned long c;
	int i;
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1098
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1099
	if (rnp->need_future_gp[c & 0x1]) {
1100
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		return c;
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
	 * need to explicitly start one.
	 */
	if (rnp->gpnum != rnp->completed ||
	    ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
		rnp->need_future_gp[c & 0x1]++;
1114
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
		return c;
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
	if (rnp != rnp_root)
		raw_spin_lock(&rnp_root->lock);

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1142
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1143 1144 1145 1146 1147 1148 1149 1150
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1151
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1152
	} else {
1153
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1154
		rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
	return c;
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1177 1178
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1179 1180 1181
	return needmore;
}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
 * not hurt to call it repeatedly.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
		return;

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
		return;

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1241 1242
	/* Record any needed additional grace periods. */
	rcu_start_future_gp(rnp, rdp);
1243 1244 1245

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1246
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1247
	else
1248
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
		return;

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
	rcu_accelerate_cbs(rsp, rnp, rdp);
}

1294
/*
1295 1296 1297
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1298
 */
1299
static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1300
{
1301
	/* Handle the ends of any preceding grace periods first. */
1302
	if (rdp->completed == rnp->completed) {
1303

1304
		/* No grace period end, so just accelerate recent callbacks. */
1305
		rcu_accelerate_cbs(rsp, rnp, rdp);
1306

1307 1308 1309 1310
	} else {

		/* Advance callbacks. */
		rcu_advance_cbs(rsp, rnp, rdp);
1311 1312 1313

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1314
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1315
	}
1316

1317 1318 1319 1320 1321 1322 1323
	if (rdp->gpnum != rnp->gpnum) {
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1324
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1325 1326 1327 1328 1329 1330
		rdp->passed_quiesce = 0;
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
	}
}

1331
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1332 1333 1334 1335 1336 1337
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1338 1339
	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1340 1341 1342 1343
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1344
	__note_gp_changes(rsp, rnp, rdp);
1345 1346 1347
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

1348
/*
1349
 * Initialize a new grace period.  Return 0 if no grace period required.
1350
 */
1351
static int rcu_gp_init(struct rcu_state *rsp)
1352 1353
{
	struct rcu_data *rdp;
1354
	struct rcu_node *rnp = rcu_get_root(rsp);
1355

1356
	rcu_bind_gp_kthread();
1357
	raw_spin_lock_irq(&rnp->lock);
1358 1359 1360 1361 1362
	if (rsp->gp_flags == 0) {
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1363
	rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1364

1365 1366 1367 1368 1369
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1370 1371 1372 1373 1374
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1375 1376
	record_gp_stall_check_time(rsp);
	smp_wmb(); /* Record GP times before starting GP. */
1377
	rsp->gpnum++;
1378
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1379 1380 1381
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
1382
	mutex_lock(&rsp->onoff_mutex);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1398 1399
		raw_spin_lock_irq(&rnp->lock);
		rdp = this_cpu_ptr(rsp->rda);
1400 1401
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1402
		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1403
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1404
		ACCESS_ONCE(rnp->completed) = rsp->completed;
1405
		if (rnp == rdp->mynode)
1406
			__note_gp_changes(rsp, rnp, rdp);
1407 1408 1409 1410 1411
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1412
#ifdef CONFIG_PROVE_RCU_DELAY
1413
		if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1414
		    system_state == SYSTEM_RUNNING)
1415
			udelay(200);
1416
#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1417 1418
		cond_resched();
	}
1419

1420
	mutex_unlock(&rsp->onoff_mutex);
1421 1422
	return 1;
}
1423

1424 1425 1426
/*
 * Do one round of quiescent-state forcing.
 */
1427
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1428 1429
{
	int fqs_state = fqs_state_in;
1430 1431
	bool isidle = false;
	unsigned long maxj;
1432 1433 1434 1435 1436
	struct rcu_node *rnp = rcu_get_root(rsp);

	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1437 1438 1439 1440
		if (is_sysidle_rcu_state(rsp)) {
			isidle = 1;
			maxj = jiffies - ULONG_MAX / 4;
		}
1441 1442
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1443
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1444 1445 1446
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1447
		isidle = 0;
1448
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
		rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1459 1460 1461
/*
 * Clean up after the old grace period.
 */
1462
static void rcu_gp_cleanup(struct rcu_state *rsp)
1463 1464
{
	unsigned long gp_duration;
1465
	int nocb = 0;
1466 1467
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1468

1469 1470 1471 1472
	raw_spin_lock_irq(&rnp->lock);
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1473

1474 1475 1476 1477 1478 1479 1480 1481
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1482
	raw_spin_unlock_irq(&rnp->lock);
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1494
		raw_spin_lock_irq(&rnp->lock);
1495
		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1496 1497
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1498
			__note_gp_changes(rsp, rnp, rdp);
1499
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1500 1501
		raw_spin_unlock_irq(&rnp->lock);
		cond_resched();
1502
	}
1503 1504
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1505
	rcu_nocb_gp_set(rnp, nocb);
1506 1507

	rsp->completed = rsp->gpnum; /* Declare grace period done. */
1508
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1509
	rsp->fqs_state = RCU_GP_IDLE;
1510
	rdp = this_cpu_ptr(rsp->rda);
1511
	rcu_advance_cbs(rsp, rnp, rdp);  /* Reduce false positives below. */
1512
	if (cpu_needs_another_gp(rsp, rdp)) {
1513
		rsp->gp_flags = RCU_GP_FLAG_INIT;
1514 1515 1516 1517
		trace_rcu_grace_period(rsp->name,
				       ACCESS_ONCE(rsp->gpnum),
				       TPS("newreq"));
	}
1518 1519 1520 1521 1522 1523 1524 1525
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1526
	int fqs_state;
1527
	int gf;
1528
	unsigned long j;
1529
	int ret;
1530 1531 1532 1533 1534 1535 1536
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1537 1538 1539
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwait"));
1540
			wait_event_interruptible(rsp->gp_wq,
1541
						 ACCESS_ONCE(rsp->gp_flags) &
1542
						 RCU_GP_FLAG_INIT);
1543
			if (rcu_gp_init(rsp))
1544 1545 1546
				break;
			cond_resched();
			flush_signals(current);
1547 1548 1549
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwaitsig"));
1550
		}
1551

1552 1553
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1554 1555 1556 1557 1558
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1559
		ret = 0;
1560
		for (;;) {
1561 1562
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
1563 1564 1565
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("fqswait"));
1566
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1567 1568
					((gf = ACCESS_ONCE(rsp->gp_flags)) &
					 RCU_GP_FLAG_FQS) ||
1569 1570
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1571
					j);
1572
			/* If grace period done, leave loop. */
1573
			if (!ACCESS_ONCE(rnp->qsmask) &&
1574
			    !rcu_preempt_blocked_readers_cgp(rnp))
1575
				break;
1576
			/* If time for quiescent-state forcing, do it. */
1577 1578
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
1579 1580 1581
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsstart"));
1582
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1583 1584 1585
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsend"));
1586 1587 1588 1589 1590
				cond_resched();
			} else {
				/* Deal with stray signal. */
				cond_resched();
				flush_signals(current);
1591 1592 1593
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqswaitsig"));
1594
			}
1595 1596 1597 1598 1599 1600 1601 1602
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1603
		}
1604 1605 1606

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1607 1608 1609
	}
}

1610 1611 1612 1613 1614 1615 1616 1617
static void rsp_wakeup(struct irq_work *work)
{
	struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);

	/* Wake up rcu_gp_kthread() to start the grace period. */
	wake_up(&rsp->gp_wq);
}

1618 1619 1620
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
1621
 * the root node's ->lock and hard irqs must be disabled.
1622 1623 1624 1625
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1626 1627
 */
static void
1628 1629
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
1630
{
1631
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1632
		/*
1633
		 * Either we have not yet spawned the grace-period
1634 1635
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
1636
		 * Either way, don't start a new grace period.
1637 1638 1639
		 */
		return;
	}
1640
	rsp->gp_flags = RCU_GP_FLAG_INIT;
1641 1642
	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
			       TPS("newreq"));
1643

1644 1645
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
1646 1647 1648
	 * could cause possible deadlocks with the rq->lock. Defer
	 * the wakeup to interrupt context.  And don't bother waking
	 * up the running kthread.
1649
	 */
1650 1651
	if (current != rsp->gp_kthread)
		irq_work_queue(&rsp->wakeup_work);
1652 1653
}

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
 */
static void
rcu_start_gp(struct rcu_state *rsp)
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
	rcu_advance_cbs(rsp, rnp, rdp);
	rcu_start_gp_advanced(rsp, rnp, rdp);
}

1679
/*
P
Paul E. McKenney 已提交
1680 1681 1682
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
1683 1684
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
1685
 */
P
Paul E. McKenney 已提交
1686
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1687
	__releases(rcu_get_root(rsp)->lock)
1688
{
1689
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1690 1691
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1692 1693
}

1694
/*
P
Paul E. McKenney 已提交
1695 1696 1697 1698 1699 1700
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1701 1702
 */
static void
P
Paul E. McKenney 已提交
1703 1704
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1705 1706
	__releases(rnp->lock)
{
1707 1708
	struct rcu_node *rnp_c;

1709 1710 1711 1712 1713
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1714
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1715 1716 1717
			return;
		}
		rnp->qsmask &= ~mask;
1718 1719 1720 1721
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1722
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1723 1724

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1725
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1726 1727 1728 1729 1730 1731 1732 1733 1734
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1735
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1736
		rnp_c = rnp;
1737
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1738
		raw_spin_lock_irqsave(&rnp->lock, flags);
1739
		WARN_ON_ONCE(rnp_c->qsmask);
1740 1741 1742 1743
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1744
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1745
	 * to clean up and start the next grace period if one is needed.
1746
	 */
P
Paul E. McKenney 已提交
1747
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1748 1749 1750
}

/*
P
Paul E. McKenney 已提交
1751 1752 1753 1754 1755 1756 1757
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1758 1759
 */
static void
1760
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1761 1762 1763 1764 1765 1766
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1767
	raw_spin_lock_irqsave(&rnp->lock, flags);
1768 1769
	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum) {
1770 1771

		/*
1772 1773 1774 1775
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1776
		 */
1777
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1778
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1779 1780 1781 1782
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1783
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1784 1785 1786 1787 1788 1789 1790
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
1791
		rcu_accelerate_cbs(rsp, rnp, rdp);
1792

P
Paul E. McKenney 已提交
1793
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
1806 1807
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1820
	if (!rdp->passed_quiesce)
1821 1822
		return;

P
Paul E. McKenney 已提交
1823 1824 1825 1826
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1827
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1828 1829 1830 1831
}

#ifdef CONFIG_HOTPLUG_CPU

1832
/*
1833 1834
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
1835
 * ->orphan_lock.
1836
 */
1837 1838 1839
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1840
{
P
Paul E. McKenney 已提交
1841
	/* No-CBs CPUs do not have orphanable callbacks. */
1842
	if (rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
1843 1844
		return;

1845 1846
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
1847 1848
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
1849
	 */
1850
	if (rdp->nxtlist != NULL) {
1851 1852 1853
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1854
		rdp->qlen_lazy = 0;
1855
		ACCESS_ONCE(rdp->qlen) = 0;
1856 1857 1858
	}

	/*
1859 1860 1861 1862 1863 1864 1865
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1866
	 */
1867 1868 1869 1870
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1871 1872 1873
	}

	/*
1874 1875 1876
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1877
	 */
1878
	if (rdp->nxtlist != NULL) {
1879 1880
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1881
	}
1882

1883
	/* Finally, initialize the rcu_data structure's list to empty.  */
1884
	init_callback_list(rdp);
1885 1886 1887 1888
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
1889
 * orphanage.  The caller must hold the ->orphan_lock.
1890 1891 1892 1893 1894 1895
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

P
Paul E. McKenney 已提交
1896 1897 1898 1899
	/* No-CBs CPUs are handled specially. */
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
		return;

1900 1901 1902 1903
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1904 1905
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
1945 1946
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1947
			       TPS("cpuofl"));
1948 1949 1950
}

/*
1951
 * The CPU has been completely removed, and some other CPU is reporting
1952 1953
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
1954 1955
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1956
 */
1957
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1958
{
1959 1960 1961
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1962
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1963
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1964

1965
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
1966
	rcu_boost_kthread_setaffinity(rnp, -1);
1967

1968
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1969 1970

	/* Exclude any attempts to start a new grace period. */
1971
	mutex_lock(&rsp->onoff_mutex);
1972
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1973

1974 1975 1976 1977
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
	rcu_adopt_orphan_cbs(rsp);

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
1999
	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2000 2001
	 * held leads to deadlock.
	 */
2002
	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2003 2004 2005 2006 2007 2008 2009
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
2010 2011 2012
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2013 2014 2015
	init_callback_list(rdp);
	/* Disallow further callbacks on this CPU. */
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2016
	mutex_unlock(&rsp->onoff_mutex);
2017 2018 2019 2020
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

2021
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2022 2023 2024
{
}

2025
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2026 2027 2028 2029 2030 2031 2032 2033 2034
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2035
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2036 2037 2038
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2039 2040
	long bl, count, count_lazy;
	int i;
2041

2042
	/* If no callbacks are ready, just return. */
2043
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2044
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2045 2046 2047
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2048
		return;
2049
	}
2050 2051 2052 2053 2054 2055

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2056
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2057
	bl = rdp->blimit;
2058
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2059 2060 2061 2062
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2063 2064 2065
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2066 2067 2068
	local_irq_restore(flags);

	/* Invoke callbacks. */
2069
	count = count_lazy = 0;
2070 2071 2072
	while (list) {
		next = list->next;
		prefetch(next);
2073
		debug_rcu_head_unqueue(list);
2074 2075
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2076
		list = next;
2077 2078 2079 2080
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2081 2082 2083 2084
			break;
	}

	local_irq_save(flags);
2085 2086 2087
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2088 2089 2090 2091 2092

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2093 2094 2095
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2096 2097 2098
			else
				break;
	}
2099 2100
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2101
	ACCESS_ONCE(rdp->qlen) -= count;
2102
	rdp->n_cbs_invoked += count;
2103 2104 2105 2106 2107

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2108 2109 2110 2111 2112 2113
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2114
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2115

2116 2117
	local_irq_restore(flags);

2118
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2119
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2120
		invoke_rcu_core();
2121 2122 2123 2124 2125
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2126
 * Also schedule RCU core processing.
2127
 *
2128
 * This function must be called from hardirq context.  It is normally
2129 2130 2131 2132 2133
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
2134
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2135
	increment_cpu_stall_ticks();
2136
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2137 2138 2139 2140 2141

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2142
		 * a quiescent state, so note it.
2143 2144
		 *
		 * No memory barrier is required here because both
2145 2146 2147
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2148 2149
		 */

2150 2151
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
2152 2153 2154 2155 2156 2157 2158

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2159
		 * critical section, so note it.
2160 2161
		 */

2162
		rcu_bh_qs(cpu);
2163
	}
2164
	rcu_preempt_check_callbacks(cpu);
2165
	if (rcu_pending(cpu))
2166
		invoke_rcu_core();
2167
	trace_rcu_utilization(TPS("End scheduler-tick"));
2168 2169 2170 2171 2172
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2173 2174
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2175
 * The caller must have suppressed start of new grace periods.
2176
 */
2177 2178 2179 2180
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2181 2182 2183 2184 2185
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2186
	struct rcu_node *rnp;
2187

2188
	rcu_for_each_leaf_node(rsp, rnp) {
2189
		cond_resched();
2190
		mask = 0;
P
Paul E. McKenney 已提交
2191
		raw_spin_lock_irqsave(&rnp->lock, flags);
2192
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2193
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2194
			return;
2195
		}
2196
		if (rnp->qsmask == 0) {
2197
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2198 2199
			continue;
		}
2200
		cpu = rnp->grplo;
2201
		bit = 1;
2202
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2203 2204 2205 2206 2207 2208
			if ((rnp->qsmask & bit) != 0) {
				if ((rnp->qsmaskinit & bit) != 0)
					*isidle = 0;
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2209
		}
2210
		if (mask != 0) {
2211

P
Paul E. McKenney 已提交
2212 2213
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2214 2215
			continue;
		}
P
Paul E. McKenney 已提交
2216
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2217
	}
2218
	rnp = rcu_get_root(rsp);
2219 2220 2221 2222
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
2223 2224 2225 2226 2227 2228
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2229
static void force_quiescent_state(struct rcu_state *rsp)
2230 2231
{
	unsigned long flags;
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
			rsp->n_force_qs_lh++;
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2250

2251 2252 2253 2254 2255 2256
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		rsp->n_force_qs_lh++;
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2257
		return;  /* Someone beat us to it. */
2258
	}
2259
	rsp->gp_flags |= RCU_GP_FLAG_FQS;
2260
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2261
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
2262 2263 2264
}

/*
2265 2266 2267
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2268 2269
 */
static void
2270
__rcu_process_callbacks(struct rcu_state *rsp)
2271 2272
{
	unsigned long flags;
2273
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2274

2275 2276
	WARN_ON_ONCE(rdp->beenonline == 0);

2277 2278 2279 2280
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2281
	local_irq_save(flags);
2282
	if (cpu_needs_another_gp(rsp, rdp)) {
2283
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2284 2285
		rcu_start_gp(rsp);
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2286 2287
	} else {
		local_irq_restore(flags);
2288 2289 2290
	}

	/* If there are callbacks ready, invoke them. */
2291
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2292
		invoke_rcu_callbacks(rsp, rdp);
2293 2294
}

2295
/*
2296
 * Do RCU core processing for the current CPU.
2297
 */
2298
static void rcu_process_callbacks(struct softirq_action *unused)
2299
{
2300 2301
	struct rcu_state *rsp;

2302 2303
	if (cpu_is_offline(smp_processor_id()))
		return;
2304
	trace_rcu_utilization(TPS("Start RCU core"));
2305 2306
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2307
	trace_rcu_utilization(TPS("End RCU core"));
2308 2309
}

2310
/*
2311 2312 2313 2314 2315
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
2316
 */
2317
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2318
{
2319 2320
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
2321 2322
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2323 2324
		return;
	}
2325
	invoke_rcu_callbacks_kthread();
2326 2327
}

2328
static void invoke_rcu_core(void)
2329
{
2330 2331
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2332 2333
}

2334 2335 2336 2337 2338
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2339
{
2340 2341 2342 2343
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2344
	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2345 2346
		invoke_rcu_core();

2347
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2348
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2349
		return;
2350

2351 2352 2353 2354 2355 2356 2357
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2358
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2359 2360

		/* Are we ignoring a completed grace period? */
2361
		note_gp_changes(rsp, rdp);
2362 2363 2364 2365 2366

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2367 2368 2369
			raw_spin_lock(&rnp_root->lock);
			rcu_start_gp(rsp);
			raw_spin_unlock(&rnp_root->lock);
2370 2371 2372 2373 2374
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2375
				force_quiescent_state(rsp);
2376 2377 2378
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2379
	}
2380 2381
}

2382 2383 2384 2385 2386 2387 2388
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
2389 2390 2391 2392 2393 2394
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2395 2396
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2397
	   struct rcu_state *rsp, int cpu, bool lazy)
2398 2399 2400 2401
{
	unsigned long flags;
	struct rcu_data *rdp;

2402
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2403 2404 2405 2406 2407 2408
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
		ACCESS_ONCE(head->func) = rcu_leak_callback;
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2419
	rdp = this_cpu_ptr(rsp->rda);
2420 2421

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
2422 2423 2424 2425 2426 2427 2428
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
		offline = !__call_rcu_nocb(rdp, head, lazy);
		WARN_ON_ONCE(offline);
2429 2430 2431 2432
		/* _call_rcu() is illegal on offline CPU; leak the callback. */
		local_irq_restore(flags);
		return;
	}
2433
	ACCESS_ONCE(rdp->qlen)++;
2434 2435
	if (lazy)
		rdp->qlen_lazy++;
2436 2437
	else
		rcu_idle_count_callbacks_posted();
2438 2439 2440
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2441

2442 2443
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2444
					 rdp->qlen_lazy, rdp->qlen);
2445
	else
2446
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2447

2448 2449
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2450 2451 2452 2453
	local_irq_restore(flags);
}

/*
2454
 * Queue an RCU-sched callback for invocation after a grace period.
2455
 */
2456
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2457
{
P
Paul E. McKenney 已提交
2458
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2459
}
2460
EXPORT_SYMBOL_GPL(call_rcu_sched);
2461 2462

/*
2463
 * Queue an RCU callback for invocation after a quicker grace period.
2464 2465 2466
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
2467
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2468 2469 2470
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2482 2483
	int ret;

2484
	might_sleep();  /* Check for RCU read-side critical section. */
2485 2486 2487 2488
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2489 2490
}

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
2525 2526 2527 2528 2529 2530 2531 2532 2533
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2534 2535 2536 2537
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2538 2539
	if (rcu_blocking_is_gp())
		return;
2540 2541 2542 2543
	if (rcu_expedited)
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
2555 2556 2557
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
2558 2559 2560
 */
void synchronize_rcu_bh(void)
{
2561 2562 2563 2564
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2565 2566
	if (rcu_blocking_is_gp())
		return;
2567 2568 2569 2570
	if (rcu_expedited)
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
2571 2572 2573
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2601
 *
2602 2603 2604 2605
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
2630 2631
	long firstsnap, s, snap;
	int trycount = 0;
2632
	struct rcu_state *rsp = &rcu_sched_state;
2633

2634 2635 2636 2637 2638 2639 2640 2641
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
2642 2643
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
2644 2645
			 ULONG_MAX / 8)) {
		synchronize_sched();
2646
		atomic_long_inc(&rsp->expedited_wrap);
2647 2648
		return;
	}
2649

2650 2651 2652 2653
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
2654
	snap = atomic_long_inc_return(&rsp->expedited_start);
2655
	firstsnap = snap;
2656
	get_online_cpus();
2657
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2658 2659 2660 2661 2662 2663 2664 2665 2666

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
2667
		atomic_long_inc(&rsp->expedited_tryfail);
2668

2669
		/* Check to see if someone else did our work for us. */
2670
		s = atomic_long_read(&rsp->expedited_done);
2671
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2672 2673 2674
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone1);
2675 2676
			return;
		}
2677 2678

		/* No joy, try again later.  Or just synchronize_sched(). */
2679
		if (trycount++ < 10) {
2680
			udelay(trycount * num_online_cpus());
2681
		} else {
2682
			wait_rcu_gp(call_rcu_sched);
2683
			atomic_long_inc(&rsp->expedited_normal);
2684 2685 2686
			return;
		}

2687
		/* Recheck to see if someone else did our work for us. */
2688
		s = atomic_long_read(&rsp->expedited_done);
2689
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2690 2691 2692
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone2);
2693 2694 2695 2696 2697
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
2698 2699 2700 2701
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
2702 2703
		 */
		get_online_cpus();
2704
		snap = atomic_long_read(&rsp->expedited_start);
2705 2706
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
2707
	atomic_long_inc(&rsp->expedited_stoppedcpus);
2708 2709 2710 2711 2712

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
2713
	 * than we did already did their update.
2714 2715
	 */
	do {
2716
		atomic_long_inc(&rsp->expedited_done_tries);
2717
		s = atomic_long_read(&rsp->expedited_done);
2718
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2719 2720 2721
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_done_lost);
2722 2723
			break;
		}
2724
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2725
	atomic_long_inc(&rsp->expedited_done_exit);
2726 2727 2728 2729 2730

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2731 2732 2733 2734 2735 2736 2737 2738 2739
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2740 2741
	struct rcu_node *rnp = rdp->mynode;

2742 2743 2744 2745 2746 2747
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2748 2749
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2750
		rdp->n_rp_qs_pending++;
2751
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2752
		rdp->n_rp_report_qs++;
2753
		return 1;
2754
	}
2755 2756

	/* Does this CPU have callbacks ready to invoke? */
2757 2758
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2759
		return 1;
2760
	}
2761 2762

	/* Has RCU gone idle with this CPU needing another grace period? */
2763 2764
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2765
		return 1;
2766
	}
2767 2768

	/* Has another RCU grace period completed?  */
2769
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2770
		rdp->n_rp_gp_completed++;
2771
		return 1;
2772
	}
2773 2774

	/* Has a new RCU grace period started? */
2775
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2776
		rdp->n_rp_gp_started++;
2777
		return 1;
2778
	}
2779 2780

	/* nothing to do */
2781
	rdp->n_rp_need_nothing++;
2782 2783 2784 2785 2786 2787 2788 2789
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2790
static int rcu_pending(int cpu)
2791
{
2792 2793 2794 2795 2796 2797
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
			return 1;
	return 0;
2798 2799 2800
}

/*
2801 2802 2803
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
2804
 */
2805
static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2806
{
2807 2808 2809
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
2810 2811
	struct rcu_state *rsp;

2812 2813
	for_each_rcu_flavor(rsp) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2814 2815 2816 2817
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
2818
			al = false;
2819 2820
			break;
		}
2821 2822 2823 2824
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
2825 2826
}

2827 2828 2829 2830
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
2831
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
2832 2833 2834 2835 2836 2837
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

2838 2839 2840 2841
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2842
static void rcu_barrier_callback(struct rcu_head *rhp)
2843
{
2844 2845 2846
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

2847 2848
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2849
		complete(&rsp->barrier_completion);
2850 2851 2852
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
2853 2854 2855 2856 2857 2858 2859
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
2860
	struct rcu_state *rsp = type;
2861
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2862

2863
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2864
	atomic_inc(&rsp->barrier_cpu_count);
2865
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2866 2867 2868 2869 2870 2871
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2872
static void _rcu_barrier(struct rcu_state *rsp)
2873
{
2874 2875
	int cpu;
	struct rcu_data *rdp;
2876 2877
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
2878

2879
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
2880

2881
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2882
	mutex_lock(&rsp->barrier_mutex);
2883

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
2896
	snap_done = rsp->n_barrier_done;
2897
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

	/*
	 * If the value in snap is odd, we needed to wait for the current
	 * rcu_barrier() to complete, then wait for the next one, in other
	 * words, we need the value of snap_done to be three larger than
	 * the value of snap.  On the other hand, if the value in snap is
	 * even, we only had to wait for the next rcu_barrier() to complete,
	 * in other words, we need the value of snap_done to be only two
	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
	 * this for us (thank you, Linus!).
	 */
	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
2910
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2923
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2924
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2925

2926
	/*
2927 2928
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
2929 2930
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
2931
	 */
2932
	init_completion(&rsp->barrier_completion);
2933
	atomic_set(&rsp->barrier_cpu_count, 1);
2934
	get_online_cpus();
2935 2936

	/*
2937 2938 2939
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
2940
	 */
P
Paul E. McKenney 已提交
2941
	for_each_possible_cpu(cpu) {
2942
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
2943
			continue;
2944
		rdp = per_cpu_ptr(rsp->rda, cpu);
2945
		if (rcu_is_nocb_cpu(cpu)) {
P
Paul E. McKenney 已提交
2946 2947 2948 2949 2950 2951
			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
					   rsp->n_barrier_done);
			atomic_inc(&rsp->barrier_cpu_count);
			__call_rcu(&rdp->barrier_head, rcu_barrier_callback,
				   rsp, cpu, 0);
		} else if (ACCESS_ONCE(rdp->qlen)) {
2952 2953
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
2954
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2955
		} else {
2956 2957
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
2958 2959
		}
	}
2960
	put_online_cpus();
2961 2962 2963 2964 2965

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
2966
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2967
		complete(&rsp->barrier_completion);
2968

2969 2970 2971 2972
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2973
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2974 2975
	smp_mb(); /* Keep increment before caller's subsequent code. */

2976
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2977
	wait_for_completion(&rsp->barrier_completion);
2978 2979

	/* Other rcu_barrier() invocations can now safely proceed. */
2980
	mutex_unlock(&rsp->barrier_mutex);
2981 2982 2983 2984 2985 2986 2987
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2988
	_rcu_barrier(&rcu_bh_state);
2989 2990 2991 2992 2993 2994 2995 2996
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2997
	_rcu_barrier(&rcu_sched_state);
2998 2999 3000
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3001
/*
3002
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3003
 */
3004 3005
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3006 3007
{
	unsigned long flags;
3008
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3009 3010 3011
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3012
	raw_spin_lock_irqsave(&rnp->lock, flags);
3013
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3014
	init_callback_list(rdp);
3015
	rdp->qlen_lazy = 0;
3016
	ACCESS_ONCE(rdp->qlen) = 0;
3017
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3018
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3019
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3020
	rdp->cpu = cpu;
3021
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3022
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3023
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3024 3025 3026 3027 3028 3029 3030
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3031
 */
3032
static void
P
Paul E. McKenney 已提交
3033
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
3034 3035 3036
{
	unsigned long flags;
	unsigned long mask;
3037
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3038 3039
	struct rcu_node *rnp = rcu_get_root(rsp);

3040 3041 3042
	/* Exclude new grace periods. */
	mutex_lock(&rsp->onoff_mutex);

3043
	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3044
	raw_spin_lock_irqsave(&rnp->lock, flags);
3045
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
3046
	rdp->preemptible = preemptible;
3047 3048
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3049
	rdp->blimit = blimit;
3050
	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3051
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3052
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3053 3054
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3055
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3056 3057 3058 3059 3060 3061

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
3062
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3063 3064
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
3065
		if (rnp == rdp->mynode) {
3066 3067 3068 3069 3070 3071
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
3072
			rdp->completed = rnp->completed;
3073 3074
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
3075
			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3076
		}
P
Paul E. McKenney 已提交
3077
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3078 3079
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3080
	local_irq_restore(flags);
3081

3082
	mutex_unlock(&rsp->onoff_mutex);
3083 3084
}

3085
static void rcu_prepare_cpu(int cpu)
3086
{
3087 3088 3089 3090 3091
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_init_percpu_data(cpu, rsp,
				     strcmp(rsp->name, "rcu_preempt") == 0);
3092 3093 3094
}

/*
3095
 * Handle CPU online/offline notification events.
3096
 */
3097
static int rcu_cpu_notify(struct notifier_block *self,
3098
				    unsigned long action, void *hcpu)
3099 3100
{
	long cpu = (long)hcpu;
3101
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3102
	struct rcu_node *rnp = rdp->mynode;
3103
	struct rcu_state *rsp;
3104

3105
	trace_rcu_utilization(TPS("Start CPU hotplug"));
3106 3107 3108
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3109 3110
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3111 3112
		break;
	case CPU_ONLINE:
3113
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3114
		rcu_boost_kthread_setaffinity(rnp, -1);
3115 3116
		break;
	case CPU_DOWN_PREPARE:
3117
		rcu_boost_kthread_setaffinity(rnp, cpu);
3118
		break;
3119 3120
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3121 3122
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3123
		break;
3124 3125 3126 3127
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3128 3129
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dead_cpu(cpu, rsp);
3130 3131 3132 3133
		break;
	default:
		break;
	}
3134
	trace_rcu_utilization(TPS("End CPU hotplug"));
3135
	return NOTIFY_OK;
3136 3137
}

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_expedited = 1;
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
		rcu_expedited = 0;
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
/*
 * Spawn the kthread that handles this RCU flavor's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

	for_each_rcu_flavor(rsp) {
3168
		t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3169 3170 3171 3172 3173
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
P
Paul E. McKenney 已提交
3174
		rcu_spawn_nocb_kthreads(rsp);
3175 3176 3177 3178 3179
	}
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3195 3196 3197 3198 3199 3200 3201 3202 3203
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3204
	for (i = rcu_num_lvls - 1; i > 0; i--)
3205
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3206
	rsp->levelspread[0] = rcu_fanout_leaf;
3207 3208 3209 3210 3211 3212 3213 3214
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

3215
	cprv = nr_cpu_ids;
3216
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3227 3228
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3229
{
3230 3231 3232 3233 3234 3235 3236 3237
	static char *buf[] = { "rcu_node_0",
			       "rcu_node_1",
			       "rcu_node_2",
			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static char *fqs[] = { "rcu_node_fqs_0",
			       "rcu_node_fqs_1",
			       "rcu_node_fqs_2",
			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3238 3239 3240 3241 3242
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3243 3244
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3245 3246 3247 3248
	/* Silence gcc 4.8 warning about array index out of range. */
	if (rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls overflow");

3249 3250
	/* Initialize the level-tracking arrays. */

3251 3252 3253
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3254 3255 3256 3257 3258
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

3259
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3260 3261 3262
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3263
			raw_spin_lock_init(&rnp->lock);
3264 3265
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3266 3267 3268
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3269 3270
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
3288
			INIT_LIST_HEAD(&rnp->blkd_tasks);
3289
			rcu_init_one_nocb(rnp);
3290 3291
		}
	}
3292

3293
	rsp->rda = rda;
3294
	init_waitqueue_head(&rsp->gp_wq);
3295
	init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3296
	rnp = rsp->level[rcu_num_lvls - 1];
3297
	for_each_possible_cpu(i) {
3298
		while (i > rnp->grphi)
3299
			rnp++;
3300
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3301 3302
		rcu_boot_init_percpu_data(i, rsp);
	}
3303
	list_add(&rsp->flavors, &rcu_struct_flavors);
3304 3305
}

3306 3307
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3308
 * replace the definitions in tree.h because those are needed to size
3309 3310 3311 3312
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
3313
	ulong d;
3314 3315
	int i;
	int j;
3316
	int n = nr_cpu_ids;
3317 3318
	int rcu_capacity[MAX_RCU_LVLS + 1];

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

3332
	/* If the compile-time values are accurate, just leave. */
3333 3334
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
		return;

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

3381
void __init rcu_init(void)
3382
{
P
Paul E. McKenney 已提交
3383
	int cpu;
3384

3385
	rcu_bootup_announce();
3386
	rcu_init_geometry();
3387
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3388
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3389
	__rcu_init_preempt();
J
Jiang Fang 已提交
3390
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3391 3392 3393 3394 3395 3396 3397

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
3398
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
3399 3400
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3401 3402
}

3403
#include "tree_plugin.h"