rx.c 21.2 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
4
 * Copyright 2005-2009 Solarflare Communications Inc.
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/socket.h>
#include <linux/in.h>
13
#include <linux/slab.h>
14 15 16 17 18 19 20
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <net/ip.h>
#include <net/checksum.h>
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
21
#include "nic.h"
22
#include "selftest.h"
23 24 25 26 27
#include "workarounds.h"

/* Number of RX descriptors pushed at once. */
#define EFX_RX_BATCH  8

28 29 30
/* Maximum size of a buffer sharing a page */
#define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/* Size of buffer allocated for skb header area. */
#define EFX_SKB_HEADERS  64u

/*
 * rx_alloc_method - RX buffer allocation method
 *
 * This driver supports two methods for allocating and using RX buffers:
 * each RX buffer may be backed by an skb or by an order-n page.
 *
 * When LRO is in use then the second method has a lower overhead,
 * since we don't have to allocate then free skbs on reassembled frames.
 *
 * Values:
 *   - RX_ALLOC_METHOD_AUTO = 0
 *   - RX_ALLOC_METHOD_SKB  = 1
 *   - RX_ALLOC_METHOD_PAGE = 2
 *
 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
 * controlled by the parameters below.
 *
 *   - Since pushing and popping descriptors are separated by the rx_queue
 *     size, so the watermarks should be ~rxd_size.
 *   - The performance win by using page-based allocation for LRO is less
 *     than the performance hit of using page-based allocation of non-LRO,
 *     so the watermarks should reflect this.
 *
 * Per channel we maintain a single variable, updated by each channel:
 *
 *   rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
 *                      RX_ALLOC_FACTOR_SKB)
 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
 * limits the hysteresis), and update the allocation strategy:
 *
 *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
 *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
 */
67
static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#define RX_ALLOC_LEVEL_LRO 0x2000
#define RX_ALLOC_LEVEL_MAX 0x3000
#define RX_ALLOC_FACTOR_LRO 1
#define RX_ALLOC_FACTOR_SKB (-2)

/* This is the percentage fill level below which new RX descriptors
 * will be added to the RX descriptor ring.
 */
static unsigned int rx_refill_threshold = 90;

/* This is the percentage fill level to which an RX queue will be refilled
 * when the "RX refill threshold" is reached.
 */
static unsigned int rx_refill_limit = 95;

/*
 * RX maximum head room required.
 *
 * This must be at least 1 to prevent overflow and at least 2 to allow
88
 * pipelined receives.
89
 */
90
#define EFX_RXD_HEAD_ROOM 2
91

92 93 94 95 96
static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
{
	/* Offset is always within one page, so we don't need to consider
	 * the page order.
	 */
97
	return (__force unsigned long) buf->data & (PAGE_SIZE - 1);
98 99 100 101 102
}
static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
{
	return PAGE_SIZE << efx->rx_buffer_order;
}
103

104 105 106 107 108 109 110 111 112 113 114 115 116
static inline u32 efx_rx_buf_hash(struct efx_rx_buffer *buf)
{
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
	return __le32_to_cpup((const __le32 *)buf->data);
#else
	const u8 *data = (const u8 *)buf->data;
	return ((u32)data[0]       |
		(u32)data[1] << 8  |
		(u32)data[2] << 16 |
		(u32)data[3] << 24);
#endif
}

117
/**
118
 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
119 120 121
 *
 * @rx_queue:		Efx RX queue
 *
122 123 124 125
 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
 * struct efx_rx_buffer for each one. Return a negative error code or 0
 * on success. May fail having only inserted fewer than EFX_RX_BATCH
 * buffers.
126
 */
127
static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
128 129 130
{
	struct efx_nic *efx = rx_queue->efx;
	struct net_device *net_dev = efx->net_dev;
131
	struct efx_rx_buffer *rx_buf;
132
	int skb_len = efx->rx_buffer_len;
133
	unsigned index, count;
134

135 136 137
	for (count = 0; count < EFX_RX_BATCH; ++count) {
		index = rx_queue->added_count & EFX_RXQ_MASK;
		rx_buf = efx_rx_buffer(rx_queue, index);
138

139 140 141 142
		rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
		if (unlikely(!rx_buf->skb))
			return -ENOMEM;
		rx_buf->page = NULL;
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
		/* Adjust the SKB for padding and checksum */
		skb_reserve(rx_buf->skb, NET_IP_ALIGN);
		rx_buf->len = skb_len - NET_IP_ALIGN;
		rx_buf->data = (char *)rx_buf->skb->data;
		rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;

		rx_buf->dma_addr = pci_map_single(efx->pci_dev,
						  rx_buf->data, rx_buf->len,
						  PCI_DMA_FROMDEVICE);
		if (unlikely(pci_dma_mapping_error(efx->pci_dev,
						   rx_buf->dma_addr))) {
			dev_kfree_skb_any(rx_buf->skb);
			rx_buf->skb = NULL;
			return -EIO;
		}
159

160 161
		++rx_queue->added_count;
		++rx_queue->alloc_skb_count;
162 163 164 165 166 167
	}

	return 0;
}

/**
168
 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
169 170 171
 *
 * @rx_queue:		Efx RX queue
 *
172 173 174 175
 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
 * and populates struct efx_rx_buffers for each one. Return a negative error
 * code or 0 on success. If a single page can be split between two buffers,
 * then the page will either be inserted fully, or not at at all.
176
 */
177
static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
178 179
{
	struct efx_nic *efx = rx_queue->efx;
180 181
	struct efx_rx_buffer *rx_buf;
	struct page *page;
182 183
	void *page_addr;
	struct efx_rx_page_state *state;
184 185 186 187 188 189 190 191 192 193
	dma_addr_t dma_addr;
	unsigned index, count;

	/* We can split a page between two buffers */
	BUILD_BUG_ON(EFX_RX_BATCH & 1);

	for (count = 0; count < EFX_RX_BATCH; ++count) {
		page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
				   efx->rx_buffer_order);
		if (unlikely(page == NULL))
194
			return -ENOMEM;
195 196
		dma_addr = pci_map_page(efx->pci_dev, page, 0,
					efx_rx_buf_size(efx),
197
					PCI_DMA_FROMDEVICE);
198
		if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
199
			__free_pages(page, efx->rx_buffer_order);
200 201
			return -EIO;
		}
202 203 204 205 206 207 208
		page_addr = page_address(page);
		state = page_addr;
		state->refcnt = 0;
		state->dma_addr = dma_addr;

		page_addr += sizeof(struct efx_rx_page_state);
		dma_addr += sizeof(struct efx_rx_page_state);
209 210 211 212

	split:
		index = rx_queue->added_count & EFX_RXQ_MASK;
		rx_buf = efx_rx_buffer(rx_queue, index);
213
		rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
214 215
		rx_buf->skb = NULL;
		rx_buf->page = page;
216
		rx_buf->data = page_addr + EFX_PAGE_IP_ALIGN;
217 218 219
		rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
		++rx_queue->added_count;
		++rx_queue->alloc_page_count;
220
		++state->refcnt;
221

222
		if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
223 224 225 226 227 228
			/* Use the second half of the page */
			get_page(page);
			dma_addr += (PAGE_SIZE >> 1);
			page_addr += (PAGE_SIZE >> 1);
			++count;
			goto split;
229 230 231 232 233 234
		}
	}

	return 0;
}

235 236
static void efx_unmap_rx_buffer(struct efx_nic *efx,
				struct efx_rx_buffer *rx_buf)
237 238
{
	if (rx_buf->page) {
239 240
		struct efx_rx_page_state *state;

241
		EFX_BUG_ON_PARANOID(rx_buf->skb);
242

243 244
		state = page_address(rx_buf->page);
		if (--state->refcnt == 0) {
245
			pci_unmap_page(efx->pci_dev,
246
				       state->dma_addr,
247 248
				       efx_rx_buf_size(efx),
				       PCI_DMA_FROMDEVICE);
249 250 251 252 253 254 255
		}
	} else if (likely(rx_buf->skb)) {
		pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
				 rx_buf->len, PCI_DMA_FROMDEVICE);
	}
}

256 257
static void efx_free_rx_buffer(struct efx_nic *efx,
			       struct efx_rx_buffer *rx_buf)
258 259 260 261 262 263 264 265 266 267
{
	if (rx_buf->page) {
		__free_pages(rx_buf->page, efx->rx_buffer_order);
		rx_buf->page = NULL;
	} else if (likely(rx_buf->skb)) {
		dev_kfree_skb_any(rx_buf->skb);
		rx_buf->skb = NULL;
	}
}

268 269
static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
			       struct efx_rx_buffer *rx_buf)
270 271 272 273 274
{
	efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
	efx_free_rx_buffer(rx_queue->efx, rx_buf);
}

275 276 277 278 279
/* Attempt to resurrect the other receive buffer that used to share this page,
 * which had previously been passed up to the kernel and freed. */
static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
				    struct efx_rx_buffer *rx_buf)
{
280
	struct efx_rx_page_state *state = page_address(rx_buf->page);
281
	struct efx_rx_buffer *new_buf;
282 283 284 285 286 287 288 289 290 291 292
	unsigned fill_level, index;

	/* +1 because efx_rx_packet() incremented removed_count. +1 because
	 * we'd like to insert an additional descriptor whilst leaving
	 * EFX_RXD_HEAD_ROOM for the non-recycle path */
	fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
	if (unlikely(fill_level >= EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM)) {
		/* We could place "state" on a list, and drain the list in
		 * efx_fast_push_rx_descriptors(). For now, this will do. */
		return;
	}
293

294
	++state->refcnt;
295 296 297 298
	get_page(rx_buf->page);

	index = rx_queue->added_count & EFX_RXQ_MASK;
	new_buf = efx_rx_buffer(rx_queue, index);
299
	new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
300 301
	new_buf->skb = NULL;
	new_buf->page = rx_buf->page;
302 303
	new_buf->data = (void *)
		((__force unsigned long)rx_buf->data ^ (PAGE_SIZE >> 1));
304 305 306 307 308 309 310 311 312 313 314 315 316 317
	new_buf->len = rx_buf->len;
	++rx_queue->added_count;
}

/* Recycle the given rx buffer directly back into the rx_queue. There is
 * always room to add this buffer, because we've just popped a buffer. */
static void efx_recycle_rx_buffer(struct efx_channel *channel,
				  struct efx_rx_buffer *rx_buf)
{
	struct efx_nic *efx = channel->efx;
	struct efx_rx_queue *rx_queue = &efx->rx_queue[channel->channel];
	struct efx_rx_buffer *new_buf;
	unsigned index;

318 319 320
	if (rx_buf->page != NULL && efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
	    page_count(rx_buf->page) == 1)
		efx_resurrect_rx_buffer(rx_queue, rx_buf);
321 322 323 324 325 326 327 328 329 330

	index = rx_queue->added_count & EFX_RXQ_MASK;
	new_buf = efx_rx_buffer(rx_queue, index);

	memcpy(new_buf, rx_buf, sizeof(*new_buf));
	rx_buf->page = NULL;
	rx_buf->skb = NULL;
	++rx_queue->added_count;
}

331 332 333 334 335
/**
 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
 * @rx_queue:		RX descriptor queue
 * This will aim to fill the RX descriptor queue up to
 * @rx_queue->@fast_fill_limit. If there is insufficient atomic
336 337 338 339 340
 * memory to do so, a slow fill will be scheduled.
 *
 * The caller must provide serialisation (none is used here). In practise,
 * this means this function must run from the NAPI handler, or be called
 * when NAPI is disabled.
341
 */
342
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
343
{
344 345 346
	struct efx_channel *channel = rx_queue->channel;
	unsigned fill_level;
	int space, rc = 0;
347

348
	/* Calculate current fill level, and exit if we don't need to fill */
349
	fill_level = (rx_queue->added_count - rx_queue->removed_count);
350
	EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE);
351
	if (fill_level >= rx_queue->fast_fill_trigger)
352
		goto out;
353 354

	/* Record minimum fill level */
355
	if (unlikely(fill_level < rx_queue->min_fill)) {
356 357
		if (fill_level)
			rx_queue->min_fill = fill_level;
358
	}
359 360 361

	space = rx_queue->fast_fill_limit - fill_level;
	if (space < EFX_RX_BATCH)
362
		goto out;
363

364 365 366 367 368
	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
		   "RX queue %d fast-filling descriptor ring from"
		   " level %d to level %d using %s allocation\n",
		   rx_queue->queue, fill_level, rx_queue->fast_fill_limit,
		   channel->rx_alloc_push_pages ? "page" : "skb");
369 370

	do {
371 372 373 374 375 376 377 378 379
		if (channel->rx_alloc_push_pages)
			rc = efx_init_rx_buffers_page(rx_queue);
		else
			rc = efx_init_rx_buffers_skb(rx_queue);
		if (unlikely(rc)) {
			/* Ensure that we don't leave the rx queue empty */
			if (rx_queue->added_count == rx_queue->removed_count)
				efx_schedule_slow_fill(rx_queue);
			goto out;
380 381 382
		}
	} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);

383 384 385 386
	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
		   "RX queue %d fast-filled descriptor ring "
		   "to level %d\n", rx_queue->queue,
		   rx_queue->added_count - rx_queue->removed_count);
387 388

 out:
389 390
	if (rx_queue->notified_count != rx_queue->added_count)
		efx_nic_notify_rx_desc(rx_queue);
391 392
}

393
void efx_rx_slow_fill(unsigned long context)
394
{
395 396
	struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
	struct efx_channel *channel = rx_queue->channel;
397

398 399
	/* Post an event to cause NAPI to run and refill the queue */
	efx_nic_generate_fill_event(channel);
400 401 402
	++rx_queue->slow_fill_count;
}

403 404 405 406
static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
				     struct efx_rx_buffer *rx_buf,
				     int len, bool *discard,
				     bool *leak_packet)
407 408 409 410 411 412 413 414 415 416
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;

	if (likely(len <= max_len))
		return;

	/* The packet must be discarded, but this is only a fatal error
	 * if the caller indicated it was
	 */
417
	*discard = true;
418 419

	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
420 421 422 423 424 425
		if (net_ratelimit())
			netif_err(efx, rx_err, efx->net_dev,
				  " RX queue %d seriously overlength "
				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
				  rx_queue->queue, len, max_len,
				  efx->type->rx_buffer_padding);
426 427 428 429 430 431 432
		/* If this buffer was skb-allocated, then the meta
		 * data at the end of the skb will be trashed. So
		 * we have no choice but to leak the fragment.
		 */
		*leak_packet = (rx_buf->skb != NULL);
		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
	} else {
433 434 435 436 437
		if (net_ratelimit())
			netif_err(efx, rx_err, efx->net_dev,
				  " RX queue %d overlength RX event "
				  "(0x%x > 0x%x)\n",
				  rx_queue->queue, len, max_len);
438 439 440 441 442 443 444 445 446 447
	}

	rx_queue->channel->n_rx_overlength++;
}

/* Pass a received packet up through the generic LRO stack
 *
 * Handles driverlink veto, and passes the fragment up via
 * the appropriate LRO method
 */
448
static void efx_rx_packet_lro(struct efx_channel *channel,
449 450
			      struct efx_rx_buffer *rx_buf,
			      bool checksummed)
451
{
H
Herbert Xu 已提交
452
	struct napi_struct *napi = &channel->napi_str;
453
	gro_result_t gro_result;
454 455 456

	/* Pass the skb/page into the LRO engine */
	if (rx_buf->page) {
457
		struct efx_nic *efx = channel->efx;
458 459
		struct page *page = rx_buf->page;
		struct sk_buff *skb;
460

461 462 463 464
		EFX_BUG_ON_PARANOID(rx_buf->skb);
		rx_buf->page = NULL;

		skb = napi_get_frags(napi);
465
		if (!skb) {
466 467
			put_page(page);
			return;
468 469
		}

470 471 472 473 474
		if (efx->net_dev->features & NETIF_F_RXHASH)
			skb->rxhash = efx_rx_buf_hash(rx_buf);
		rx_buf->data += efx->type->rx_buffer_hash_size;
		rx_buf->len -= efx->type->rx_buffer_hash_size;

475
		skb_shinfo(skb)->frags[0].page = page;
476 477 478 479 480 481 482 483
		skb_shinfo(skb)->frags[0].page_offset =
			efx_rx_buf_offset(rx_buf);
		skb_shinfo(skb)->frags[0].size = rx_buf->len;
		skb_shinfo(skb)->nr_frags = 1;

		skb->len = rx_buf->len;
		skb->data_len = rx_buf->len;
		skb->truesize += rx_buf->len;
484 485
		skb->ip_summed =
			checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
486

487 488
		skb_record_rx_queue(skb, channel->channel);

489
		gro_result = napi_gro_frags(napi);
490
	} else {
491
		struct sk_buff *skb = rx_buf->skb;
492

493 494
		EFX_BUG_ON_PARANOID(!skb);
		EFX_BUG_ON_PARANOID(!checksummed);
495
		rx_buf->skb = NULL;
496 497

		gro_result = napi_gro_receive(napi, skb);
498
	}
499 500 501 502 503 504 505

	if (gro_result == GRO_NORMAL) {
		channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
	} else if (gro_result != GRO_DROP) {
		channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
		channel->irq_mod_score += 2;
	}
506 507 508
}

void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
509
		   unsigned int len, bool checksummed, bool discard)
510 511
{
	struct efx_nic *efx = rx_queue->efx;
512
	struct efx_channel *channel = rx_queue->channel;
513
	struct efx_rx_buffer *rx_buf;
514
	bool leak_packet = false;
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530

	rx_buf = efx_rx_buffer(rx_queue, index);
	EFX_BUG_ON_PARANOID(!rx_buf->data);
	EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
	EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));

	/* This allows the refill path to post another buffer.
	 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
	 * isn't overwritten yet.
	 */
	rx_queue->removed_count++;

	/* Validate the length encoded in the event vs the descriptor pushed */
	efx_rx_packet__check_len(rx_queue, rx_buf, len,
				 &discard, &leak_packet);

531 532 533 534 535 536
	netif_vdbg(efx, rx_status, efx->net_dev,
		   "RX queue %d received id %x at %llx+%x %s%s\n",
		   rx_queue->queue, index,
		   (unsigned long long)rx_buf->dma_addr, len,
		   (checksummed ? " [SUMMED]" : ""),
		   (discard ? " [DISCARD]" : ""));
537 538 539 540

	/* Discard packet, if instructed to do so */
	if (unlikely(discard)) {
		if (unlikely(leak_packet))
541
			channel->n_skbuff_leaks++;
542
		else
543 544 545 546 547
			efx_recycle_rx_buffer(channel, rx_buf);

		/* Don't hold off the previous receive */
		rx_buf = NULL;
		goto out;
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	}

	/* Release card resources - assumes all RX buffers consumed in-order
	 * per RX queue
	 */
	efx_unmap_rx_buffer(efx, rx_buf);

	/* Prefetch nice and early so data will (hopefully) be in cache by
	 * the time we look at it.
	 */
	prefetch(rx_buf->data);

	/* Pipeline receives so that we give time for packet headers to be
	 * prefetched into cache.
	 */
	rx_buf->len = len;
564
out:
565 566 567 568 569 570 571 572 573 574
	if (rx_queue->channel->rx_pkt)
		__efx_rx_packet(rx_queue->channel,
				rx_queue->channel->rx_pkt,
				rx_queue->channel->rx_pkt_csummed);
	rx_queue->channel->rx_pkt = rx_buf;
	rx_queue->channel->rx_pkt_csummed = checksummed;
}

/* Handle a received packet.  Second half: Touches packet payload. */
void __efx_rx_packet(struct efx_channel *channel,
575
		     struct efx_rx_buffer *rx_buf, bool checksummed)
576 577 578 579
{
	struct efx_nic *efx = channel->efx;
	struct sk_buff *skb;

580 581 582 583 584 585
	/* If we're in loopback test, then pass the packet directly to the
	 * loopback layer, and free the rx_buf here
	 */
	if (unlikely(efx->loopback_selftest)) {
		efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
		efx_free_rx_buffer(efx, rx_buf);
586
		return;
587 588
	}

589 590 591 592 593
	if (rx_buf->skb) {
		prefetch(skb_shinfo(rx_buf->skb));

		skb_put(rx_buf->skb, rx_buf->len);

594 595 596 597
		if (efx->net_dev->features & NETIF_F_RXHASH)
			rx_buf->skb->rxhash = efx_rx_buf_hash(rx_buf);
		skb_pull(rx_buf->skb, efx->type->rx_buffer_hash_size);

598 599 600 601
		/* Move past the ethernet header. rx_buf->data still points
		 * at the ethernet header */
		rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
						       efx->net_dev);
602 603

		skb_record_rx_queue(rx_buf->skb, channel->channel);
604 605
	}

H
Herbert Xu 已提交
606
	if (likely(checksummed || rx_buf->page)) {
607
		efx_rx_packet_lro(channel, rx_buf, checksummed);
608
		return;
609 610
	}

H
Herbert Xu 已提交
611 612 613
	/* We now own the SKB */
	skb = rx_buf->skb;
	rx_buf->skb = NULL;
614 615 616
	EFX_BUG_ON_PARANOID(!skb);

	/* Set the SKB flags */
H
Herbert Xu 已提交
617
	skb->ip_summed = CHECKSUM_NONE;
618 619 620 621 622 623 624 625 626 627 628 629 630

	/* Pass the packet up */
	netif_receive_skb(skb);

	/* Update allocation strategy method */
	channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
}

void efx_rx_strategy(struct efx_channel *channel)
{
	enum efx_rx_alloc_method method = rx_alloc_method;

	/* Only makes sense to use page based allocation if LRO is enabled */
H
Herbert Xu 已提交
631
	if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
		method = RX_ALLOC_METHOD_SKB;
	} else if (method == RX_ALLOC_METHOD_AUTO) {
		/* Constrain the rx_alloc_level */
		if (channel->rx_alloc_level < 0)
			channel->rx_alloc_level = 0;
		else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
			channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;

		/* Decide on the allocation method */
		method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
			  RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
	}

	/* Push the option */
	channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
}

int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned int rxq_size;
	int rc;

655 656
	netif_dbg(efx, probe, efx->net_dev,
		  "creating RX queue %d\n", rx_queue->queue);
657 658

	/* Allocate RX buffers */
659
	rxq_size = EFX_RXQ_SIZE * sizeof(*rx_queue->buffer);
660
	rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL);
661 662
	if (!rx_queue->buffer)
		return -ENOMEM;
663

664
	rc = efx_nic_probe_rx(rx_queue);
665 666 667 668
	if (rc) {
		kfree(rx_queue->buffer);
		rx_queue->buffer = NULL;
	}
669 670 671
	return rc;
}

672
void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
673 674 675
{
	unsigned int max_fill, trigger, limit;

676 677
	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
		  "initialising RX queue %d\n", rx_queue->queue);
678 679 680 681 682 683 684 685 686

	/* Initialise ptr fields */
	rx_queue->added_count = 0;
	rx_queue->notified_count = 0;
	rx_queue->removed_count = 0;
	rx_queue->min_fill = -1U;
	rx_queue->min_overfill = -1U;

	/* Initialise limit fields */
687
	max_fill = EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM;
688 689 690 691 692 693 694 695
	trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
	limit = max_fill * min(rx_refill_limit, 100U) / 100U;

	rx_queue->max_fill = max_fill;
	rx_queue->fast_fill_trigger = trigger;
	rx_queue->fast_fill_limit = limit;

	/* Set up RX descriptor ring */
696
	efx_nic_init_rx(rx_queue);
697 698 699 700 701 702 703
}

void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
{
	int i;
	struct efx_rx_buffer *rx_buf;

704 705
	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
		  "shutting down RX queue %d\n", rx_queue->queue);
706

707
	del_timer_sync(&rx_queue->slow_fill);
708
	efx_nic_fini_rx(rx_queue);
709 710 711

	/* Release RX buffers NB start at index 0 not current HW ptr */
	if (rx_queue->buffer) {
712
		for (i = 0; i <= EFX_RXQ_MASK; i++) {
713 714 715 716 717 718 719 720
			rx_buf = efx_rx_buffer(rx_queue, i);
			efx_fini_rx_buffer(rx_queue, rx_buf);
		}
	}
}

void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
{
721 722
	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
		  "destroying RX queue %d\n", rx_queue->queue);
723

724
	efx_nic_remove_rx(rx_queue);
725 726 727 728 729 730 731 732 733 734 735 736 737

	kfree(rx_queue->buffer);
	rx_queue->buffer = NULL;
}


module_param(rx_alloc_method, int, 0644);
MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");

module_param(rx_refill_threshold, uint, 0444);
MODULE_PARM_DESC(rx_refill_threshold,
		 "RX descriptor ring fast/slow fill threshold (%)");