kexec.c 36.5 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 * kexec.c - kexec system call
 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2.  See the file COPYING for more details.
 */

9
#include <linux/capability.h>
10 11 12 13 14 15 16 17 18 19 20
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/kexec.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/syscalls.h>
#include <linux/reboot.h>
#include <linux/ioport.h>
21
#include <linux/hardirq.h>
22 23
#include <linux/elf.h>
#include <linux/elfcore.h>
K
Ken'ichi Ohmichi 已提交
24 25 26
#include <linux/utsrelease.h>
#include <linux/utsname.h>
#include <linux/numa.h>
H
Huang Ying 已提交
27 28
#include <linux/suspend.h>
#include <linux/device.h>
29

30 31 32 33
#include <asm/page.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/system.h>
K
Ken'ichi Ohmichi 已提交
34
#include <asm/sections.h>
35

36 37 38
/* Per cpu memory for storing cpu states in case of system crash. */
note_buf_t* crash_notes;

K
Ken'ichi Ohmichi 已提交
39 40 41
/* vmcoreinfo stuff */
unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
42 43
size_t vmcoreinfo_size;
size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
K
Ken'ichi Ohmichi 已提交
44

45 46 47 48 49 50 51 52
/* Location of the reserved area for the crash kernel */
struct resource crashk_res = {
	.name  = "Crash kernel",
	.start = 0,
	.end   = 0,
	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};

53 54
int kexec_should_crash(struct task_struct *p)
{
55
	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
56 57 58 59
		return 1;
	return 0;
}

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * When kexec transitions to the new kernel there is a one-to-one
 * mapping between physical and virtual addresses.  On processors
 * where you can disable the MMU this is trivial, and easy.  For
 * others it is still a simple predictable page table to setup.
 *
 * In that environment kexec copies the new kernel to its final
 * resting place.  This means I can only support memory whose
 * physical address can fit in an unsigned long.  In particular
 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 * If the assembly stub has more restrictive requirements
 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 * defined more restrictively in <asm/kexec.h>.
 *
 * The code for the transition from the current kernel to the
 * the new kernel is placed in the control_code_buffer, whose size
 * is given by KEXEC_CONTROL_CODE_SIZE.  In the best case only a single
 * page of memory is necessary, but some architectures require more.
 * Because this memory must be identity mapped in the transition from
 * virtual to physical addresses it must live in the range
 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 * modifiable.
 *
 * The assembly stub in the control code buffer is passed a linked list
 * of descriptor pages detailing the source pages of the new kernel,
 * and the destination addresses of those source pages.  As this data
 * structure is not used in the context of the current OS, it must
 * be self-contained.
 *
 * The code has been made to work with highmem pages and will use a
 * destination page in its final resting place (if it happens
 * to allocate it).  The end product of this is that most of the
 * physical address space, and most of RAM can be used.
 *
 * Future directions include:
 *  - allocating a page table with the control code buffer identity
 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 *    reliable.
 */

/*
 * KIMAGE_NO_DEST is an impossible destination address..., for
 * allocating pages whose destination address we do not care about.
 */
#define KIMAGE_NO_DEST (-1UL)

M
Maneesh Soni 已提交
106 107 108
static int kimage_is_destination_range(struct kimage *image,
				       unsigned long start, unsigned long end);
static struct page *kimage_alloc_page(struct kimage *image,
A
Al Viro 已提交
109
				       gfp_t gfp_mask,
M
Maneesh Soni 已提交
110
				       unsigned long dest);
111 112

static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
M
Maneesh Soni 已提交
113 114
	                    unsigned long nr_segments,
                            struct kexec_segment __user *segments)
115 116 117 118 119 120 121 122
{
	size_t segment_bytes;
	struct kimage *image;
	unsigned long i;
	int result;

	/* Allocate a controlling structure */
	result = -ENOMEM;
123
	image = kzalloc(sizeof(*image), GFP_KERNEL);
M
Maneesh Soni 已提交
124
	if (!image)
125
		goto out;
M
Maneesh Soni 已提交
126

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
	image->head = 0;
	image->entry = &image->head;
	image->last_entry = &image->head;
	image->control_page = ~0; /* By default this does not apply */
	image->start = entry;
	image->type = KEXEC_TYPE_DEFAULT;

	/* Initialize the list of control pages */
	INIT_LIST_HEAD(&image->control_pages);

	/* Initialize the list of destination pages */
	INIT_LIST_HEAD(&image->dest_pages);

	/* Initialize the list of unuseable pages */
	INIT_LIST_HEAD(&image->unuseable_pages);

	/* Read in the segments */
	image->nr_segments = nr_segments;
	segment_bytes = nr_segments * sizeof(*segments);
	result = copy_from_user(image->segment, segments, segment_bytes);
	if (result)
		goto out;

	/*
	 * Verify we have good destination addresses.  The caller is
	 * responsible for making certain we don't attempt to load
	 * the new image into invalid or reserved areas of RAM.  This
	 * just verifies it is an address we can use.
	 *
	 * Since the kernel does everything in page size chunks ensure
	 * the destination addreses are page aligned.  Too many
	 * special cases crop of when we don't do this.  The most
	 * insidious is getting overlapping destination addresses
	 * simply because addresses are changed to page size
	 * granularity.
	 */
	result = -EADDRNOTAVAIL;
	for (i = 0; i < nr_segments; i++) {
		unsigned long mstart, mend;
M
Maneesh Soni 已提交
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180
		mstart = image->segment[i].mem;
		mend   = mstart + image->segment[i].memsz;
		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
			goto out;
		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
			goto out;
	}

	/* Verify our destination addresses do not overlap.
	 * If we alloed overlapping destination addresses
	 * through very weird things can happen with no
	 * easy explanation as one segment stops on another.
	 */
	result = -EINVAL;
M
Maneesh Soni 已提交
181
	for (i = 0; i < nr_segments; i++) {
182 183
		unsigned long mstart, mend;
		unsigned long j;
M
Maneesh Soni 已提交
184

185 186
		mstart = image->segment[i].mem;
		mend   = mstart + image->segment[i].memsz;
M
Maneesh Soni 已提交
187
		for (j = 0; j < i; j++) {
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
			unsigned long pstart, pend;
			pstart = image->segment[j].mem;
			pend   = pstart + image->segment[j].memsz;
			/* Do the segments overlap ? */
			if ((mend > pstart) && (mstart < pend))
				goto out;
		}
	}

	/* Ensure our buffer sizes are strictly less than
	 * our memory sizes.  This should always be the case,
	 * and it is easier to check up front than to be surprised
	 * later on.
	 */
	result = -EINVAL;
M
Maneesh Soni 已提交
203
	for (i = 0; i < nr_segments; i++) {
204 205 206 207 208
		if (image->segment[i].bufsz > image->segment[i].memsz)
			goto out;
	}

	result = 0;
M
Maneesh Soni 已提交
209 210
out:
	if (result == 0)
211
		*rimage = image;
M
Maneesh Soni 已提交
212
	else
213
		kfree(image);
M
Maneesh Soni 已提交
214

215 216 217 218 219
	return result;

}

static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
M
Maneesh Soni 已提交
220 221
				unsigned long nr_segments,
				struct kexec_segment __user *segments)
222 223 224 225 226 227 228
{
	int result;
	struct kimage *image;

	/* Allocate and initialize a controlling structure */
	image = NULL;
	result = do_kimage_alloc(&image, entry, nr_segments, segments);
M
Maneesh Soni 已提交
229
	if (result)
230
		goto out;
M
Maneesh Soni 已提交
231

232 233 234 235 236 237 238 239 240
	*rimage = image;

	/*
	 * Find a location for the control code buffer, and add it
	 * the vector of segments so that it's pages will also be
	 * counted as destination pages.
	 */
	result = -ENOMEM;
	image->control_code_page = kimage_alloc_control_pages(image,
M
Maneesh Soni 已提交
241
					   get_order(KEXEC_CONTROL_CODE_SIZE));
242 243 244 245 246
	if (!image->control_code_page) {
		printk(KERN_ERR "Could not allocate control_code_buffer\n");
		goto out;
	}

H
Huang Ying 已提交
247 248 249 250 251 252
	image->swap_page = kimage_alloc_control_pages(image, 0);
	if (!image->swap_page) {
		printk(KERN_ERR "Could not allocate swap buffer\n");
		goto out;
	}

253 254
	result = 0;
 out:
M
Maneesh Soni 已提交
255
	if (result == 0)
256
		*rimage = image;
M
Maneesh Soni 已提交
257
	else
258
		kfree(image);
M
Maneesh Soni 已提交
259

260 261 262 263
	return result;
}

static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
M
Maneesh Soni 已提交
264
				unsigned long nr_segments,
265
				struct kexec_segment __user *segments)
266 267 268 269 270 271 272 273 274 275 276 277 278 279
{
	int result;
	struct kimage *image;
	unsigned long i;

	image = NULL;
	/* Verify we have a valid entry point */
	if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
		result = -EADDRNOTAVAIL;
		goto out;
	}

	/* Allocate and initialize a controlling structure */
	result = do_kimage_alloc(&image, entry, nr_segments, segments);
M
Maneesh Soni 已提交
280
	if (result)
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
		goto out;

	/* Enable the special crash kernel control page
	 * allocation policy.
	 */
	image->control_page = crashk_res.start;
	image->type = KEXEC_TYPE_CRASH;

	/*
	 * Verify we have good destination addresses.  Normally
	 * the caller is responsible for making certain we don't
	 * attempt to load the new image into invalid or reserved
	 * areas of RAM.  But crash kernels are preloaded into a
	 * reserved area of ram.  We must ensure the addresses
	 * are in the reserved area otherwise preloading the
	 * kernel could corrupt things.
	 */
	result = -EADDRNOTAVAIL;
	for (i = 0; i < nr_segments; i++) {
		unsigned long mstart, mend;
M
Maneesh Soni 已提交
301

302
		mstart = image->segment[i].mem;
303
		mend = mstart + image->segment[i].memsz - 1;
304 305 306 307 308 309 310 311 312 313 314 315
		/* Ensure we are within the crash kernel limits */
		if ((mstart < crashk_res.start) || (mend > crashk_res.end))
			goto out;
	}

	/*
	 * Find a location for the control code buffer, and add
	 * the vector of segments so that it's pages will also be
	 * counted as destination pages.
	 */
	result = -ENOMEM;
	image->control_code_page = kimage_alloc_control_pages(image,
M
Maneesh Soni 已提交
316
					   get_order(KEXEC_CONTROL_CODE_SIZE));
317 318 319 320 321 322
	if (!image->control_code_page) {
		printk(KERN_ERR "Could not allocate control_code_buffer\n");
		goto out;
	}

	result = 0;
M
Maneesh Soni 已提交
323 324
out:
	if (result == 0)
325
		*rimage = image;
M
Maneesh Soni 已提交
326
	else
327
		kfree(image);
M
Maneesh Soni 已提交
328

329 330 331
	return result;
}

M
Maneesh Soni 已提交
332 333 334
static int kimage_is_destination_range(struct kimage *image,
					unsigned long start,
					unsigned long end)
335 336 337 338 339
{
	unsigned long i;

	for (i = 0; i < image->nr_segments; i++) {
		unsigned long mstart, mend;
M
Maneesh Soni 已提交
340

341
		mstart = image->segment[i].mem;
M
Maneesh Soni 已提交
342 343
		mend = mstart + image->segment[i].memsz;
		if ((end > mstart) && (start < mend))
344 345
			return 1;
	}
M
Maneesh Soni 已提交
346

347 348 349
	return 0;
}

A
Al Viro 已提交
350
static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
351 352
{
	struct page *pages;
M
Maneesh Soni 已提交
353

354 355 356 357
	pages = alloc_pages(gfp_mask, order);
	if (pages) {
		unsigned int count, i;
		pages->mapping = NULL;
H
Hugh Dickins 已提交
358
		set_page_private(pages, order);
359
		count = 1 << order;
M
Maneesh Soni 已提交
360
		for (i = 0; i < count; i++)
361 362
			SetPageReserved(pages + i);
	}
M
Maneesh Soni 已提交
363

364 365 366 367 368 369
	return pages;
}

static void kimage_free_pages(struct page *page)
{
	unsigned int order, count, i;
M
Maneesh Soni 已提交
370

H
Hugh Dickins 已提交
371
	order = page_private(page);
372
	count = 1 << order;
M
Maneesh Soni 已提交
373
	for (i = 0; i < count; i++)
374 375 376 377 378 379 380
		ClearPageReserved(page + i);
	__free_pages(page, order);
}

static void kimage_free_page_list(struct list_head *list)
{
	struct list_head *pos, *next;
M
Maneesh Soni 已提交
381

382 383 384 385 386 387 388 389 390
	list_for_each_safe(pos, next, list) {
		struct page *page;

		page = list_entry(pos, struct page, lru);
		list_del(&page->lru);
		kimage_free_pages(page);
	}
}

M
Maneesh Soni 已提交
391 392
static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
							unsigned int order)
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
{
	/* Control pages are special, they are the intermediaries
	 * that are needed while we copy the rest of the pages
	 * to their final resting place.  As such they must
	 * not conflict with either the destination addresses
	 * or memory the kernel is already using.
	 *
	 * The only case where we really need more than one of
	 * these are for architectures where we cannot disable
	 * the MMU and must instead generate an identity mapped
	 * page table for all of the memory.
	 *
	 * At worst this runs in O(N) of the image size.
	 */
	struct list_head extra_pages;
	struct page *pages;
	unsigned int count;

	count = 1 << order;
	INIT_LIST_HEAD(&extra_pages);

	/* Loop while I can allocate a page and the page allocated
	 * is a destination page.
	 */
	do {
		unsigned long pfn, epfn, addr, eaddr;
M
Maneesh Soni 已提交
419

420 421 422 423 424 425 426 427
		pages = kimage_alloc_pages(GFP_KERNEL, order);
		if (!pages)
			break;
		pfn   = page_to_pfn(pages);
		epfn  = pfn + count;
		addr  = pfn << PAGE_SHIFT;
		eaddr = epfn << PAGE_SHIFT;
		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
M
Maneesh Soni 已提交
428
			      kimage_is_destination_range(image, addr, eaddr)) {
429 430 431
			list_add(&pages->lru, &extra_pages);
			pages = NULL;
		}
M
Maneesh Soni 已提交
432 433
	} while (!pages);

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
	if (pages) {
		/* Remember the allocated page... */
		list_add(&pages->lru, &image->control_pages);

		/* Because the page is already in it's destination
		 * location we will never allocate another page at
		 * that address.  Therefore kimage_alloc_pages
		 * will not return it (again) and we don't need
		 * to give it an entry in image->segment[].
		 */
	}
	/* Deal with the destination pages I have inadvertently allocated.
	 *
	 * Ideally I would convert multi-page allocations into single
	 * page allocations, and add everyting to image->dest_pages.
	 *
	 * For now it is simpler to just free the pages.
	 */
	kimage_free_page_list(&extra_pages);

M
Maneesh Soni 已提交
454
	return pages;
455 456
}

M
Maneesh Soni 已提交
457 458
static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
						      unsigned int order)
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
{
	/* Control pages are special, they are the intermediaries
	 * that are needed while we copy the rest of the pages
	 * to their final resting place.  As such they must
	 * not conflict with either the destination addresses
	 * or memory the kernel is already using.
	 *
	 * Control pages are also the only pags we must allocate
	 * when loading a crash kernel.  All of the other pages
	 * are specified by the segments and we just memcpy
	 * into them directly.
	 *
	 * The only case where we really need more than one of
	 * these are for architectures where we cannot disable
	 * the MMU and must instead generate an identity mapped
	 * page table for all of the memory.
	 *
	 * Given the low demand this implements a very simple
	 * allocator that finds the first hole of the appropriate
	 * size in the reserved memory region, and allocates all
	 * of the memory up to and including the hole.
	 */
	unsigned long hole_start, hole_end, size;
	struct page *pages;
M
Maneesh Soni 已提交
483

484 485 486 487
	pages = NULL;
	size = (1 << order) << PAGE_SHIFT;
	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
	hole_end   = hole_start + size - 1;
M
Maneesh Soni 已提交
488
	while (hole_end <= crashk_res.end) {
489
		unsigned long i;
M
Maneesh Soni 已提交
490 491

		if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
492
			break;
M
Maneesh Soni 已提交
493
		if (hole_end > crashk_res.end)
494 495
			break;
		/* See if I overlap any of the segments */
M
Maneesh Soni 已提交
496
		for (i = 0; i < image->nr_segments; i++) {
497
			unsigned long mstart, mend;
M
Maneesh Soni 已提交
498

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
			mstart = image->segment[i].mem;
			mend   = mstart + image->segment[i].memsz - 1;
			if ((hole_end >= mstart) && (hole_start <= mend)) {
				/* Advance the hole to the end of the segment */
				hole_start = (mend + (size - 1)) & ~(size - 1);
				hole_end   = hole_start + size - 1;
				break;
			}
		}
		/* If I don't overlap any segments I have found my hole! */
		if (i == image->nr_segments) {
			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
			break;
		}
	}
M
Maneesh Soni 已提交
514
	if (pages)
515
		image->control_page = hole_end;
M
Maneesh Soni 已提交
516

517 518 519 520
	return pages;
}


M
Maneesh Soni 已提交
521 522
struct page *kimage_alloc_control_pages(struct kimage *image,
					 unsigned int order)
523 524
{
	struct page *pages = NULL;
M
Maneesh Soni 已提交
525 526

	switch (image->type) {
527 528 529 530 531 532 533
	case KEXEC_TYPE_DEFAULT:
		pages = kimage_alloc_normal_control_pages(image, order);
		break;
	case KEXEC_TYPE_CRASH:
		pages = kimage_alloc_crash_control_pages(image, order);
		break;
	}
M
Maneesh Soni 已提交
534

535 536 537 538 539
	return pages;
}

static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
{
M
Maneesh Soni 已提交
540
	if (*image->entry != 0)
541
		image->entry++;
M
Maneesh Soni 已提交
542

543 544 545
	if (image->entry == image->last_entry) {
		kimage_entry_t *ind_page;
		struct page *page;
M
Maneesh Soni 已提交
546

547
		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
M
Maneesh Soni 已提交
548
		if (!page)
549
			return -ENOMEM;
M
Maneesh Soni 已提交
550

551 552 553
		ind_page = page_address(page);
		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
		image->entry = ind_page;
M
Maneesh Soni 已提交
554 555
		image->last_entry = ind_page +
				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
556 557 558 559
	}
	*image->entry = entry;
	image->entry++;
	*image->entry = 0;
M
Maneesh Soni 已提交
560

561 562 563
	return 0;
}

M
Maneesh Soni 已提交
564 565
static int kimage_set_destination(struct kimage *image,
				   unsigned long destination)
566 567 568 569 570
{
	int result;

	destination &= PAGE_MASK;
	result = kimage_add_entry(image, destination | IND_DESTINATION);
M
Maneesh Soni 已提交
571
	if (result == 0)
572
		image->destination = destination;
M
Maneesh Soni 已提交
573

574 575 576 577 578 579 580 581 582 583
	return result;
}


static int kimage_add_page(struct kimage *image, unsigned long page)
{
	int result;

	page &= PAGE_MASK;
	result = kimage_add_entry(image, page | IND_SOURCE);
M
Maneesh Soni 已提交
584
	if (result == 0)
585
		image->destination += PAGE_SIZE;
M
Maneesh Soni 已提交
586

587 588 589 590 591 592 593 594 595 596 597 598 599
	return result;
}


static void kimage_free_extra_pages(struct kimage *image)
{
	/* Walk through and free any extra destination pages I may have */
	kimage_free_page_list(&image->dest_pages);

	/* Walk through and free any unuseable pages I have cached */
	kimage_free_page_list(&image->unuseable_pages);

}
600
static void kimage_terminate(struct kimage *image)
601
{
M
Maneesh Soni 已提交
602
	if (*image->entry != 0)
603
		image->entry++;
M
Maneesh Soni 已提交
604

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
	*image->entry = IND_DONE;
}

#define for_each_kimage_entry(image, ptr, entry) \
	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
		ptr = (entry & IND_INDIRECTION)? \
			phys_to_virt((entry & PAGE_MASK)): ptr +1)

static void kimage_free_entry(kimage_entry_t entry)
{
	struct page *page;

	page = pfn_to_page(entry >> PAGE_SHIFT);
	kimage_free_pages(page);
}

static void kimage_free(struct kimage *image)
{
	kimage_entry_t *ptr, entry;
	kimage_entry_t ind = 0;

	if (!image)
		return;
M
Maneesh Soni 已提交
628

629 630 631 632
	kimage_free_extra_pages(image);
	for_each_kimage_entry(image, ptr, entry) {
		if (entry & IND_INDIRECTION) {
			/* Free the previous indirection page */
M
Maneesh Soni 已提交
633
			if (ind & IND_INDIRECTION)
634 635 636 637 638 639
				kimage_free_entry(ind);
			/* Save this indirection page until we are
			 * done with it.
			 */
			ind = entry;
		}
M
Maneesh Soni 已提交
640
		else if (entry & IND_SOURCE)
641 642 643
			kimage_free_entry(entry);
	}
	/* Free the final indirection page */
M
Maneesh Soni 已提交
644
	if (ind & IND_INDIRECTION)
645 646 647 648 649 650 651 652 653 654
		kimage_free_entry(ind);

	/* Handle any machine specific cleanup */
	machine_kexec_cleanup(image);

	/* Free the kexec control pages... */
	kimage_free_page_list(&image->control_pages);
	kfree(image);
}

M
Maneesh Soni 已提交
655 656
static kimage_entry_t *kimage_dst_used(struct kimage *image,
					unsigned long page)
657 658 659 660 661
{
	kimage_entry_t *ptr, entry;
	unsigned long destination = 0;

	for_each_kimage_entry(image, ptr, entry) {
M
Maneesh Soni 已提交
662
		if (entry & IND_DESTINATION)
663 664
			destination = entry & PAGE_MASK;
		else if (entry & IND_SOURCE) {
M
Maneesh Soni 已提交
665
			if (page == destination)
666 667 668 669
				return ptr;
			destination += PAGE_SIZE;
		}
	}
M
Maneesh Soni 已提交
670

671
	return NULL;
672 673
}

M
Maneesh Soni 已提交
674
static struct page *kimage_alloc_page(struct kimage *image,
A
Al Viro 已提交
675
					gfp_t gfp_mask,
M
Maneesh Soni 已提交
676
					unsigned long destination)
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
{
	/*
	 * Here we implement safeguards to ensure that a source page
	 * is not copied to its destination page before the data on
	 * the destination page is no longer useful.
	 *
	 * To do this we maintain the invariant that a source page is
	 * either its own destination page, or it is not a
	 * destination page at all.
	 *
	 * That is slightly stronger than required, but the proof
	 * that no problems will not occur is trivial, and the
	 * implementation is simply to verify.
	 *
	 * When allocating all pages normally this algorithm will run
	 * in O(N) time, but in the worst case it will run in O(N^2)
	 * time.   If the runtime is a problem the data structures can
	 * be fixed.
	 */
	struct page *page;
	unsigned long addr;

	/*
	 * Walk through the list of destination pages, and see if I
	 * have a match.
	 */
	list_for_each_entry(page, &image->dest_pages, lru) {
		addr = page_to_pfn(page) << PAGE_SHIFT;
		if (addr == destination) {
			list_del(&page->lru);
			return page;
		}
	}
	page = NULL;
	while (1) {
		kimage_entry_t *old;

		/* Allocate a page, if we run out of memory give up */
		page = kimage_alloc_pages(gfp_mask, 0);
M
Maneesh Soni 已提交
716
		if (!page)
717
			return NULL;
718
		/* If the page cannot be used file it away */
M
Maneesh Soni 已提交
719 720
		if (page_to_pfn(page) >
				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
721 722 723 724 725 726 727 728 729 730
			list_add(&page->lru, &image->unuseable_pages);
			continue;
		}
		addr = page_to_pfn(page) << PAGE_SHIFT;

		/* If it is the destination page we want use it */
		if (addr == destination)
			break;

		/* If the page is not a destination page use it */
M
Maneesh Soni 已提交
731 732
		if (!kimage_is_destination_range(image, addr,
						  addr + PAGE_SIZE))
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
			break;

		/*
		 * I know that the page is someones destination page.
		 * See if there is already a source page for this
		 * destination page.  And if so swap the source pages.
		 */
		old = kimage_dst_used(image, addr);
		if (old) {
			/* If so move it */
			unsigned long old_addr;
			struct page *old_page;

			old_addr = *old & PAGE_MASK;
			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
			copy_highpage(page, old_page);
			*old = addr | (*old & ~PAGE_MASK);

			/* The old page I have found cannot be a
			 * destination page, so return it.
			 */
			addr = old_addr;
			page = old_page;
			break;
		}
		else {
			/* Place the page on the destination list I
			 * will use it later.
			 */
			list_add(&page->lru, &image->dest_pages);
		}
	}
M
Maneesh Soni 已提交
765

766 767 768 769
	return page;
}

static int kimage_load_normal_segment(struct kimage *image,
M
Maneesh Soni 已提交
770
					 struct kexec_segment *segment)
771 772 773 774
{
	unsigned long maddr;
	unsigned long ubytes, mbytes;
	int result;
775
	unsigned char __user *buf;
776 777 778 779 780 781 782 783

	result = 0;
	buf = segment->buf;
	ubytes = segment->bufsz;
	mbytes = segment->memsz;
	maddr = segment->mem;

	result = kimage_set_destination(image, maddr);
M
Maneesh Soni 已提交
784
	if (result < 0)
785
		goto out;
M
Maneesh Soni 已提交
786 787

	while (mbytes) {
788 789 790
		struct page *page;
		char *ptr;
		size_t uchunk, mchunk;
M
Maneesh Soni 已提交
791

792
		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
793
		if (!page) {
794 795 796
			result  = -ENOMEM;
			goto out;
		}
M
Maneesh Soni 已提交
797 798 799
		result = kimage_add_page(image, page_to_pfn(page)
								<< PAGE_SHIFT);
		if (result < 0)
800
			goto out;
M
Maneesh Soni 已提交
801

802 803 804 805 806
		ptr = kmap(page);
		/* Start with a clear page */
		memset(ptr, 0, PAGE_SIZE);
		ptr += maddr & ~PAGE_MASK;
		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
M
Maneesh Soni 已提交
807
		if (mchunk > mbytes)
808
			mchunk = mbytes;
M
Maneesh Soni 已提交
809

810
		uchunk = mchunk;
M
Maneesh Soni 已提交
811
		if (uchunk > ubytes)
812
			uchunk = ubytes;
M
Maneesh Soni 已提交
813

814 815 816 817 818 819 820 821 822 823 824
		result = copy_from_user(ptr, buf, uchunk);
		kunmap(page);
		if (result) {
			result = (result < 0) ? result : -EIO;
			goto out;
		}
		ubytes -= uchunk;
		maddr  += mchunk;
		buf    += mchunk;
		mbytes -= mchunk;
	}
M
Maneesh Soni 已提交
825
out:
826 827 828 829
	return result;
}

static int kimage_load_crash_segment(struct kimage *image,
M
Maneesh Soni 已提交
830
					struct kexec_segment *segment)
831 832 833 834 835 836 837 838
{
	/* For crash dumps kernels we simply copy the data from
	 * user space to it's destination.
	 * We do things a page at a time for the sake of kmap.
	 */
	unsigned long maddr;
	unsigned long ubytes, mbytes;
	int result;
839
	unsigned char __user *buf;
840 841 842 843 844 845

	result = 0;
	buf = segment->buf;
	ubytes = segment->bufsz;
	mbytes = segment->memsz;
	maddr = segment->mem;
M
Maneesh Soni 已提交
846
	while (mbytes) {
847 848 849
		struct page *page;
		char *ptr;
		size_t uchunk, mchunk;
M
Maneesh Soni 已提交
850

851
		page = pfn_to_page(maddr >> PAGE_SHIFT);
852
		if (!page) {
853 854 855 856 857 858
			result  = -ENOMEM;
			goto out;
		}
		ptr = kmap(page);
		ptr += maddr & ~PAGE_MASK;
		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
M
Maneesh Soni 已提交
859
		if (mchunk > mbytes)
860
			mchunk = mbytes;
M
Maneesh Soni 已提交
861

862 863 864 865 866 867 868
		uchunk = mchunk;
		if (uchunk > ubytes) {
			uchunk = ubytes;
			/* Zero the trailing part of the page */
			memset(ptr + uchunk, 0, mchunk - uchunk);
		}
		result = copy_from_user(ptr, buf, uchunk);
Z
Zou Nan hai 已提交
869
		kexec_flush_icache_page(page);
870 871 872 873 874 875 876 877 878 879
		kunmap(page);
		if (result) {
			result = (result < 0) ? result : -EIO;
			goto out;
		}
		ubytes -= uchunk;
		maddr  += mchunk;
		buf    += mchunk;
		mbytes -= mchunk;
	}
M
Maneesh Soni 已提交
880
out:
881 882 883 884
	return result;
}

static int kimage_load_segment(struct kimage *image,
M
Maneesh Soni 已提交
885
				struct kexec_segment *segment)
886 887
{
	int result = -ENOMEM;
M
Maneesh Soni 已提交
888 889

	switch (image->type) {
890 891 892 893 894 895 896
	case KEXEC_TYPE_DEFAULT:
		result = kimage_load_normal_segment(image, segment);
		break;
	case KEXEC_TYPE_CRASH:
		result = kimage_load_crash_segment(image, segment);
		break;
	}
M
Maneesh Soni 已提交
897

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	return result;
}

/*
 * Exec Kernel system call: for obvious reasons only root may call it.
 *
 * This call breaks up into three pieces.
 * - A generic part which loads the new kernel from the current
 *   address space, and very carefully places the data in the
 *   allocated pages.
 *
 * - A generic part that interacts with the kernel and tells all of
 *   the devices to shut down.  Preventing on-going dmas, and placing
 *   the devices in a consistent state so a later kernel can
 *   reinitialize them.
 *
 * - A machine specific part that includes the syscall number
 *   and the copies the image to it's final destination.  And
 *   jumps into the image at entry.
 *
 * kexec does not sync, or unmount filesystems so if you need
 * that to happen you need to do that yourself.
 */
921 922
struct kimage *kexec_image;
struct kimage *kexec_crash_image;
923 924 925 926 927
/*
 * A home grown binary mutex.
 * Nothing can wait so this mutex is safe to use
 * in interrupt context :)
 */
928
static int kexec_lock;
929

M
Maneesh Soni 已提交
930 931 932
asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments,
				struct kexec_segment __user *segments,
				unsigned long flags)
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
{
	struct kimage **dest_image, *image;
	int locked;
	int result;

	/* We only trust the superuser with rebooting the system. */
	if (!capable(CAP_SYS_BOOT))
		return -EPERM;

	/*
	 * Verify we have a legal set of flags
	 * This leaves us room for future extensions.
	 */
	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
		return -EINVAL;

	/* Verify we are on the appropriate architecture */
	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
		return -EINVAL;

	/* Put an artificial cap on the number
	 * of segments passed to kexec_load.
	 */
	if (nr_segments > KEXEC_SEGMENT_MAX)
		return -EINVAL;

	image = NULL;
	result = 0;

	/* Because we write directly to the reserved memory
	 * region when loading crash kernels we need a mutex here to
	 * prevent multiple crash  kernels from attempting to load
	 * simultaneously, and to prevent a crash kernel from loading
	 * over the top of a in use crash kernel.
	 *
	 * KISS: always take the mutex.
	 */
	locked = xchg(&kexec_lock, 1);
M
Maneesh Soni 已提交
972
	if (locked)
973
		return -EBUSY;
M
Maneesh Soni 已提交
974

975
	dest_image = &kexec_image;
M
Maneesh Soni 已提交
976
	if (flags & KEXEC_ON_CRASH)
977 978 979
		dest_image = &kexec_crash_image;
	if (nr_segments > 0) {
		unsigned long i;
M
Maneesh Soni 已提交
980

981
		/* Loading another kernel to reboot into */
M
Maneesh Soni 已提交
982 983 984
		if ((flags & KEXEC_ON_CRASH) == 0)
			result = kimage_normal_alloc(&image, entry,
							nr_segments, segments);
985 986 987 988 989 990
		/* Loading another kernel to switch to if this one crashes */
		else if (flags & KEXEC_ON_CRASH) {
			/* Free any current crash dump kernel before
			 * we corrupt it.
			 */
			kimage_free(xchg(&kexec_crash_image, NULL));
M
Maneesh Soni 已提交
991 992
			result = kimage_crash_alloc(&image, entry,
						     nr_segments, segments);
993
		}
M
Maneesh Soni 已提交
994
		if (result)
995
			goto out;
M
Maneesh Soni 已提交
996

H
Huang Ying 已提交
997 998
		if (flags & KEXEC_PRESERVE_CONTEXT)
			image->preserve_context = 1;
999
		result = machine_kexec_prepare(image);
M
Maneesh Soni 已提交
1000
		if (result)
1001
			goto out;
M
Maneesh Soni 已提交
1002 1003

		for (i = 0; i < nr_segments; i++) {
1004
			result = kimage_load_segment(image, &image->segment[i]);
M
Maneesh Soni 已提交
1005
			if (result)
1006 1007
				goto out;
		}
1008
		kimage_terminate(image);
1009 1010 1011 1012
	}
	/* Install the new kernel, and  Uninstall the old */
	image = xchg(dest_image, image);

M
Maneesh Soni 已提交
1013
out:
R
Roland McGrath 已提交
1014 1015
	locked = xchg(&kexec_lock, 0); /* Release the mutex */
	BUG_ON(!locked);
1016
	kimage_free(image);
M
Maneesh Soni 已提交
1017

1018 1019 1020 1021 1022
	return result;
}

#ifdef CONFIG_COMPAT
asmlinkage long compat_sys_kexec_load(unsigned long entry,
M
Maneesh Soni 已提交
1023 1024 1025
				unsigned long nr_segments,
				struct compat_kexec_segment __user *segments,
				unsigned long flags)
1026 1027 1028 1029 1030 1031 1032 1033
{
	struct compat_kexec_segment in;
	struct kexec_segment out, __user *ksegments;
	unsigned long i, result;

	/* Don't allow clients that don't understand the native
	 * architecture to do anything.
	 */
M
Maneesh Soni 已提交
1034
	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1035 1036
		return -EINVAL;

M
Maneesh Soni 已提交
1037
	if (nr_segments > KEXEC_SEGMENT_MAX)
1038 1039 1040 1041 1042
		return -EINVAL;

	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
	for (i=0; i < nr_segments; i++) {
		result = copy_from_user(&in, &segments[i], sizeof(in));
M
Maneesh Soni 已提交
1043
		if (result)
1044 1045 1046 1047 1048 1049 1050 1051
			return -EFAULT;

		out.buf   = compat_ptr(in.buf);
		out.bufsz = in.bufsz;
		out.mem   = in.mem;
		out.memsz = in.memsz;

		result = copy_to_user(&ksegments[i], &out, sizeof(out));
M
Maneesh Soni 已提交
1052
		if (result)
1053 1054 1055 1056 1057 1058 1059
			return -EFAULT;
	}

	return sys_kexec_load(entry, nr_segments, ksegments, flags);
}
#endif

1060
void crash_kexec(struct pt_regs *regs)
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
{
	int locked;


	/* Take the kexec_lock here to prevent sys_kexec_load
	 * running on one cpu from replacing the crash kernel
	 * we are using after a panic on a different cpu.
	 *
	 * If the crash kernel was not located in a fixed area
	 * of memory the xchg(&kexec_crash_image) would be
	 * sufficient.  But since I reuse the memory...
	 */
	locked = xchg(&kexec_lock, 1);
	if (!locked) {
1075
		if (kexec_crash_image) {
1076 1077
			struct pt_regs fixed_regs;
			crash_setup_regs(&fixed_regs, regs);
K
Ken'ichi Ohmichi 已提交
1078
			crash_save_vmcoreinfo();
1079
			machine_crash_shutdown(&fixed_regs);
1080
			machine_kexec(kexec_crash_image);
1081
		}
R
Roland McGrath 已提交
1082 1083
		locked = xchg(&kexec_lock, 0);
		BUG_ON(!locked);
1084 1085
	}
}
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
			    size_t data_len)
{
	struct elf_note note;

	note.n_namesz = strlen(name) + 1;
	note.n_descsz = data_len;
	note.n_type   = type;
	memcpy(buf, &note, sizeof(note));
	buf += (sizeof(note) + 3)/4;
	memcpy(buf, name, note.n_namesz);
	buf += (note.n_namesz + 3)/4;
	memcpy(buf, data, note.n_descsz);
	buf += (note.n_descsz + 3)/4;

	return buf;
}

static void final_note(u32 *buf)
{
	struct elf_note note;

	note.n_namesz = 0;
	note.n_descsz = 0;
	note.n_type   = 0;
	memcpy(buf, &note, sizeof(note));
}

void crash_save_cpu(struct pt_regs *regs, int cpu)
{
	struct elf_prstatus prstatus;
	u32 *buf;

	if ((cpu < 0) || (cpu >= NR_CPUS))
		return;

	/* Using ELF notes here is opportunistic.
	 * I need a well defined structure format
	 * for the data I pass, and I need tags
	 * on the data to indicate what information I have
	 * squirrelled away.  ELF notes happen to provide
	 * all of that, so there is no need to invent something new.
	 */
	buf = (u32*)per_cpu_ptr(crash_notes, cpu);
	if (!buf)
		return;
	memset(&prstatus, 0, sizeof(prstatus));
	prstatus.pr_pid = current->pid;
	elf_core_copy_regs(&prstatus.pr_reg, regs);
1136 1137
	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
		      	      &prstatus, sizeof(prstatus));
1138 1139 1140
	final_note(buf);
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
static int __init crash_notes_memory_init(void)
{
	/* Allocate memory for saving cpu registers. */
	crash_notes = alloc_percpu(note_buf_t);
	if (!crash_notes) {
		printk("Kexec: Memory allocation for saving cpu register"
		" states failed\n");
		return -ENOMEM;
	}
	return 0;
}
module_init(crash_notes_memory_init)
K
Ken'ichi Ohmichi 已提交
1153

B
Bernhard Walle 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

/*
 * parsing the "crashkernel" commandline
 *
 * this code is intended to be called from architecture specific code
 */


/*
 * This function parses command lines in the format
 *
 *   crashkernel=ramsize-range:size[,...][@offset]
 *
 * The function returns 0 on success and -EINVAL on failure.
 */
static int __init parse_crashkernel_mem(char 			*cmdline,
					unsigned long long	system_ram,
					unsigned long long	*crash_size,
					unsigned long long	*crash_base)
{
	char *cur = cmdline, *tmp;

	/* for each entry of the comma-separated list */
	do {
		unsigned long long start, end = ULLONG_MAX, size;

		/* get the start of the range */
		start = memparse(cur, &tmp);
		if (cur == tmp) {
			pr_warning("crashkernel: Memory value expected\n");
			return -EINVAL;
		}
		cur = tmp;
		if (*cur != '-') {
			pr_warning("crashkernel: '-' expected\n");
			return -EINVAL;
		}
		cur++;

		/* if no ':' is here, than we read the end */
		if (*cur != ':') {
			end = memparse(cur, &tmp);
			if (cur == tmp) {
				pr_warning("crashkernel: Memory "
						"value expected\n");
				return -EINVAL;
			}
			cur = tmp;
			if (end <= start) {
				pr_warning("crashkernel: end <= start\n");
				return -EINVAL;
			}
		}

		if (*cur != ':') {
			pr_warning("crashkernel: ':' expected\n");
			return -EINVAL;
		}
		cur++;

		size = memparse(cur, &tmp);
		if (cur == tmp) {
			pr_warning("Memory value expected\n");
			return -EINVAL;
		}
		cur = tmp;
		if (size >= system_ram) {
			pr_warning("crashkernel: invalid size\n");
			return -EINVAL;
		}

		/* match ? */
1226
		if (system_ram >= start && system_ram < end) {
B
Bernhard Walle 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
			*crash_size = size;
			break;
		}
	} while (*cur++ == ',');

	if (*crash_size > 0) {
		while (*cur != ' ' && *cur != '@')
			cur++;
		if (*cur == '@') {
			cur++;
			*crash_base = memparse(cur, &tmp);
			if (cur == tmp) {
				pr_warning("Memory value expected "
						"after '@'\n");
				return -EINVAL;
			}
		}
	}

	return 0;
}

/*
 * That function parses "simple" (old) crashkernel command lines like
 *
 * 	crashkernel=size[@offset]
 *
 * It returns 0 on success and -EINVAL on failure.
 */
static int __init parse_crashkernel_simple(char 		*cmdline,
					   unsigned long long 	*crash_size,
					   unsigned long long 	*crash_base)
{
	char *cur = cmdline;

	*crash_size = memparse(cmdline, &cur);
	if (cmdline == cur) {
		pr_warning("crashkernel: memory value expected\n");
		return -EINVAL;
	}

	if (*cur == '@')
		*crash_base = memparse(cur+1, &cur);

	return 0;
}

/*
 * That function is the entry point for command line parsing and should be
 * called from the arch-specific code.
 */
int __init parse_crashkernel(char 		 *cmdline,
			     unsigned long long system_ram,
			     unsigned long long *crash_size,
			     unsigned long long *crash_base)
{
	char 	*p = cmdline, *ck_cmdline = NULL;
	char	*first_colon, *first_space;

	BUG_ON(!crash_size || !crash_base);
	*crash_size = 0;
	*crash_base = 0;

	/* find crashkernel and use the last one if there are more */
	p = strstr(p, "crashkernel=");
	while (p) {
		ck_cmdline = p;
		p = strstr(p+1, "crashkernel=");
	}

	if (!ck_cmdline)
		return -EINVAL;

	ck_cmdline += 12; /* strlen("crashkernel=") */

	/*
	 * if the commandline contains a ':', then that's the extended
	 * syntax -- if not, it must be the classic syntax
	 */
	first_colon = strchr(ck_cmdline, ':');
	first_space = strchr(ck_cmdline, ' ');
	if (first_colon && (!first_space || first_colon < first_space))
		return parse_crashkernel_mem(ck_cmdline, system_ram,
				crash_size, crash_base);
	else
		return parse_crashkernel_simple(ck_cmdline, crash_size,
				crash_base);

	return 0;
}



K
Ken'ichi Ohmichi 已提交
1320 1321 1322 1323 1324 1325 1326
void crash_save_vmcoreinfo(void)
{
	u32 *buf;

	if (!vmcoreinfo_size)
		return;

1327
	vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
K
Ken'ichi Ohmichi 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

	buf = (u32 *)vmcoreinfo_note;

	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
			      vmcoreinfo_size);

	final_note(buf);
}

void vmcoreinfo_append_str(const char *fmt, ...)
{
	va_list args;
	char buf[0x50];
	int r;

	va_start(args, fmt);
	r = vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);

	if (r + vmcoreinfo_size > vmcoreinfo_max_size)
		r = vmcoreinfo_max_size - vmcoreinfo_size;

	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);

	vmcoreinfo_size += r;
}

/*
 * provide an empty default implementation here -- architecture
 * code may override this
 */
void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
{}

unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
{
	return __pa((unsigned long)(char *)&vmcoreinfo_note);
}

static int __init crash_save_vmcoreinfo_init(void)
{
1369 1370
	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
	VMCOREINFO_PAGESIZE(PAGE_SIZE);
K
Ken'ichi Ohmichi 已提交
1371

1372 1373 1374 1375
	VMCOREINFO_SYMBOL(init_uts_ns);
	VMCOREINFO_SYMBOL(node_online_map);
	VMCOREINFO_SYMBOL(swapper_pg_dir);
	VMCOREINFO_SYMBOL(_stext);
K
Ken'ichi Ohmichi 已提交
1376 1377

#ifndef CONFIG_NEED_MULTIPLE_NODES
1378 1379
	VMCOREINFO_SYMBOL(mem_map);
	VMCOREINFO_SYMBOL(contig_page_data);
K
Ken'ichi Ohmichi 已提交
1380 1381
#endif
#ifdef CONFIG_SPARSEMEM
1382 1383
	VMCOREINFO_SYMBOL(mem_section);
	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1384
	VMCOREINFO_STRUCT_SIZE(mem_section);
1385
	VMCOREINFO_OFFSET(mem_section, section_mem_map);
K
Ken'ichi Ohmichi 已提交
1386
#endif
1387 1388 1389 1390 1391 1392
	VMCOREINFO_STRUCT_SIZE(page);
	VMCOREINFO_STRUCT_SIZE(pglist_data);
	VMCOREINFO_STRUCT_SIZE(zone);
	VMCOREINFO_STRUCT_SIZE(free_area);
	VMCOREINFO_STRUCT_SIZE(list_head);
	VMCOREINFO_SIZE(nodemask_t);
1393 1394 1395 1396 1397 1398
	VMCOREINFO_OFFSET(page, flags);
	VMCOREINFO_OFFSET(page, _count);
	VMCOREINFO_OFFSET(page, mapping);
	VMCOREINFO_OFFSET(page, lru);
	VMCOREINFO_OFFSET(pglist_data, node_zones);
	VMCOREINFO_OFFSET(pglist_data, nr_zones);
K
Ken'ichi Ohmichi 已提交
1399
#ifdef CONFIG_FLAT_NODE_MEM_MAP
1400
	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
K
Ken'ichi Ohmichi 已提交
1401
#endif
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
	VMCOREINFO_OFFSET(pglist_data, node_id);
	VMCOREINFO_OFFSET(zone, free_area);
	VMCOREINFO_OFFSET(zone, vm_stat);
	VMCOREINFO_OFFSET(zone, spanned_pages);
	VMCOREINFO_OFFSET(free_area, free_list);
	VMCOREINFO_OFFSET(list_head, next);
	VMCOREINFO_OFFSET(list_head, prev);
	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1412
	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1413
	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1414 1415 1416
	VMCOREINFO_NUMBER(PG_lru);
	VMCOREINFO_NUMBER(PG_private);
	VMCOREINFO_NUMBER(PG_swapcache);
K
Ken'ichi Ohmichi 已提交
1417 1418 1419 1420 1421 1422 1423

	arch_crash_save_vmcoreinfo();

	return 0;
}

module_init(crash_save_vmcoreinfo_init)
H
Huang Ying 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

/**
 *	kernel_kexec - reboot the system
 *
 *	Move into place and start executing a preloaded standalone
 *	executable.  If nothing was preloaded return an error.
 */
int kernel_kexec(void)
{
	int error = 0;

	if (xchg(&kexec_lock, 1))
		return -EBUSY;
	if (!kexec_image) {
		error = -EINVAL;
		goto Unlock;
	}

	if (kexec_image->preserve_context) {
#ifdef CONFIG_KEXEC_JUMP
		local_irq_disable();
		save_processor_state();
#endif
	} else {
		blocking_notifier_call_chain(&reboot_notifier_list,
					     SYS_RESTART, NULL);
		system_state = SYSTEM_RESTART;
		device_shutdown();
		sysdev_shutdown();
		printk(KERN_EMERG "Starting new kernel\n");
		machine_shutdown();
	}

	machine_kexec(kexec_image);

	if (kexec_image->preserve_context) {
#ifdef CONFIG_KEXEC_JUMP
		restore_processor_state();
		local_irq_enable();
#endif
	}

 Unlock:
	xchg(&kexec_lock, 0);

	return error;
}