perf_event_amd.c 16.5 KB
Newer Older
1
#include <linux/perf_event.h>
2
#include <linux/export.h>
3 4 5
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
6
#include <asm/apicdef.h>
7 8

#include "perf_event.h"
9

10
static __initconst const u64 amd_hw_cache_event_ids
11 12 13 14 15 16 17
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
18
		[ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
		[ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
		[ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
		[ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
60
		[ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
61 62 63 64 65 66 67 68 69 70 71 72 73
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
74
		[ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
		[ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
99 100 101 102 103 104 105 106 107 108 109 110 111 112
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
		[ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
113 114 115 116 117 118 119
};

/*
 * AMD Performance Monitor K7 and later.
 */
static const u64 amd_perfmon_event_map[] =
{
120 121 122 123 124 125 126 127
  [PERF_COUNT_HW_CPU_CYCLES]			= 0x0076,
  [PERF_COUNT_HW_INSTRUCTIONS]			= 0x00c0,
  [PERF_COUNT_HW_CACHE_REFERENCES]		= 0x0080,
  [PERF_COUNT_HW_CACHE_MISSES]			= 0x0081,
  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]		= 0x00c2,
  [PERF_COUNT_HW_BRANCH_MISSES]			= 0x00c3,
  [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00d0, /* "Decoder empty" event */
  [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x00d1, /* "Dispatch stalls" event */
128 129 130 131 132 133 134
};

static u64 amd_pmu_event_map(int hw_event)
{
	return amd_perfmon_event_map[hw_event];
}

135
static int amd_pmu_hw_config(struct perf_event *event)
136
{
137 138 139 140 141
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

142 143 144 145 146 147 148 149 150 151 152 153 154
	if (event->attr.exclude_host && event->attr.exclude_guest)
		/*
		 * When HO == GO == 1 the hardware treats that as GO == HO == 0
		 * and will count in both modes. We don't want to count in that
		 * case so we emulate no-counting by setting US = OS = 0.
		 */
		event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
				      ARCH_PERFMON_EVENTSEL_OS);
	else if (event->attr.exclude_host)
		event->hw.config |= AMD_PERFMON_EVENTSEL_GUESTONLY;
	else if (event->attr.exclude_guest)
		event->hw.config |= AMD_PERFMON_EVENTSEL_HOSTONLY;

155 156 157 158 159 160
	if (event->attr.type != PERF_TYPE_RAW)
		return 0;

	event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;

	return 0;
161 162 163 164 165
}

/*
 * AMD64 events are detected based on their event codes.
 */
166 167 168 169 170
static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
{
	return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
}

171 172 173 174 175
static inline int amd_is_nb_event(struct hw_perf_event *hwc)
{
	return (hwc->config & 0xe0) == 0xe0;
}

176 177 178 179 180 181 182
static inline int amd_has_nb(struct cpu_hw_events *cpuc)
{
	struct amd_nb *nb = cpuc->amd_nb;

	return nb && nb->nb_id != -1;
}

183 184 185 186 187 188 189 190 191 192
static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
				      struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	struct amd_nb *nb = cpuc->amd_nb;
	int i;

	/*
	 * only care about NB events
	 */
193
	if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
194 195 196 197 198 199 200 201 202 203
		return;

	/*
	 * need to scan whole list because event may not have
	 * been assigned during scheduling
	 *
	 * no race condition possible because event can only
	 * be removed on one CPU at a time AND PMU is disabled
	 * when we come here
	 */
204
	for (i = 0; i < x86_pmu.num_counters; i++) {
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
		if (nb->owners[i] == event) {
			cmpxchg(nb->owners+i, event, NULL);
			break;
		}
	}
}

 /*
  * AMD64 NorthBridge events need special treatment because
  * counter access needs to be synchronized across all cores
  * of a package. Refer to BKDG section 3.12
  *
  * NB events are events measuring L3 cache, Hypertransport
  * traffic. They are identified by an event code >= 0xe00.
  * They measure events on the NorthBride which is shared
  * by all cores on a package. NB events are counted on a
  * shared set of counters. When a NB event is programmed
  * in a counter, the data actually comes from a shared
  * counter. Thus, access to those counters needs to be
  * synchronized.
  *
  * We implement the synchronization such that no two cores
  * can be measuring NB events using the same counters. Thus,
  * we maintain a per-NB allocation table. The available slot
  * is propagated using the event_constraint structure.
  *
  * We provide only one choice for each NB event based on
  * the fact that only NB events have restrictions. Consequently,
  * if a counter is available, there is a guarantee the NB event
  * will be assigned to it. If no slot is available, an empty
  * constraint is returned and scheduling will eventually fail
  * for this event.
  *
  * Note that all cores attached the same NB compete for the same
  * counters to host NB events, this is why we use atomic ops. Some
  * multi-chip CPUs may have more than one NB.
  *
  * Given that resources are allocated (cmpxchg), they must be
  * eventually freed for others to use. This is accomplished by
  * calling amd_put_event_constraints().
  *
  * Non NB events are not impacted by this restriction.
  */
static struct event_constraint *
amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	struct amd_nb *nb = cpuc->amd_nb;
	struct perf_event *old = NULL;
254
	int max = x86_pmu.num_counters;
255 256 257 258 259
	int i, j, k = -1;

	/*
	 * if not NB event or no NB, then no constraints
	 */
260
	if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
		return &unconstrained;

	/*
	 * detect if already present, if so reuse
	 *
	 * cannot merge with actual allocation
	 * because of possible holes
	 *
	 * event can already be present yet not assigned (in hwc->idx)
	 * because of successive calls to x86_schedule_events() from
	 * hw_perf_group_sched_in() without hw_perf_enable()
	 */
	for (i = 0; i < max; i++) {
		/*
		 * keep track of first free slot
		 */
		if (k == -1 && !nb->owners[i])
			k = i;

		/* already present, reuse */
		if (nb->owners[i] == event)
			goto done;
	}
	/*
	 * not present, so grab a new slot
	 * starting either at:
	 */
	if (hwc->idx != -1) {
		/* previous assignment */
		i = hwc->idx;
	} else if (k != -1) {
		/* start from free slot found */
		i = k;
	} else {
		/*
		 * event not found, no slot found in
		 * first pass, try again from the
		 * beginning
		 */
		i = 0;
	}
	j = i;
	do {
		old = cmpxchg(nb->owners+i, NULL, event);
		if (!old)
			break;
		if (++i == max)
			i = 0;
	} while (i != j);
done:
	if (!old)
		return &nb->event_constraints[i];

	return &emptyconstraint;
}

P
Peter Zijlstra 已提交
317
static struct amd_nb *amd_alloc_nb(int cpu)
318 319 320 321
{
	struct amd_nb *nb;
	int i;

322 323
	nb = kmalloc_node(sizeof(struct amd_nb), GFP_KERNEL | __GFP_ZERO,
			  cpu_to_node(cpu));
324 325 326
	if (!nb)
		return NULL;

P
Peter Zijlstra 已提交
327
	nb->nb_id = -1;
328 329 330 331

	/*
	 * initialize all possible NB constraints
	 */
332
	for (i = 0; i < x86_pmu.num_counters; i++) {
P
Peter Zijlstra 已提交
333
		__set_bit(i, nb->event_constraints[i].idxmsk);
334 335 336 337 338
		nb->event_constraints[i].weight = 1;
	}
	return nb;
}

339 340 341 342 343 344 345 346 347
static int amd_pmu_cpu_prepare(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

	WARN_ON_ONCE(cpuc->amd_nb);

	if (boot_cpu_data.x86_max_cores < 2)
		return NOTIFY_OK;

P
Peter Zijlstra 已提交
348
	cpuc->amd_nb = amd_alloc_nb(cpu);
349 350 351 352 353 354 355
	if (!cpuc->amd_nb)
		return NOTIFY_BAD;

	return NOTIFY_OK;
}

static void amd_pmu_cpu_starting(int cpu)
356
{
357 358
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	struct amd_nb *nb;
359 360
	int i, nb_id;

361 362 363
	cpuc->perf_ctr_virt_mask = AMD_PERFMON_EVENTSEL_HOSTONLY;

	if (boot_cpu_data.x86_max_cores < 2 || boot_cpu_data.x86 == 0x15)
364 365 366
		return;

	nb_id = amd_get_nb_id(cpu);
367
	WARN_ON_ONCE(nb_id == BAD_APICID);
368 369

	for_each_online_cpu(i) {
370 371
		nb = per_cpu(cpu_hw_events, i).amd_nb;
		if (WARN_ON_ONCE(!nb))
372 373
			continue;

374
		if (nb->nb_id == nb_id) {
375
			cpuc->kfree_on_online = cpuc->amd_nb;
376 377 378
			cpuc->amd_nb = nb;
			break;
		}
379
	}
380 381 382

	cpuc->amd_nb->nb_id = nb_id;
	cpuc->amd_nb->refcnt++;
383 384
}

385
static void amd_pmu_cpu_dead(int cpu)
386 387 388 389 390 391 392 393
{
	struct cpu_hw_events *cpuhw;

	if (boot_cpu_data.x86_max_cores < 2)
		return;

	cpuhw = &per_cpu(cpu_hw_events, cpu);

394
	if (cpuhw->amd_nb) {
395 396 397 398
		struct amd_nb *nb = cpuhw->amd_nb;

		if (nb->nb_id == -1 || --nb->refcnt == 0)
			kfree(nb);
399

400 401
		cpuhw->amd_nb = NULL;
	}
402 403
}

404
static __initconst const struct x86_pmu amd_pmu = {
405 406 407 408 409 410
	.name			= "AMD",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
	.enable_all		= x86_pmu_enable_all,
	.enable			= x86_pmu_enable_event,
	.disable		= x86_pmu_disable_event,
411
	.hw_config		= amd_pmu_hw_config,
412
	.schedule_events	= x86_schedule_events,
413 414 415 416
	.eventsel		= MSR_K7_EVNTSEL0,
	.perfctr		= MSR_K7_PERFCTR0,
	.event_map		= amd_pmu_event_map,
	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
417
	.num_counters		= AMD64_NUM_COUNTERS,
418 419
	.cntval_bits		= 48,
	.cntval_mask		= (1ULL << 48) - 1,
420 421 422 423 424 425
	.apic			= 1,
	/* use highest bit to detect overflow */
	.max_period		= (1ULL << 47) - 1,
	.get_event_constraints	= amd_get_event_constraints,
	.put_event_constraints	= amd_put_event_constraints,

426 427 428
	.cpu_prepare		= amd_pmu_cpu_prepare,
	.cpu_starting		= amd_pmu_cpu_starting,
	.cpu_dead		= amd_pmu_cpu_dead,
429 430
};

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/* AMD Family 15h */

#define AMD_EVENT_TYPE_MASK	0x000000F0ULL

#define AMD_EVENT_FP		0x00000000ULL ... 0x00000010ULL
#define AMD_EVENT_LS		0x00000020ULL ... 0x00000030ULL
#define AMD_EVENT_DC		0x00000040ULL ... 0x00000050ULL
#define AMD_EVENT_CU		0x00000060ULL ... 0x00000070ULL
#define AMD_EVENT_IC_DE		0x00000080ULL ... 0x00000090ULL
#define AMD_EVENT_EX_LS		0x000000C0ULL
#define AMD_EVENT_DE		0x000000D0ULL
#define AMD_EVENT_NB		0x000000E0ULL ... 0x000000F0ULL

/*
 * AMD family 15h event code/PMC mappings:
 *
 * type = event_code & 0x0F0:
 *
 * 0x000	FP	PERF_CTL[5:3]
 * 0x010	FP	PERF_CTL[5:3]
 * 0x020	LS	PERF_CTL[5:0]
 * 0x030	LS	PERF_CTL[5:0]
 * 0x040	DC	PERF_CTL[5:0]
 * 0x050	DC	PERF_CTL[5:0]
 * 0x060	CU	PERF_CTL[2:0]
 * 0x070	CU	PERF_CTL[2:0]
 * 0x080	IC/DE	PERF_CTL[2:0]
 * 0x090	IC/DE	PERF_CTL[2:0]
 * 0x0A0	---
 * 0x0B0	---
 * 0x0C0	EX/LS	PERF_CTL[5:0]
 * 0x0D0	DE	PERF_CTL[2:0]
 * 0x0E0	NB	NB_PERF_CTL[3:0]
 * 0x0F0	NB	NB_PERF_CTL[3:0]
 *
 * Exceptions:
 *
468
 * 0x000	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
469
 * 0x003	FP	PERF_CTL[3]
470
 * 0x004	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
 * 0x00B	FP	PERF_CTL[3]
 * 0x00D	FP	PERF_CTL[3]
 * 0x023	DE	PERF_CTL[2:0]
 * 0x02D	LS	PERF_CTL[3]
 * 0x02E	LS	PERF_CTL[3,0]
 * 0x043	CU	PERF_CTL[2:0]
 * 0x045	CU	PERF_CTL[2:0]
 * 0x046	CU	PERF_CTL[2:0]
 * 0x054	CU	PERF_CTL[2:0]
 * 0x055	CU	PERF_CTL[2:0]
 * 0x08F	IC	PERF_CTL[0]
 * 0x187	DE	PERF_CTL[0]
 * 0x188	DE	PERF_CTL[0]
 * 0x0DB	EX	PERF_CTL[5:0]
 * 0x0DC	LS	PERF_CTL[5:0]
 * 0x0DD	LS	PERF_CTL[5:0]
 * 0x0DE	LS	PERF_CTL[5:0]
 * 0x0DF	LS	PERF_CTL[5:0]
 * 0x1D6	EX	PERF_CTL[5:0]
 * 0x1D8	EX	PERF_CTL[5:0]
491 492
 *
 * (*) depending on the umask all FPU counters may be used
493 494 495 496 497
 */

static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
498
static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
499 500 501 502 503 504
static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);

static struct event_constraint *
amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, struct perf_event *event)
{
505 506
	struct hw_perf_event *hwc = &event->hw;
	unsigned int event_code = amd_get_event_code(hwc);
507 508 509 510

	switch (event_code & AMD_EVENT_TYPE_MASK) {
	case AMD_EVENT_FP:
		switch (event_code) {
511 512 513 514 515 516 517 518 519 520
		case 0x000:
			if (!(hwc->config & 0x0000F000ULL))
				break;
			if (!(hwc->config & 0x00000F00ULL))
				break;
			return &amd_f15_PMC3;
		case 0x004:
			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
				break;
			return &amd_f15_PMC3;
521 522 523 524 525
		case 0x003:
		case 0x00B:
		case 0x00D:
			return &amd_f15_PMC3;
		}
526
		return &amd_f15_PMC53;
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	case AMD_EVENT_LS:
	case AMD_EVENT_DC:
	case AMD_EVENT_EX_LS:
		switch (event_code) {
		case 0x023:
		case 0x043:
		case 0x045:
		case 0x046:
		case 0x054:
		case 0x055:
			return &amd_f15_PMC20;
		case 0x02D:
			return &amd_f15_PMC3;
		case 0x02E:
			return &amd_f15_PMC30;
		default:
			return &amd_f15_PMC50;
		}
	case AMD_EVENT_CU:
	case AMD_EVENT_IC_DE:
	case AMD_EVENT_DE:
		switch (event_code) {
		case 0x08F:
		case 0x187:
		case 0x188:
			return &amd_f15_PMC0;
		case 0x0DB ... 0x0DF:
		case 0x1D6:
		case 0x1D8:
			return &amd_f15_PMC50;
		default:
			return &amd_f15_PMC20;
		}
	case AMD_EVENT_NB:
		/* not yet implemented */
		return &emptyconstraint;
	default:
		return &emptyconstraint;
	}
}

static __initconst const struct x86_pmu amd_pmu_f15h = {
	.name			= "AMD Family 15h",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
	.enable_all		= x86_pmu_enable_all,
	.enable			= x86_pmu_enable_event,
	.disable		= x86_pmu_disable_event,
	.hw_config		= amd_pmu_hw_config,
	.schedule_events	= x86_schedule_events,
	.eventsel		= MSR_F15H_PERF_CTL,
	.perfctr		= MSR_F15H_PERF_CTR,
	.event_map		= amd_pmu_event_map,
	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
581
	.num_counters		= AMD64_NUM_COUNTERS_F15H,
582 583 584 585 586 587 588 589 590 591 592 593 594
	.cntval_bits		= 48,
	.cntval_mask		= (1ULL << 48) - 1,
	.apic			= 1,
	/* use highest bit to detect overflow */
	.max_period		= (1ULL << 47) - 1,
	.get_event_constraints	= amd_get_event_constraints_f15h,
	/* nortbridge counters not yet implemented: */
#if 0
	.put_event_constraints	= amd_put_event_constraints,

	.cpu_prepare		= amd_pmu_cpu_prepare,
	.cpu_dead		= amd_pmu_cpu_dead,
#endif
595
	.cpu_starting		= amd_pmu_cpu_starting,
596 597
};

598
__init int amd_pmu_init(void)
599 600 601 602 603
{
	/* Performance-monitoring supported from K7 and later: */
	if (boot_cpu_data.x86 < 6)
		return -ENODEV;

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
	/*
	 * If core performance counter extensions exists, it must be
	 * family 15h, otherwise fail. See x86_pmu_addr_offset().
	 */
	switch (boot_cpu_data.x86) {
	case 0x15:
		if (!cpu_has_perfctr_core)
			return -ENODEV;
		x86_pmu = amd_pmu_f15h;
		break;
	default:
		if (cpu_has_perfctr_core)
			return -ENODEV;
		x86_pmu = amd_pmu;
		break;
	}
620 621 622 623 624 625 626

	/* Events are common for all AMDs */
	memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
	       sizeof(hw_cache_event_ids));

	return 0;
}
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

void amd_pmu_enable_virt(void)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

	cpuc->perf_ctr_virt_mask = 0;

	/* Reload all events */
	x86_pmu_disable_all();
	x86_pmu_enable_all(0);
}
EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);

void amd_pmu_disable_virt(void)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

	/*
	 * We only mask out the Host-only bit so that host-only counting works
	 * when SVM is disabled. If someone sets up a guest-only counter when
	 * SVM is disabled the Guest-only bits still gets set and the counter
	 * will not count anything.
	 */
	cpuc->perf_ctr_virt_mask = AMD_PERFMON_EVENTSEL_HOSTONLY;

	/* Reload all events */
	x86_pmu_disable_all();
	x86_pmu_enable_all(0);
}
EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);