fsl_ssi.c 25.3 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13
 */

#include <linux/init.h>
14
#include <linux/io.h>
15 16
#include <linux/module.h>
#include <linux/interrupt.h>
17
#include <linux/clk.h>
18 19
#include <linux/device.h>
#include <linux/delay.h>
20
#include <linux/slab.h>
21 22
#include <linux/of_address.h>
#include <linux/of_irq.h>
23
#include <linux/of_platform.h>
24 25 26 27 28 29 30 31

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>

#include "fsl_ssi.h"
32
#include "imx-pcm.h"
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#ifdef PPC
#define read_ssi(addr)			 in_be32(addr)
#define write_ssi(val, addr)		 out_be32(addr, val)
#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
#elif defined ARM
#define read_ssi(addr)			 readl(addr)
#define write_ssi(val, addr)		 writel(val, addr)
/*
 * FIXME: Proper locking should be added at write_ssi_mask caller level
 * to ensure this register read/modify/write sequence is race free.
 */
static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
{
	u32 val = readl(addr);
	val = (val & ~clear) | set;
	writel(val, addr);
}
#endif

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
			  SNDRV_PCM_RATE_CONTINUOUS)

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

88 89 90 91 92 93 94
/* SIER bitflag of interrupts to enable */
#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
		    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
		    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
		    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
		    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)

95 96 97 98 99 100
/**
 * fsl_ssi_private: per-SSI private data
 *
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
101 102
 * @first_stream: pointer to the stream that was opened first
 * @second_stream: pointer to second stream
103 104 105 106 107
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
108
 * @name: name for this device
109 110 111 112 113
 */
struct fsl_ssi_private {
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
114 115
	struct snd_pcm_substream *first_stream;
	struct snd_pcm_substream *second_stream;
116
	unsigned int fifo_depth;
117
	struct snd_soc_dai_driver cpu_dai_drv;
118
	struct device_attribute dev_attr;
119
	struct platform_device *pdev;
120

121 122
	bool new_binding;
	bool ssi_on_imx;
123
	struct clk *clk;
124 125 126 127
	struct platform_device *imx_pcm_pdev;
	struct imx_pcm_dma_params dma_params_tx;
	struct imx_pcm_dma_params dma_params_rx;

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	struct {
		unsigned int rfrc;
		unsigned int tfrc;
		unsigned int cmdau;
		unsigned int cmddu;
		unsigned int rxt;
		unsigned int rdr1;
		unsigned int rdr0;
		unsigned int tde1;
		unsigned int tde0;
		unsigned int roe1;
		unsigned int roe0;
		unsigned int tue1;
		unsigned int tue0;
		unsigned int tfs;
		unsigned int rfs;
		unsigned int tls;
		unsigned int rls;
		unsigned int rff1;
		unsigned int rff0;
		unsigned int tfe1;
		unsigned int tfe0;
	} stats;
151 152

	char name[1];
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
};

/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	irqreturn_t ret = IRQ_NONE;
	__be32 sisr;
	__be32 sisr2 = 0;

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
179
	sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

	if (sisr & CCSR_SSI_SISR_RFRC) {
		ssi_private->stats.rfrc++;
		sisr2 |= CCSR_SSI_SISR_RFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFRC) {
		ssi_private->stats.tfrc++;
		sisr2 |= CCSR_SSI_SISR_TFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDAU) {
		ssi_private->stats.cmdau++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDDU) {
		ssi_private->stats.cmddu++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RXT) {
		ssi_private->stats.rxt++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR1) {
		ssi_private->stats.rdr1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR0) {
		ssi_private->stats.rdr0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE1) {
		ssi_private->stats.tde1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE0) {
		ssi_private->stats.tde0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE1) {
		ssi_private->stats.roe1++;
		sisr2 |= CCSR_SSI_SISR_ROE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE0) {
		ssi_private->stats.roe0++;
		sisr2 |= CCSR_SSI_SISR_ROE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE1) {
		ssi_private->stats.tue1++;
		sisr2 |= CCSR_SSI_SISR_TUE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE0) {
		ssi_private->stats.tue0++;
		sisr2 |= CCSR_SSI_SISR_TUE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFS) {
		ssi_private->stats.tfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFS) {
		ssi_private->stats.rfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TLS) {
		ssi_private->stats.tls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RLS) {
		ssi_private->stats.rls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF1) {
		ssi_private->stats.rff1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF0) {
		ssi_private->stats.rff0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE1) {
		ssi_private->stats.tfe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE0) {
		ssi_private->stats.tfe0++;
		ret = IRQ_HANDLED;
	}

	/* Clear the bits that we set */
	if (sisr2)
294
		write_ssi(sisr2, &ssi->sisr);
295 296 297 298 299 300 301 302 303 304 305 306

	return ret;
}

/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
307 308
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
309 310
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
311 312 313
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
314 315 316 317 318

	/*
	 * If this is the first stream opened, then request the IRQ
	 * and initialize the SSI registers.
	 */
319
	if (!ssi_private->first_stream) {
320 321
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

322 323
		ssi_private->first_stream = substream;

324 325 326 327 328
		/*
		 * Section 16.5 of the MPC8610 reference manual says that the
		 * SSI needs to be disabled before updating the registers we set
		 * here.
		 */
329
		write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
330 331 332 333 334 335 336

		/*
		 * Program the SSI into I2S Slave Non-Network Synchronous mode.
		 * Also enable the transmit and receive FIFO.
		 *
		 * FIXME: Little-endian samples require a different shift dir
		 */
337
		write_ssi_mask(&ssi->scr,
338 339
			CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
			CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
340
			| (synchronous ? CCSR_SSI_SCR_SYN : 0));
341

342
		write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
343
			 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
344
			 CCSR_SSI_STCR_TSCKP, &ssi->stcr);
345

346
		write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
347
			 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
348
			 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
349 350 351 352 353 354

		/*
		 * The DC and PM bits are only used if the SSI is the clock
		 * master.
		 */

355
		/* Enable the interrupts and DMA requests */
356
		write_ssi(SIER_FLAGS, &ssi->sier);
357 358 359

		/*
		 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
360 361 362 363 364 365 366 367 368 369
		 * don't use FIFO 1.  We program the transmit water to signal a
		 * DMA transfer if there are only two (or fewer) elements left
		 * in the FIFO.  Two elements equals one frame (left channel,
		 * right channel).  This value, however, depends on the depth of
		 * the transmit buffer.
		 *
		 * We program the receive FIFO to notify us if at least two
		 * elements (one frame) have been written to the FIFO.  We could
		 * make this value larger (and maybe we should), but this way
		 * data will be written to memory as soon as it's available.
370
		 */
371 372 373
		write_ssi(CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
			CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2),
			&ssi->sfcsr);
374 375 376 377 378 379 380 381 382 383

		/*
		 * We keep the SSI disabled because if we enable it, then the
		 * DMA controller will start.  It's not supposed to start until
		 * the SCR.TE (or SCR.RE) bit is set, but it does anyway.  The
		 * DMA controller will transfer one "BWC" of data (i.e. the
		 * amount of data that the MR.BWC bits are set to).  The reason
		 * this is bad is because at this point, the PCM driver has not
		 * finished initializing the DMA controller.
		 */
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	} else {
		if (synchronous) {
			struct snd_pcm_runtime *first_runtime =
				ssi_private->first_stream->runtime;
			/*
			 * This is the second stream open, and we're in
			 * synchronous mode, so we need to impose sample
			 * sample size constraints. This is because STCCR is
			 * used for playback and capture in synchronous mode,
			 * so there's no way to specify different word
			 * lengths.
			 *
			 * Note that this can cause a race condition if the
			 * second stream is opened before the first stream is
			 * fully initialized.  We provide some protection by
			 * checking to make sure the first stream is
			 * initialized, but it's not perfect.  ALSA sometimes
			 * re-initializes the driver with a different sample
			 * rate or size.  If the second stream is opened
			 * before the first stream has received its final
			 * parameters, then the second stream may be
			 * constrained to the wrong sample rate or size.
			 */
			if (!first_runtime->sample_bits) {
				dev_err(substream->pcm->card->dev,
					"set sample size in %s stream first\n",
					substream->stream ==
					SNDRV_PCM_STREAM_PLAYBACK
					? "capture" : "playback");
				return -EAGAIN;
			}
415

416 417 418 419
			snd_pcm_hw_constraint_minmax(substream->runtime,
				SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
				first_runtime->sample_bits,
				first_runtime->sample_bits);
420
		}
421 422 423 424

		ssi_private->second_stream = substream;
	}

425 426 427 428 429 430
	if (ssi_private->ssi_on_imx)
		snd_soc_dai_set_dma_data(dai, substream,
			(substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
				&ssi_private->dma_params_tx :
				&ssi_private->dma_params_rx);

431 432 433 434
	return 0;
}

/**
435
 * fsl_ssi_hw_params - program the sample size
436 437 438 439 440 441 442 443 444 445 446
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
447 448
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
449
{
450
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
451 452 453 454
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	unsigned int sample_size =
		snd_pcm_format_width(params_format(hw_params));
	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
455
	int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
456

457 458 459 460 461 462
	/*
	 * If we're in synchronous mode, and the SSI is already enabled,
	 * then STCCR is already set properly.
	 */
	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
		return 0;
463

464 465 466 467 468 469 470 471 472
	/*
	 * FIXME: The documentation says that SxCCR[WL] should not be
	 * modified while the SSI is enabled.  The only time this can
	 * happen is if we're trying to do simultaneous playback and
	 * capture in asynchronous mode.  Unfortunately, I have been enable
	 * to get that to work at all on the P1022DS.  Therefore, we don't
	 * bother to disable/enable the SSI when setting SxCCR[WL], because
	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
	 */
473

474 475 476
	/* In synchronous mode, the SSI uses STCCR for capture */
	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
	    ssi_private->cpu_dai_drv.symmetric_rates)
477
		write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
478
	else
479
		write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
480 481 482 483 484 485 486 487 488 489 490 491 492

	return 0;
}

/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
493 494
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
495 496
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
497
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
498 499 500 501 502
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
503
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
504
			write_ssi_mask(&ssi->scr, 0,
505
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
506
		else
507
			write_ssi_mask(&ssi->scr, 0,
508
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
509 510 511 512 513
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
514
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
515
		else
516
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
517 518 519 520 521 522 523 524 525 526 527 528 529 530
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

/**
 * fsl_ssi_shutdown: shutdown the SSI
 *
 * Shutdown the SSI if there are no other substreams open.
 */
531 532
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
533 534
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
535
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
536

537 538 539 540 541
	if (ssi_private->first_stream == substream)
		ssi_private->first_stream = ssi_private->second_stream;

	ssi_private->second_stream = NULL;

542
	/*
543
	 * If this is the last active substream, disable the SSI.
544
	 */
545
	if (!ssi_private->first_stream) {
546 547
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

548
		write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
549 550 551
	}
}

552
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
553 554 555 556 557 558
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
	.shutdown	= fsl_ssi_shutdown,
	.trigger	= fsl_ssi_trigger,
};

559 560
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
561 562 563 564 565 566 567 568 569 570 571 572 573
	.playback = {
		/* The SSI does not support monaural audio. */
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
574
	.ops = &fsl_ssi_dai_ops,
575 576
};

577 578 579 580 581 582 583 584 585 586 587 588
/* Show the statistics of a flag only if its interrupt is enabled.  The
 * compiler will optimze this code to a no-op if the interrupt is not
 * enabled.
 */
#define SIER_SHOW(flag, name) \
	do { \
		if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
			length += sprintf(buf + length, #name "=%u\n", \
				ssi_private->stats.name); \
	} while (0)


589 590 591
/**
 * fsl_sysfs_ssi_show: display SSI statistics
 *
592 593
 * Display the statistics for the current SSI device.  To avoid confusion,
 * we only show those counts that are enabled.
594 595 596 597 598
 */
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct fsl_ssi_private *ssi_private =
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
		container_of(attr, struct fsl_ssi_private, dev_attr);
	ssize_t length = 0;

	SIER_SHOW(RFRC_EN, rfrc);
	SIER_SHOW(TFRC_EN, tfrc);
	SIER_SHOW(CMDAU_EN, cmdau);
	SIER_SHOW(CMDDU_EN, cmddu);
	SIER_SHOW(RXT_EN, rxt);
	SIER_SHOW(RDR1_EN, rdr1);
	SIER_SHOW(RDR0_EN, rdr0);
	SIER_SHOW(TDE1_EN, tde1);
	SIER_SHOW(TDE0_EN, tde0);
	SIER_SHOW(ROE1_EN, roe1);
	SIER_SHOW(ROE0_EN, roe0);
	SIER_SHOW(TUE1_EN, tue1);
	SIER_SHOW(TUE0_EN, tue0);
	SIER_SHOW(TFS_EN, tfs);
	SIER_SHOW(RFS_EN, rfs);
	SIER_SHOW(TLS_EN, tls);
	SIER_SHOW(RLS_EN, rls);
	SIER_SHOW(RFF1_EN, rff1);
	SIER_SHOW(RFF0_EN, rff0);
	SIER_SHOW(TFE1_EN, tfe1);
	SIER_SHOW(TFE0_EN, tfe0);
623 624 625 626 627

	return length;
}

/**
628
 * Make every character in a string lower-case
629
 */
630 631 632 633 634 635 636 637 638 639 640 641
static void make_lowercase(char *s)
{
	char *p = s;
	char c;

	while ((c = *p)) {
		if ((c >= 'A') && (c <= 'Z'))
			*p = c + ('a' - 'A');
		p++;
	}
}

642
static int fsl_ssi_probe(struct platform_device *pdev)
643 644 645
{
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
646
	struct device_attribute *dev_attr = NULL;
647
	struct device_node *np = pdev->dev.of_node;
648
	const char *p, *sprop;
649
	const uint32_t *iprop;
650 651
	struct resource res;
	char name[64];
652
	bool shared;
653

654 655 656
	/* SSIs that are not connected on the board should have a
	 *      status = "disabled"
	 * property in their device tree nodes.
657
	 */
658
	if (!of_device_is_available(np))
659 660 661 662 663
		return -ENODEV;

	/* We only support the SSI in "I2S Slave" mode */
	sprop = of_get_property(np, "fsl,mode", NULL);
	if (!sprop || strcmp(sprop, "i2s-slave")) {
664
		dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
665 666 667 668 669 670 671
		return -ENODEV;
	}

	/* The DAI name is the last part of the full name of the node. */
	p = strrchr(np->full_name, '/') + 1;
	ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
			      GFP_KERNEL);
672
	if (!ssi_private) {
673
		dev_err(&pdev->dev, "could not allocate DAI object\n");
674
		return -ENOMEM;
675 676
	}

677
	strcpy(ssi_private->name, p);
678

679 680 681 682 683 684 685 686
	/* Initialize this copy of the CPU DAI driver structure */
	memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
	       sizeof(fsl_ssi_dai_template));
	ssi_private->cpu_dai_drv.name = ssi_private->name;

	/* Get the addresses and IRQ */
	ret = of_address_to_resource(np, 0, &res);
	if (ret) {
687
		dev_err(&pdev->dev, "could not determine device resources\n");
688
		goto error_kmalloc;
689
	}
690 691 692
	ssi_private->ssi = of_iomap(np, 0);
	if (!ssi_private->ssi) {
		dev_err(&pdev->dev, "could not map device resources\n");
693 694
		ret = -ENOMEM;
		goto error_kmalloc;
695
	}
696
	ssi_private->ssi_phys = res.start;
697

698
	ssi_private->irq = irq_of_parse_and_map(np, 0);
699 700 701 702 703 704 705 706 707 708 709 710 711
	if (ssi_private->irq == NO_IRQ) {
		dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
		ret = -ENXIO;
		goto error_iomap;
	}

	/* The 'name' should not have any slashes in it. */
	ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, ssi_private->name,
			  ssi_private);
	if (ret < 0) {
		dev_err(&pdev->dev, "could not claim irq %u\n", ssi_private->irq);
		goto error_irqmap;
	}
712

713
	/* Are the RX and the TX clocks locked? */
714
	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
715
		ssi_private->cpu_dai_drv.symmetric_rates = 1;
716

717 718 719
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
720
		ssi_private->fifo_depth = be32_to_cpup(iprop);
721 722 723 724
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
		ssi_private->fifo_depth = 8;

725 726 727
	if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
		u32 dma_events[2];
		ssi_private->ssi_on_imx = true;
728 729 730 731 732 733 734 735 736

		ssi_private->clk = clk_get(&pdev->dev, NULL);
		if (IS_ERR(ssi_private->clk)) {
			ret = PTR_ERR(ssi_private->clk);
			dev_err(&pdev->dev, "could not get clock: %d\n", ret);
			goto error_irq;
		}
		clk_prepare_enable(ssi_private->clk);

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
		/*
		 * We have burstsize be "fifo_depth - 2" to match the SSI
		 * watermark setting in fsl_ssi_startup().
		 */
		ssi_private->dma_params_tx.burstsize =
			ssi_private->fifo_depth - 2;
		ssi_private->dma_params_rx.burstsize =
			ssi_private->fifo_depth - 2;
		ssi_private->dma_params_tx.dma_addr =
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
		ssi_private->dma_params_rx.dma_addr =
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
		/*
		 * TODO: This is a temporary solution and should be changed
		 * to use generic DMA binding later when the helplers get in.
		 */
		ret = of_property_read_u32_array(pdev->dev.of_node,
					"fsl,ssi-dma-events", dma_events, 2);
		if (ret) {
			dev_err(&pdev->dev, "could not get dma events\n");
757
			goto error_clk;
758
		}
759 760 761 762 763 764 765 766

		shared = of_device_is_compatible(of_get_parent(np),
			    "fsl,spba-bus");

		imx_pcm_dma_params_init_data(&ssi_private->dma_params_tx,
			dma_events[0], shared);
		imx_pcm_dma_params_init_data(&ssi_private->dma_params_rx,
			dma_events[1], shared);
767 768
	}

769
	/* Initialize the the device_attribute structure */
770
	dev_attr = &ssi_private->dev_attr;
771
	sysfs_attr_init(&dev_attr->attr);
772
	dev_attr->attr.name = "statistics";
773 774 775
	dev_attr->attr.mode = S_IRUGO;
	dev_attr->show = fsl_sysfs_ssi_show;

776
	ret = device_create_file(&pdev->dev, dev_attr);
777
	if (ret) {
778
		dev_err(&pdev->dev, "could not create sysfs %s file\n",
779
			ssi_private->dev_attr.attr.name);
780
		goto error_irq;
781 782
	}

783
	/* Register with ASoC */
784
	dev_set_drvdata(&pdev->dev, ssi_private);
M
Mark Brown 已提交
785

786
	ret = snd_soc_register_dai(&pdev->dev, &ssi_private->cpu_dai_drv);
787
	if (ret) {
788
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
789
		goto error_dev;
790 791
	}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
	if (ssi_private->ssi_on_imx) {
		ssi_private->imx_pcm_pdev =
			platform_device_register_simple("imx-pcm-audio",
							-1, NULL, 0);
		if (IS_ERR(ssi_private->imx_pcm_pdev)) {
			ret = PTR_ERR(ssi_private->imx_pcm_pdev);
			goto error_dev;
		}
	}

	/*
	 * If codec-handle property is missing from SSI node, we assume
	 * that the machine driver uses new binding which does not require
	 * SSI driver to trigger machine driver's probe.
	 */
	if (!of_get_property(np, "codec-handle", NULL)) {
		ssi_private->new_binding = true;
		goto done;
	}

812
	/* Trigger the machine driver's probe function.  The platform driver
813
	 * name of the machine driver is taken from /compatible property of the
814 815 816
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
817 818
	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
819 820 821 822 823 824 825
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

	ssi_private->pdev =
826
		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
827 828
	if (IS_ERR(ssi_private->pdev)) {
		ret = PTR_ERR(ssi_private->pdev);
829
		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
830
		goto error_dai;
M
Mark Brown 已提交
831
	}
832

833
done:
834
	return 0;
835

836
error_dai:
837 838
	if (ssi_private->ssi_on_imx)
		platform_device_unregister(ssi_private->imx_pcm_pdev);
839
	snd_soc_unregister_dai(&pdev->dev);
840 841

error_dev:
842
	dev_set_drvdata(&pdev->dev, NULL);
843 844
	device_remove_file(&pdev->dev, dev_attr);

845 846 847 848 849 850
error_clk:
	if (ssi_private->ssi_on_imx) {
		clk_disable_unprepare(ssi_private->clk);
		clk_put(ssi_private->clk);
	}

851 852 853 854
error_irq:
	free_irq(ssi_private->irq, ssi_private);

error_irqmap:
855
	irq_dispose_mapping(ssi_private->irq);
856 857

error_iomap:
858
	iounmap(ssi_private->ssi);
859 860

error_kmalloc:
861 862 863
	kfree(ssi_private);

	return ret;
864 865
}

866
static int fsl_ssi_remove(struct platform_device *pdev)
867
{
868
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
869

870 871
	if (!ssi_private->new_binding)
		platform_device_unregister(ssi_private->pdev);
872
	if (ssi_private->ssi_on_imx) {
873
		platform_device_unregister(ssi_private->imx_pcm_pdev);
874 875 876
		clk_disable_unprepare(ssi_private->clk);
		clk_put(ssi_private->clk);
	}
877 878
	snd_soc_unregister_dai(&pdev->dev);
	device_remove_file(&pdev->dev, &ssi_private->dev_attr);
M
Mark Brown 已提交
879

880 881 882
	free_irq(ssi_private->irq, ssi_private);
	irq_dispose_mapping(ssi_private->irq);

883
	kfree(ssi_private);
884
	dev_set_drvdata(&pdev->dev, NULL);
885 886

	return 0;
887
}
888 889 890

static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", },
891
	{ .compatible = "fsl,imx21-ssi", },
892 893 894 895
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

896
static struct platform_driver fsl_ssi_driver = {
897 898 899 900 901 902 903 904
	.driver = {
		.name = "fsl-ssi-dai",
		.owner = THIS_MODULE,
		.of_match_table = fsl_ssi_ids,
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
905

906
module_platform_driver(fsl_ssi_driver);
907

908 909
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
910
MODULE_LICENSE("GPL v2");