sh_eth.c 47.9 KB
Newer Older
1 2 3
/*
 *  SuperH Ethernet device driver
 *
4
 *  Copyright (C) 2006-2008 Nobuhiro Iwamatsu
5
 *  Copyright (C) 2008-2009 Renesas Solutions Corp.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *
 *  This program is free software; you can redistribute it and/or modify it
 *  under the terms and conditions of the GNU General Public License,
 *  version 2, as published by the Free Software Foundation.
 *
 *  This program is distributed in the hope it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 *  more details.
 *  You should have received a copy of the GNU General Public License along with
 *  this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 *  The full GNU General Public License is included in this distribution in
 *  the file called "COPYING".
 */

#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/mdio-bitbang.h>
#include <linux/netdevice.h>
#include <linux/phy.h>
#include <linux/cache.h>
#include <linux/io.h>
33
#include <linux/pm_runtime.h>
34
#include <linux/slab.h>
35
#include <linux/ethtool.h>
36 37 38

#include "sh_eth.h"

39 40 41 42 43 44
#define SH_ETH_DEF_MSG_ENABLE \
		(NETIF_MSG_LINK	| \
		NETIF_MSG_TIMER	| \
		NETIF_MSG_RX_ERR| \
		NETIF_MSG_TX_ERR)

45
/* There is CPU dependent code */
46 47 48 49 50 51 52
#if defined(CONFIG_CPU_SUBTYPE_SH7724)
#define SH_ETH_RESET_DEFAULT	1
static void sh_eth_set_duplex(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	if (mdp->duplex) /* Full */
53
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
54
	else		/* Half */
55
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
56 57 58 59 60 61 62 63
}

static void sh_eth_set_rate(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	switch (mdp->speed) {
	case 10: /* 10BASE */
64
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
65 66
		break;
	case 100:/* 100BASE */
67
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
		break;
	default:
		break;
	}
}

/* SH7724 */
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
	.set_duplex	= sh_eth_set_duplex,
	.set_rate	= sh_eth_set_rate,

	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,

	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,

	.apr		= 1,
	.mpr		= 1,
	.tpauser	= 1,
	.hw_swap	= 1,
92 93
	.rpadir		= 1,
	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
94
};
95
#elif defined(CONFIG_CPU_SUBTYPE_SH7757)
96 97
#define SH_ETH_HAS_BOTH_MODULES	1
#define SH_ETH_HAS_TSU	1
98 99 100 101 102
static void sh_eth_set_duplex(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	if (mdp->duplex) /* Full */
103
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
104
	else		/* Half */
105
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
106 107 108 109 110 111 112 113
}

static void sh_eth_set_rate(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	switch (mdp->speed) {
	case 10: /* 10BASE */
114
		sh_eth_write(ndev, 0, RTRATE);
115 116
		break;
	case 100:/* 100BASE */
117
		sh_eth_write(ndev, 1, RTRATE);
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
		break;
	default:
		break;
	}
}

/* SH7757 */
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
	.set_duplex		= sh_eth_set_duplex,
	.set_rate		= sh_eth_set_rate,

	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
	.rmcr_value	= 0x00000001,

	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,

	.apr		= 1,
	.mpr		= 1,
	.tpauser	= 1,
	.hw_swap	= 1,
	.no_ade		= 1,
};
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
#define SH_GIGA_ETH_BASE	0xfee00000
#define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
#define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
static void sh_eth_chip_reset_giga(struct net_device *ndev)
{
	int i;
	unsigned long mahr[2], malr[2];

	/* save MAHR and MALR */
	for (i = 0; i < 2; i++) {
		malr[i] = readl(GIGA_MALR(i));
		mahr[i] = readl(GIGA_MAHR(i));
	}

	/* reset device */
	writel(ARSTR_ARSTR, SH_GIGA_ETH_BASE + 0x1800);
	mdelay(1);

	/* restore MAHR and MALR */
	for (i = 0; i < 2; i++) {
		writel(malr[i], GIGA_MALR(i));
		writel(mahr[i], GIGA_MAHR(i));
	}
}

static int sh_eth_is_gether(struct sh_eth_private *mdp);
static void sh_eth_reset(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int cnt = 100;

	if (sh_eth_is_gether(mdp)) {
		sh_eth_write(ndev, 0x03, EDSR);
		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
				EDMR);
		while (cnt > 0) {
			if (!(sh_eth_read(ndev, EDMR) & 0x3))
				break;
			mdelay(1);
			cnt--;
		}
		if (cnt < 0)
			printk(KERN_ERR "Device reset fail\n");

		/* Table Init */
		sh_eth_write(ndev, 0x0, TDLAR);
		sh_eth_write(ndev, 0x0, TDFAR);
		sh_eth_write(ndev, 0x0, TDFXR);
		sh_eth_write(ndev, 0x0, TDFFR);
		sh_eth_write(ndev, 0x0, RDLAR);
		sh_eth_write(ndev, 0x0, RDFAR);
		sh_eth_write(ndev, 0x0, RDFXR);
		sh_eth_write(ndev, 0x0, RDFFR);
	} else {
		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
				EDMR);
		mdelay(3);
		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
				EDMR);
	}
}

static void sh_eth_set_duplex_giga(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	if (mdp->duplex) /* Full */
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
	else		/* Half */
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
}

static void sh_eth_set_rate_giga(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	switch (mdp->speed) {
	case 10: /* 10BASE */
		sh_eth_write(ndev, 0x00000000, GECMR);
		break;
	case 100:/* 100BASE */
		sh_eth_write(ndev, 0x00000010, GECMR);
		break;
	case 1000: /* 1000BASE */
		sh_eth_write(ndev, 0x00000020, GECMR);
		break;
	default:
		break;
	}
}

/* SH7757(GETHERC) */
static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
	.chip_reset	= sh_eth_chip_reset_giga,
	.set_duplex	= sh_eth_set_duplex_giga,
	.set_rate	= sh_eth_set_rate_giga,

	.ecsr_value	= ECSR_ICD | ECSR_MPD,
	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,

	.tx_check	= EESR_TC1 | EESR_FTC,
	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
			  EESR_ECI,
	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
			  EESR_TFE,
	.fdr_value	= 0x0000072f,
	.rmcr_value	= 0x00000001,

	.apr		= 1,
	.mpr		= 1,
	.tpauser	= 1,
	.bculr		= 1,
	.hw_swap	= 1,
	.rpadir		= 1,
	.rpadir_value   = 2 << 16,
	.no_trimd	= 1,
	.no_ade		= 1,
};

static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
{
	if (sh_eth_is_gether(mdp))
		return &sh_eth_my_cpu_data_giga;
	else
		return &sh_eth_my_cpu_data;
}

273
#elif defined(CONFIG_CPU_SUBTYPE_SH7763)
274 275 276
#define SH_ETH_HAS_TSU	1
static void sh_eth_chip_reset(struct net_device *ndev)
{
277 278
	struct sh_eth_private *mdp = netdev_priv(ndev);

279
	/* reset device */
280
	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
281 282 283 284 285 286 287
	mdelay(1);
}

static void sh_eth_reset(struct net_device *ndev)
{
	int cnt = 100;

288
	sh_eth_write(ndev, EDSR_ENALL, EDSR);
289
	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
290
	while (cnt > 0) {
291
		if (!(sh_eth_read(ndev, EDMR) & 0x3))
292 293 294 295
			break;
		mdelay(1);
		cnt--;
	}
296
	if (cnt == 0)
297 298 299
		printk(KERN_ERR "Device reset fail\n");

	/* Table Init */
300 301 302 303 304 305 306 307
	sh_eth_write(ndev, 0x0, TDLAR);
	sh_eth_write(ndev, 0x0, TDFAR);
	sh_eth_write(ndev, 0x0, TDFXR);
	sh_eth_write(ndev, 0x0, TDFFR);
	sh_eth_write(ndev, 0x0, RDLAR);
	sh_eth_write(ndev, 0x0, RDFAR);
	sh_eth_write(ndev, 0x0, RDFXR);
	sh_eth_write(ndev, 0x0, RDFFR);
308 309 310 311 312 313 314
}

static void sh_eth_set_duplex(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	if (mdp->duplex) /* Full */
315
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
316
	else		/* Half */
317
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
318 319 320 321 322 323 324 325
}

static void sh_eth_set_rate(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	switch (mdp->speed) {
	case 10: /* 10BASE */
326
		sh_eth_write(ndev, GECMR_10, GECMR);
327 328
		break;
	case 100:/* 100BASE */
329
		sh_eth_write(ndev, GECMR_100, GECMR);
330 331
		break;
	case 1000: /* 1000BASE */
332
		sh_eth_write(ndev, GECMR_1000, GECMR);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
		break;
	default:
		break;
	}
}

/* sh7763 */
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
	.chip_reset	= sh_eth_chip_reset,
	.set_duplex	= sh_eth_set_duplex,
	.set_rate	= sh_eth_set_rate,

	.ecsr_value	= ECSR_ICD | ECSR_MPD,
	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,

	.tx_check	= EESR_TC1 | EESR_FTC,
	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
			  EESR_ECI,
	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
			  EESR_TFE,

	.apr		= 1,
	.mpr		= 1,
	.tpauser	= 1,
	.bculr		= 1,
	.hw_swap	= 1,
	.no_trimd	= 1,
	.no_ade		= 1,
363
	.tsu		= 1,
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
};

#elif defined(CONFIG_CPU_SUBTYPE_SH7619)
#define SH_ETH_RESET_DEFAULT	1
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,

	.apr		= 1,
	.mpr		= 1,
	.tpauser	= 1,
	.hw_swap	= 1,
};
#elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
#define SH_ETH_RESET_DEFAULT	1
#define SH_ETH_HAS_TSU	1
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
381
	.tsu		= 1,
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
};
#endif

static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
{
	if (!cd->ecsr_value)
		cd->ecsr_value = DEFAULT_ECSR_INIT;

	if (!cd->ecsipr_value)
		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;

	if (!cd->fcftr_value)
		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
				  DEFAULT_FIFO_F_D_RFD;

	if (!cd->fdr_value)
		cd->fdr_value = DEFAULT_FDR_INIT;

	if (!cd->rmcr_value)
		cd->rmcr_value = DEFAULT_RMCR_VALUE;

	if (!cd->tx_check)
		cd->tx_check = DEFAULT_TX_CHECK;

	if (!cd->eesr_err_check)
		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;

	if (!cd->tx_error_check)
		cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
}

#if defined(SH_ETH_RESET_DEFAULT)
/* Chip Reset */
static void sh_eth_reset(struct net_device *ndev)
{
417
	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
418
	mdelay(3);
419
	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
}
#endif

#if defined(CONFIG_CPU_SH4)
static void sh_eth_set_receive_align(struct sk_buff *skb)
{
	int reserve;

	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
	if (reserve)
		skb_reserve(skb, reserve);
}
#else
static void sh_eth_set_receive_align(struct sk_buff *skb)
{
	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
}
#endif


440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
/* CPU <-> EDMAC endian convert */
static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
{
	switch (mdp->edmac_endian) {
	case EDMAC_LITTLE_ENDIAN:
		return cpu_to_le32(x);
	case EDMAC_BIG_ENDIAN:
		return cpu_to_be32(x);
	}
	return x;
}

static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
{
	switch (mdp->edmac_endian) {
	case EDMAC_LITTLE_ENDIAN:
		return le32_to_cpu(x);
	case EDMAC_BIG_ENDIAN:
		return be32_to_cpu(x);
	}
	return x;
}

463 464 465 466 467
/*
 * Program the hardware MAC address from dev->dev_addr.
 */
static void update_mac_address(struct net_device *ndev)
{
468 469 470 471 472
	sh_eth_write(ndev,
		(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
		(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
	sh_eth_write(ndev,
		(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
473 474 475 476 477 478 479 480 481 482
}

/*
 * Get MAC address from SuperH MAC address register
 *
 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
 * When you want use this device, you must set MAC address in bootloader.
 *
 */
483
static void read_mac_address(struct net_device *ndev, unsigned char *mac)
484
{
485 486 487
	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
		memcpy(ndev->dev_addr, mac, 6);
	} else {
488 489 490 491 492 493
		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
494
	}
495 496
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
static int sh_eth_is_gether(struct sh_eth_private *mdp)
{
	if (mdp->reg_offset == sh_eth_offset_gigabit)
		return 1;
	else
		return 0;
}

static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
{
	if (sh_eth_is_gether(mdp))
		return EDTRR_TRNS_GETHER;
	else
		return EDTRR_TRNS_ETHER;
}

513
struct bb_info {
514
	void (*set_gate)(unsigned long addr);
515 516 517 518 519 520 521 522 523 524 525
	struct mdiobb_ctrl ctrl;
	u32 addr;
	u32 mmd_msk;/* MMD */
	u32 mdo_msk;
	u32 mdi_msk;
	u32 mdc_msk;
};

/* PHY bit set */
static void bb_set(u32 addr, u32 msk)
{
526
	writel(readl(addr) | msk, addr);
527 528 529 530 531
}

/* PHY bit clear */
static void bb_clr(u32 addr, u32 msk)
{
532
	writel((readl(addr) & ~msk), addr);
533 534 535 536 537
}

/* PHY bit read */
static int bb_read(u32 addr, u32 msk)
{
538
	return (readl(addr) & msk) != 0;
539 540 541 542 543 544
}

/* Data I/O pin control */
static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
{
	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
545 546 547 548

	if (bitbang->set_gate)
		bitbang->set_gate(bitbang->addr);

549 550 551 552 553 554 555 556 557 558 559
	if (bit)
		bb_set(bitbang->addr, bitbang->mmd_msk);
	else
		bb_clr(bitbang->addr, bitbang->mmd_msk);
}

/* Set bit data*/
static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
{
	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);

560 561 562
	if (bitbang->set_gate)
		bitbang->set_gate(bitbang->addr);

563 564 565 566 567 568 569 570 571 572
	if (bit)
		bb_set(bitbang->addr, bitbang->mdo_msk);
	else
		bb_clr(bitbang->addr, bitbang->mdo_msk);
}

/* Get bit data*/
static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
{
	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
573 574 575 576

	if (bitbang->set_gate)
		bitbang->set_gate(bitbang->addr);

577 578 579 580 581 582 583 584
	return bb_read(bitbang->addr, bitbang->mdi_msk);
}

/* MDC pin control */
static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
{
	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);

585 586 587
	if (bitbang->set_gate)
		bitbang->set_gate(bitbang->addr);

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	if (bit)
		bb_set(bitbang->addr, bitbang->mdc_msk);
	else
		bb_clr(bitbang->addr, bitbang->mdc_msk);
}

/* mdio bus control struct */
static struct mdiobb_ops bb_ops = {
	.owner = THIS_MODULE,
	.set_mdc = sh_mdc_ctrl,
	.set_mdio_dir = sh_mmd_ctrl,
	.set_mdio_data = sh_set_mdio,
	.get_mdio_data = sh_get_mdio,
};

/* free skb and descriptor buffer */
static void sh_eth_ring_free(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int i;

	/* Free Rx skb ringbuffer */
	if (mdp->rx_skbuff) {
		for (i = 0; i < RX_RING_SIZE; i++) {
			if (mdp->rx_skbuff[i])
				dev_kfree_skb(mdp->rx_skbuff[i]);
		}
	}
	kfree(mdp->rx_skbuff);

	/* Free Tx skb ringbuffer */
	if (mdp->tx_skbuff) {
		for (i = 0; i < TX_RING_SIZE; i++) {
			if (mdp->tx_skbuff[i])
				dev_kfree_skb(mdp->tx_skbuff[i]);
		}
	}
	kfree(mdp->tx_skbuff);
}

/* format skb and descriptor buffer */
static void sh_eth_ring_format(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int i;
	struct sk_buff *skb;
	struct sh_eth_rxdesc *rxdesc = NULL;
	struct sh_eth_txdesc *txdesc = NULL;
	int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
	int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;

	mdp->cur_rx = mdp->cur_tx = 0;
	mdp->dirty_rx = mdp->dirty_tx = 0;

	memset(mdp->rx_ring, 0, rx_ringsize);

	/* build Rx ring buffer */
	for (i = 0; i < RX_RING_SIZE; i++) {
		/* skb */
		mdp->rx_skbuff[i] = NULL;
		skb = dev_alloc_skb(mdp->rx_buf_sz);
		mdp->rx_skbuff[i] = skb;
		if (skb == NULL)
			break;
652 653
		dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
				DMA_FROM_DEVICE);
654
		skb->dev = ndev; /* Mark as being used by this device. */
655 656
		sh_eth_set_receive_align(skb);

657 658
		/* RX descriptor */
		rxdesc = &mdp->rx_ring[i];
659
		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
660
		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
661 662

		/* The size of the buffer is 16 byte boundary. */
663
		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
664 665
		/* Rx descriptor address set */
		if (i == 0) {
666
			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
667 668
			if (sh_eth_is_gether(mdp))
				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
669
		}
670 671 672 673 674
	}

	mdp->dirty_rx = (u32) (i - RX_RING_SIZE);

	/* Mark the last entry as wrapping the ring. */
675
	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
676 677 678 679 680 681 682

	memset(mdp->tx_ring, 0, tx_ringsize);

	/* build Tx ring buffer */
	for (i = 0; i < TX_RING_SIZE; i++) {
		mdp->tx_skbuff[i] = NULL;
		txdesc = &mdp->tx_ring[i];
683
		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
684
		txdesc->buffer_length = 0;
685
		if (i == 0) {
686
			/* Tx descriptor address set */
687
			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
688 689
			if (sh_eth_is_gether(mdp))
				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
690
		}
691 692
	}

693
	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
}

/* Get skb and descriptor buffer */
static int sh_eth_ring_init(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int rx_ringsize, tx_ringsize, ret = 0;

	/*
	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
	 * card needs room to do 8 byte alignment, +2 so we can reserve
	 * the first 2 bytes, and +16 gets room for the status word from the
	 * card.
	 */
	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
710 711
	if (mdp->cd->rpadir)
		mdp->rx_buf_sz += NET_IP_ALIGN;
712 713 714 715 716

	/* Allocate RX and TX skb rings */
	mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
				GFP_KERNEL);
	if (!mdp->rx_skbuff) {
717
		dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
718 719 720 721 722 723 724
		ret = -ENOMEM;
		return ret;
	}

	mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
				GFP_KERNEL);
	if (!mdp->tx_skbuff) {
725
		dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
726 727 728 729 730 731 732 733 734 735
		ret = -ENOMEM;
		goto skb_ring_free;
	}

	/* Allocate all Rx descriptors. */
	rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
			GFP_KERNEL);

	if (!mdp->rx_ring) {
736 737
		dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
			rx_ringsize);
738 739 740 741 742 743 744 745 746 747 748
		ret = -ENOMEM;
		goto desc_ring_free;
	}

	mdp->dirty_rx = 0;

	/* Allocate all Tx descriptors. */
	tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
			GFP_KERNEL);
	if (!mdp->tx_ring) {
749 750
		dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
			tx_ringsize);
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
		ret = -ENOMEM;
		goto desc_ring_free;
	}
	return ret;

desc_ring_free:
	/* free DMA buffer */
	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);

skb_ring_free:
	/* Free Rx and Tx skb ring buffer */
	sh_eth_ring_free(ndev);

	return ret;
}

static int sh_eth_dev_init(struct net_device *ndev)
{
	int ret = 0;
	struct sh_eth_private *mdp = netdev_priv(ndev);
	u_int32_t rx_int_var, tx_int_var;
	u32 val;

	/* Soft Reset */
	sh_eth_reset(ndev);

777 778
	/* Descriptor format */
	sh_eth_ring_format(ndev);
779
	if (mdp->cd->rpadir)
780
		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
781 782

	/* all sh_eth int mask */
783
	sh_eth_write(ndev, 0, EESIPR);
784

785 786
#if defined(__LITTLE_ENDIAN__)
	if (mdp->cd->hw_swap)
787
		sh_eth_write(ndev, EDMR_EL, EDMR);
788
	else
789
#endif
790
		sh_eth_write(ndev, 0, EDMR);
791

792
	/* FIFO size set */
793 794
	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
	sh_eth_write(ndev, 0, TFTR);
795

796
	/* Frame recv control */
797
	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
798 799 800

	rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
	tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
801
	sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
802

803
	if (mdp->cd->bculr)
804
		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
805

806
	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
807

808
	if (!mdp->cd->no_trimd)
809
		sh_eth_write(ndev, 0, TRIMD);
810

811
	/* Recv frame limit set register */
812
	sh_eth_write(ndev, RFLR_VALUE, RFLR);
813

814 815
	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
816 817

	/* PAUSE Prohibition */
818
	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
819 820
		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;

821
	sh_eth_write(ndev, val, ECMR);
822

823 824 825
	if (mdp->cd->set_rate)
		mdp->cd->set_rate(ndev);

826
	/* E-MAC Status Register clear */
827
	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
828 829

	/* E-MAC Interrupt Enable register */
830
	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
831 832 833 834 835

	/* Set MAC address */
	update_mac_address(ndev);

	/* mask reset */
836
	if (mdp->cd->apr)
837
		sh_eth_write(ndev, APR_AP, APR);
838
	if (mdp->cd->mpr)
839
		sh_eth_write(ndev, MPR_MP, MPR);
840
	if (mdp->cd->tpauser)
841
		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
842

843
	/* Setting the Rx mode will start the Rx process. */
844
	sh_eth_write(ndev, EDRRR_R, EDRRR);
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

	netif_start_queue(ndev);

	return ret;
}

/* free Tx skb function */
static int sh_eth_txfree(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct sh_eth_txdesc *txdesc;
	int freeNum = 0;
	int entry = 0;

	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
		entry = mdp->dirty_tx % TX_RING_SIZE;
		txdesc = &mdp->tx_ring[entry];
862
		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
863 864 865
			break;
		/* Free the original skb. */
		if (mdp->tx_skbuff[entry]) {
866 867
			dma_unmap_single(&ndev->dev, txdesc->addr,
					 txdesc->buffer_length, DMA_TO_DEVICE);
868 869 870 871
			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
			mdp->tx_skbuff[entry] = NULL;
			freeNum++;
		}
872
		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
873
		if (entry >= TX_RING_SIZE - 1)
874
			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891

		mdp->stats.tx_packets++;
		mdp->stats.tx_bytes += txdesc->buffer_length;
	}
	return freeNum;
}

/* Packet receive function */
static int sh_eth_rx(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct sh_eth_rxdesc *rxdesc;

	int entry = mdp->cur_rx % RX_RING_SIZE;
	int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
	struct sk_buff *skb;
	u16 pkt_len = 0;
892
	u32 desc_status;
893 894

	rxdesc = &mdp->rx_ring[entry];
895 896
	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
		desc_status = edmac_to_cpu(mdp, rxdesc->status);
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
		pkt_len = rxdesc->frame_length;

		if (--boguscnt < 0)
			break;

		if (!(desc_status & RDFEND))
			mdp->stats.rx_length_errors++;

		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
			mdp->stats.rx_errors++;
			if (desc_status & RD_RFS1)
				mdp->stats.rx_crc_errors++;
			if (desc_status & RD_RFS2)
				mdp->stats.rx_frame_errors++;
			if (desc_status & RD_RFS3)
				mdp->stats.rx_length_errors++;
			if (desc_status & RD_RFS4)
				mdp->stats.rx_length_errors++;
			if (desc_status & RD_RFS6)
				mdp->stats.rx_missed_errors++;
			if (desc_status & RD_RFS10)
				mdp->stats.rx_over_errors++;
		} else {
921 922 923 924
			if (!mdp->cd->hw_swap)
				sh_eth_soft_swap(
					phys_to_virt(ALIGN(rxdesc->addr, 4)),
					pkt_len + 2);
925 926
			skb = mdp->rx_skbuff[entry];
			mdp->rx_skbuff[entry] = NULL;
927 928
			if (mdp->cd->rpadir)
				skb_reserve(skb, NET_IP_ALIGN);
929 930 931 932 933 934
			skb_put(skb, pkt_len);
			skb->protocol = eth_type_trans(skb, ndev);
			netif_rx(skb);
			mdp->stats.rx_packets++;
			mdp->stats.rx_bytes += pkt_len;
		}
935
		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
936
		entry = (++mdp->cur_rx) % RX_RING_SIZE;
937
		rxdesc = &mdp->rx_ring[entry];
938 939 940 941 942 943
	}

	/* Refill the Rx ring buffers. */
	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
		entry = mdp->dirty_rx % RX_RING_SIZE;
		rxdesc = &mdp->rx_ring[entry];
944
		/* The size of the buffer is 16 byte boundary. */
945
		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
946

947 948 949 950 951
		if (mdp->rx_skbuff[entry] == NULL) {
			skb = dev_alloc_skb(mdp->rx_buf_sz);
			mdp->rx_skbuff[entry] = skb;
			if (skb == NULL)
				break;	/* Better luck next round. */
952 953
			dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
					DMA_FROM_DEVICE);
954
			skb->dev = ndev;
955 956
			sh_eth_set_receive_align(skb);

957
			skb_checksum_none_assert(skb);
958
			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
959 960 961
		}
		if (entry >= RX_RING_SIZE - 1)
			rxdesc->status |=
962
				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
963 964
		else
			rxdesc->status |=
965
				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
966 967 968 969
	}

	/* Restart Rx engine if stopped. */
	/* If we don't need to check status, don't. -KDU */
970 971
	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
		sh_eth_write(ndev, EDRRR_R, EDRRR);
972 973 974 975

	return 0;
}

976
static void sh_eth_rcv_snd_disable(struct net_device *ndev)
977 978
{
	/* disable tx and rx */
979 980
	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
		~(ECMR_RE | ECMR_TE), ECMR);
981 982
}

983
static void sh_eth_rcv_snd_enable(struct net_device *ndev)
984 985
{
	/* enable tx and rx */
986 987
	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
		(ECMR_RE | ECMR_TE), ECMR);
988 989
}

990 991 992 993 994
/* error control function */
static void sh_eth_error(struct net_device *ndev, int intr_status)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	u32 felic_stat;
995 996
	u32 link_stat;
	u32 mask;
997 998

	if (intr_status & EESR_ECI) {
999 1000
		felic_stat = sh_eth_read(ndev, ECSR);
		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1001 1002 1003 1004
		if (felic_stat & ECSR_ICD)
			mdp->stats.tx_carrier_errors++;
		if (felic_stat & ECSR_LCHNG) {
			/* Link Changed */
1005
			if (mdp->cd->no_psr || mdp->no_ether_link) {
1006 1007 1008 1009 1010
				if (mdp->link == PHY_DOWN)
					link_stat = 0;
				else
					link_stat = PHY_ST_LINK;
			} else {
1011
				link_stat = (sh_eth_read(ndev, PSR));
1012 1013
				if (mdp->ether_link_active_low)
					link_stat = ~link_stat;
1014
			}
1015
			if (!(link_stat & PHY_ST_LINK))
1016
				sh_eth_rcv_snd_disable(ndev);
1017
			else {
1018
				/* Link Up */
1019 1020
				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
					  ~DMAC_M_ECI, EESIPR);
1021
				/*clear int */
1022 1023 1024 1025
				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
					  ECSR);
				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
					  DMAC_M_ECI, EESIPR);
1026
				/* enable tx and rx */
1027
				sh_eth_rcv_snd_enable(ndev);
1028 1029 1030 1031 1032 1033 1034 1035
			}
		}
	}

	if (intr_status & EESR_TWB) {
		/* Write buck end. unused write back interrupt */
		if (intr_status & EESR_TABT)	/* Transmit Abort int */
			mdp->stats.tx_aborted_errors++;
1036 1037
			if (netif_msg_tx_err(mdp))
				dev_err(&ndev->dev, "Transmit Abort\n");
1038 1039 1040 1041 1042 1043 1044
	}

	if (intr_status & EESR_RABT) {
		/* Receive Abort int */
		if (intr_status & EESR_RFRMER) {
			/* Receive Frame Overflow int */
			mdp->stats.rx_frame_errors++;
1045 1046
			if (netif_msg_rx_err(mdp))
				dev_err(&ndev->dev, "Receive Abort\n");
1047 1048
		}
	}
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	if (intr_status & EESR_TDE) {
		/* Transmit Descriptor Empty int */
		mdp->stats.tx_fifo_errors++;
		if (netif_msg_tx_err(mdp))
			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
	}

	if (intr_status & EESR_TFE) {
		/* FIFO under flow */
		mdp->stats.tx_fifo_errors++;
		if (netif_msg_tx_err(mdp))
			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1062 1063 1064 1065 1066 1067
	}

	if (intr_status & EESR_RDE) {
		/* Receive Descriptor Empty int */
		mdp->stats.rx_over_errors++;

1068 1069
		if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
			sh_eth_write(ndev, EDRRR_R, EDRRR);
1070 1071
		if (netif_msg_rx_err(mdp))
			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1072
	}
1073

1074 1075 1076
	if (intr_status & EESR_RFE) {
		/* Receive FIFO Overflow int */
		mdp->stats.rx_fifo_errors++;
1077 1078 1079 1080 1081 1082 1083 1084 1085
		if (netif_msg_rx_err(mdp))
			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
	}

	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
		/* Address Error */
		mdp->stats.tx_fifo_errors++;
		if (netif_msg_tx_err(mdp))
			dev_err(&ndev->dev, "Address Error\n");
1086
	}
1087 1088 1089 1090 1091

	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
	if (mdp->cd->no_ade)
		mask &= ~EESR_ADE;
	if (intr_status & mask) {
1092
		/* Tx error */
1093
		u32 edtrr = sh_eth_read(ndev, EDTRR);
1094
		/* dmesg */
1095 1096 1097
		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
				intr_status, mdp->cur_tx);
		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1098 1099 1100 1101 1102
				mdp->dirty_tx, (u32) ndev->state, edtrr);
		/* dirty buffer free */
		sh_eth_txfree(ndev);

		/* SH7712 BUG */
1103
		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1104
			/* tx dma start */
1105
			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
		}
		/* wakeup */
		netif_wake_queue(ndev);
	}
}

static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
{
	struct net_device *ndev = netdev;
	struct sh_eth_private *mdp = netdev_priv(ndev);
1116
	struct sh_eth_cpu_data *cd = mdp->cd;
1117
	irqreturn_t ret = IRQ_NONE;
1118
	u32 intr_status = 0;
1119 1120 1121

	spin_lock(&mdp->lock);

1122
	/* Get interrpt stat */
1123
	intr_status = sh_eth_read(ndev, EESR);
1124
	/* Clear interrupt */
1125 1126
	if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
			EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1127
			cd->tx_check | cd->eesr_err_check)) {
1128
		sh_eth_write(ndev, intr_status, EESR);
1129 1130 1131
		ret = IRQ_HANDLED;
	} else
		goto other_irq;
1132

1133 1134 1135 1136 1137 1138 1139
	if (intr_status & (EESR_FRC | /* Frame recv*/
			EESR_RMAF | /* Multi cast address recv*/
			EESR_RRF  | /* Bit frame recv */
			EESR_RTLF | /* Long frame recv*/
			EESR_RTSF | /* short frame recv */
			EESR_PRE  | /* PHY-LSI recv error */
			EESR_CERF)){ /* recv frame CRC error */
1140
		sh_eth_rx(ndev);
1141
	}
1142

1143
	/* Tx Check */
1144
	if (intr_status & cd->tx_check) {
1145 1146 1147 1148
		sh_eth_txfree(ndev);
		netif_wake_queue(ndev);
	}

1149
	if (intr_status & cd->eesr_err_check)
1150 1151
		sh_eth_error(ndev, intr_status);

1152
other_irq:
1153 1154
	spin_unlock(&mdp->lock);

1155
	return ret;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
}

static void sh_eth_timer(unsigned long data)
{
	struct net_device *ndev = (struct net_device *)data;
	struct sh_eth_private *mdp = netdev_priv(ndev);

	mod_timer(&mdp->timer, jiffies + (10 * HZ));
}

/* PHY state control function */
static void sh_eth_adjust_link(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct phy_device *phydev = mdp->phydev;
	int new_state = 0;

	if (phydev->link != PHY_DOWN) {
		if (phydev->duplex != mdp->duplex) {
			new_state = 1;
			mdp->duplex = phydev->duplex;
1177 1178
			if (mdp->cd->set_duplex)
				mdp->cd->set_duplex(ndev);
1179 1180 1181 1182 1183
		}

		if (phydev->speed != mdp->speed) {
			new_state = 1;
			mdp->speed = phydev->speed;
1184 1185
			if (mdp->cd->set_rate)
				mdp->cd->set_rate(ndev);
1186 1187
		}
		if (mdp->link == PHY_DOWN) {
1188 1189
			sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_TXF)
					| ECMR_DM, ECMR);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
			new_state = 1;
			mdp->link = phydev->link;
		}
	} else if (mdp->link) {
		new_state = 1;
		mdp->link = PHY_DOWN;
		mdp->speed = 0;
		mdp->duplex = -1;
	}

1200
	if (new_state && netif_msg_link(mdp))
1201 1202 1203 1204 1205 1206 1207
		phy_print_status(phydev);
}

/* PHY init function */
static int sh_eth_phy_init(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
1208
	char phy_id[MII_BUS_ID_SIZE + 3];
1209 1210
	struct phy_device *phydev = NULL;

1211
	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1212 1213 1214 1215 1216 1217 1218
		mdp->mii_bus->id , mdp->phy_id);

	mdp->link = PHY_DOWN;
	mdp->speed = 0;
	mdp->duplex = -1;

	/* Try connect to PHY */
1219
	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1220
				0, mdp->phy_interface);
1221 1222 1223 1224
	if (IS_ERR(phydev)) {
		dev_err(&ndev->dev, "phy_connect failed\n");
		return PTR_ERR(phydev);
	}
1225

1226
	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1227
		phydev->addr, phydev->drv->name);
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

	mdp->phydev = phydev;

	return 0;
}

/* PHY control start function */
static int sh_eth_phy_start(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int ret;

	ret = sh_eth_phy_init(ndev);
	if (ret)
		return ret;

	/* reset phy - this also wakes it from PDOWN */
	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
	phy_start(mdp->phydev);

	return 0;
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
static int sh_eth_get_settings(struct net_device *ndev,
			struct ethtool_cmd *ecmd)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&mdp->lock, flags);
	ret = phy_ethtool_gset(mdp->phydev, ecmd);
	spin_unlock_irqrestore(&mdp->lock, flags);

	return ret;
}

static int sh_eth_set_settings(struct net_device *ndev,
		struct ethtool_cmd *ecmd)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&mdp->lock, flags);

	/* disable tx and rx */
1275
	sh_eth_rcv_snd_disable(ndev);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

	ret = phy_ethtool_sset(mdp->phydev, ecmd);
	if (ret)
		goto error_exit;

	if (ecmd->duplex == DUPLEX_FULL)
		mdp->duplex = 1;
	else
		mdp->duplex = 0;

	if (mdp->cd->set_duplex)
		mdp->cd->set_duplex(ndev);

error_exit:
	mdelay(1);

	/* enable tx and rx */
1293
	sh_eth_rcv_snd_enable(ndev);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

	spin_unlock_irqrestore(&mdp->lock, flags);

	return ret;
}

static int sh_eth_nway_reset(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&mdp->lock, flags);
	ret = phy_start_aneg(mdp->phydev);
	spin_unlock_irqrestore(&mdp->lock, flags);

	return ret;
}

static u32 sh_eth_get_msglevel(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	return mdp->msg_enable;
}

static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	mdp->msg_enable = value;
}

static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
	"rx_current", "tx_current",
	"rx_dirty", "tx_dirty",
};
#define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)

static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
{
	switch (sset) {
	case ETH_SS_STATS:
		return SH_ETH_STATS_LEN;
	default:
		return -EOPNOTSUPP;
	}
}

static void sh_eth_get_ethtool_stats(struct net_device *ndev,
			struct ethtool_stats *stats, u64 *data)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int i = 0;

	/* device-specific stats */
	data[i++] = mdp->cur_rx;
	data[i++] = mdp->cur_tx;
	data[i++] = mdp->dirty_rx;
	data[i++] = mdp->dirty_tx;
}

static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
	switch (stringset) {
	case ETH_SS_STATS:
		memcpy(data, *sh_eth_gstrings_stats,
					sizeof(sh_eth_gstrings_stats));
		break;
	}
}

static struct ethtool_ops sh_eth_ethtool_ops = {
	.get_settings	= sh_eth_get_settings,
	.set_settings	= sh_eth_set_settings,
	.nway_reset		= sh_eth_nway_reset,
	.get_msglevel	= sh_eth_get_msglevel,
	.set_msglevel	= sh_eth_set_msglevel,
	.get_link		= ethtool_op_get_link,
	.get_strings	= sh_eth_get_strings,
	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
	.get_sset_count     = sh_eth_get_sset_count,
};

1376 1377 1378 1379 1380 1381
/* network device open function */
static int sh_eth_open(struct net_device *ndev)
{
	int ret = 0;
	struct sh_eth_private *mdp = netdev_priv(ndev);

1382 1383
	pm_runtime_get_sync(&mdp->pdev->dev);

1384
	ret = request_irq(ndev->irq, sh_eth_interrupt,
1385
#if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1386 1387
	defined(CONFIG_CPU_SUBTYPE_SH7764) || \
	defined(CONFIG_CPU_SUBTYPE_SH7757)
1388 1389 1390 1391 1392
				IRQF_SHARED,
#else
				0,
#endif
				ndev->name, ndev);
1393
	if (ret) {
1394
		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
		return ret;
	}

	/* Descriptor set */
	ret = sh_eth_ring_init(ndev);
	if (ret)
		goto out_free_irq;

	/* device init */
	ret = sh_eth_dev_init(ndev);
	if (ret)
		goto out_free_irq;

	/* PHY control start*/
	ret = sh_eth_phy_start(ndev);
	if (ret)
		goto out_free_irq;

	/* Set the timer to check for link beat. */
	init_timer(&mdp->timer);
	mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1416
	setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
1417 1418 1419 1420 1421

	return ret;

out_free_irq:
	free_irq(ndev->irq, ndev);
1422
	pm_runtime_put_sync(&mdp->pdev->dev);
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	return ret;
}

/* Timeout function */
static void sh_eth_tx_timeout(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct sh_eth_rxdesc *rxdesc;
	int i;

	netif_stop_queue(ndev);

1435 1436
	if (netif_msg_timer(mdp))
		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1437
	       " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

	/* tx_errors count up */
	mdp->stats.tx_errors++;

	/* timer off */
	del_timer_sync(&mdp->timer);

	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		rxdesc = &mdp->rx_ring[i];
		rxdesc->status = 0;
		rxdesc->addr = 0xBADF00D0;
		if (mdp->rx_skbuff[i])
			dev_kfree_skb(mdp->rx_skbuff[i]);
		mdp->rx_skbuff[i] = NULL;
	}
	for (i = 0; i < TX_RING_SIZE; i++) {
		if (mdp->tx_skbuff[i])
			dev_kfree_skb(mdp->tx_skbuff[i]);
		mdp->tx_skbuff[i] = NULL;
	}

	/* device init */
	sh_eth_dev_init(ndev);

	/* timer on */
	mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
	add_timer(&mdp->timer);
}

/* Packet transmit function */
static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct sh_eth_txdesc *txdesc;
	u32 entry;
1474
	unsigned long flags;
1475 1476 1477 1478

	spin_lock_irqsave(&mdp->lock, flags);
	if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
		if (!sh_eth_txfree(ndev)) {
1479 1480
			if (netif_msg_tx_queued(mdp))
				dev_warn(&ndev->dev, "TxFD exhausted.\n");
1481 1482
			netif_stop_queue(ndev);
			spin_unlock_irqrestore(&mdp->lock, flags);
1483
			return NETDEV_TX_BUSY;
1484 1485 1486 1487 1488 1489 1490 1491
		}
	}
	spin_unlock_irqrestore(&mdp->lock, flags);

	entry = mdp->cur_tx % TX_RING_SIZE;
	mdp->tx_skbuff[entry] = skb;
	txdesc = &mdp->tx_ring[entry];
	/* soft swap. */
1492 1493 1494
	if (!mdp->cd->hw_swap)
		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
				 skb->len + 2);
1495 1496
	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
				      DMA_TO_DEVICE);
1497 1498 1499 1500 1501 1502
	if (skb->len < ETHERSMALL)
		txdesc->buffer_length = ETHERSMALL;
	else
		txdesc->buffer_length = skb->len;

	if (entry >= TX_RING_SIZE - 1)
1503
		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1504
	else
1505
		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1506 1507 1508

	mdp->cur_tx++;

1509 1510
	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1511

1512
	return NETDEV_TX_OK;
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
}

/* device close function */
static int sh_eth_close(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int ringsize;

	netif_stop_queue(ndev);

	/* Disable interrupts by clearing the interrupt mask. */
1524
	sh_eth_write(ndev, 0x0000, EESIPR);
1525 1526

	/* Stop the chip's Tx and Rx processes. */
1527 1528
	sh_eth_write(ndev, 0, EDTRR);
	sh_eth_write(ndev, 0, EDRRR);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

	/* PHY Disconnect */
	if (mdp->phydev) {
		phy_stop(mdp->phydev);
		phy_disconnect(mdp->phydev);
	}

	free_irq(ndev->irq, ndev);

	del_timer_sync(&mdp->timer);

	/* Free all the skbuffs in the Rx queue. */
	sh_eth_ring_free(ndev);

	/* free DMA buffer */
	ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
	dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);

	/* free DMA buffer */
	ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
	dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);

1551 1552
	pm_runtime_put_sync(&mdp->pdev->dev);

1553 1554 1555 1556 1557 1558 1559
	return 0;
}

static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

1560 1561
	pm_runtime_get_sync(&mdp->pdev->dev);

1562 1563 1564 1565 1566 1567
	mdp->stats.tx_dropped += sh_eth_read(ndev, TROCR);
	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
	mdp->stats.collisions += sh_eth_read(ndev, CDCR);
	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
	mdp->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
1568 1569 1570 1571 1572 1573 1574 1575 1576
	if (sh_eth_is_gether(mdp)) {
		mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
		mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
	} else {
		mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
	}
1577 1578
	pm_runtime_put_sync(&mdp->pdev->dev);

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	return &mdp->stats;
}

/* ioctl to device funciotn*/
static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
				int cmd)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct phy_device *phydev = mdp->phydev;

	if (!netif_running(ndev))
		return -EINVAL;

	if (!phydev)
		return -ENODEV;

1595
	return phy_mii_ioctl(phydev, rq, cmd);
1596 1597
}

1598
#if defined(SH_ETH_HAS_TSU)
1599 1600 1601 1602 1603
/* Multicast reception directions set */
static void sh_eth_set_multicast_list(struct net_device *ndev)
{
	if (ndev->flags & IFF_PROMISC) {
		/* Set promiscuous. */
1604 1605
		sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_MCT) |
				ECMR_PRM, ECMR);
1606 1607
	} else {
		/* Normal, unicast/broadcast-only mode. */
1608 1609
		sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) |
				ECMR_MCT, ECMR);
1610 1611
	}
}
1612
#endif /* SH_ETH_HAS_TSU */
1613 1614

/* SuperH's TSU register init function */
1615
static void sh_eth_tsu_init(struct sh_eth_private *mdp)
1616
{
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
1627 1628 1629 1630 1631 1632 1633
	if (sh_eth_is_gether(mdp)) {
		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
	} else {
		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
	}
1634 1635 1636 1637 1638 1639 1640
	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
}

/* MDIO bus release function */
static int sh_mdio_release(struct net_device *ndev)
{
	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);

	/* unregister mdio bus */
	mdiobus_unregister(bus);

	/* remove mdio bus info from net_device */
	dev_set_drvdata(&ndev->dev, NULL);

1654 1655 1656
	/* free interrupts memory */
	kfree(bus->irq);

1657 1658 1659 1660 1661 1662 1663
	/* free bitbang info */
	free_mdio_bitbang(bus);

	return 0;
}

/* MDIO bus init function */
1664 1665
static int sh_mdio_init(struct net_device *ndev, int id,
			struct sh_eth_plat_data *pd)
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
{
	int ret, i;
	struct bb_info *bitbang;
	struct sh_eth_private *mdp = netdev_priv(ndev);

	/* create bit control struct for PHY */
	bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
	if (!bitbang) {
		ret = -ENOMEM;
		goto out;
	}

	/* bitbang init */
1679
	bitbang->addr = ndev->base_addr + mdp->reg_offset[PIR];
1680
	bitbang->set_gate = pd->set_mdio_gate;
1681 1682 1683 1684 1685 1686
	bitbang->mdi_msk = 0x08;
	bitbang->mdo_msk = 0x04;
	bitbang->mmd_msk = 0x02;/* MMD */
	bitbang->mdc_msk = 0x01;
	bitbang->ctrl.ops = &bb_ops;

1687
	/* MII controller setting */
1688 1689 1690 1691 1692 1693 1694 1695
	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
	if (!mdp->mii_bus) {
		ret = -ENOMEM;
		goto out_free_bitbang;
	}

	/* Hook up MII support for ethtool */
	mdp->mii_bus->name = "sh_mii";
1696
	mdp->mii_bus->parent = &ndev->dev;
1697
	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id);
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

	/* PHY IRQ */
	mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
	if (!mdp->mii_bus->irq) {
		ret = -ENOMEM;
		goto out_free_bus;
	}

	for (i = 0; i < PHY_MAX_ADDR; i++)
		mdp->mii_bus->irq[i] = PHY_POLL;

	/* regist mdio bus */
	ret = mdiobus_register(mdp->mii_bus);
	if (ret)
		goto out_free_irq;

	dev_set_drvdata(&ndev->dev, mdp->mii_bus);

	return 0;

out_free_irq:
	kfree(mdp->mii_bus->irq);

out_free_bus:
1722
	free_mdio_bitbang(mdp->mii_bus);
1723 1724 1725 1726 1727 1728 1729 1730

out_free_bitbang:
	kfree(bitbang);

out:
	return ret;
}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
static const u16 *sh_eth_get_register_offset(int register_type)
{
	const u16 *reg_offset = NULL;

	switch (register_type) {
	case SH_ETH_REG_GIGABIT:
		reg_offset = sh_eth_offset_gigabit;
		break;
	case SH_ETH_REG_FAST_SH4:
		reg_offset = sh_eth_offset_fast_sh4;
		break;
	case SH_ETH_REG_FAST_SH3_SH2:
		reg_offset = sh_eth_offset_fast_sh3_sh2;
		break;
	default:
		printk(KERN_ERR "Unknown register type (%d)\n", register_type);
		break;
	}

	return reg_offset;
}

1753 1754 1755 1756 1757
static const struct net_device_ops sh_eth_netdev_ops = {
	.ndo_open		= sh_eth_open,
	.ndo_stop		= sh_eth_close,
	.ndo_start_xmit		= sh_eth_start_xmit,
	.ndo_get_stats		= sh_eth_get_stats,
1758
#if defined(SH_ETH_HAS_TSU)
1759
	.ndo_set_multicast_list	= sh_eth_set_multicast_list,
1760
#endif
1761 1762 1763 1764 1765 1766 1767
	.ndo_tx_timeout		= sh_eth_tx_timeout,
	.ndo_do_ioctl		= sh_eth_do_ioctl,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_change_mtu		= eth_change_mtu,
};

1768 1769
static int sh_eth_drv_probe(struct platform_device *pdev)
{
1770
	int ret, devno = 0;
1771 1772
	struct resource *res;
	struct net_device *ndev = NULL;
1773
	struct sh_eth_private *mdp = NULL;
1774
	struct sh_eth_plat_data *pd;
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

	/* get base addr */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (unlikely(res == NULL)) {
		dev_err(&pdev->dev, "invalid resource\n");
		ret = -EINVAL;
		goto out;
	}

	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
	if (!ndev) {
1786
		dev_err(&pdev->dev, "Could not allocate device.\n");
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
		ret = -ENOMEM;
		goto out;
	}

	/* The sh Ether-specific entries in the device structure. */
	ndev->base_addr = res->start;
	devno = pdev->id;
	if (devno < 0)
		devno = 0;

	ndev->dma = -1;
1798 1799
	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
1800 1801 1802
		ret = -ENODEV;
		goto out_release;
	}
1803
	ndev->irq = ret;
1804 1805 1806 1807 1808 1809 1810 1811

	SET_NETDEV_DEV(ndev, &pdev->dev);

	/* Fill in the fields of the device structure with ethernet values. */
	ether_setup(ndev);

	mdp = netdev_priv(ndev);
	spin_lock_init(&mdp->lock);
1812 1813 1814
	mdp->pdev = pdev;
	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);
1815

1816
	pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
1817
	/* get PHY ID */
1818
	mdp->phy_id = pd->phy;
1819
	mdp->phy_interface = pd->phy_interface;
1820 1821
	/* EDMAC endian */
	mdp->edmac_endian = pd->edmac_endian;
1822 1823
	mdp->no_ether_link = pd->no_ether_link;
	mdp->ether_link_active_low = pd->ether_link_active_low;
1824
	mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
1825

1826
	/* set cpu data */
1827 1828 1829
#if defined(SH_ETH_HAS_BOTH_MODULES)
	mdp->cd = sh_eth_get_cpu_data(mdp);
#else
1830
	mdp->cd = &sh_eth_my_cpu_data;
1831
#endif
1832 1833
	sh_eth_set_default_cpu_data(mdp->cd);

1834
	/* set function */
1835
	ndev->netdev_ops = &sh_eth_netdev_ops;
1836
	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
1837 1838
	ndev->watchdog_timeo = TX_TIMEOUT;

1839 1840
	/* debug message level */
	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
1841 1842 1843 1844
	mdp->post_rx = POST_RX >> (devno << 1);
	mdp->post_fw = POST_FW >> (devno << 1);

	/* read and set MAC address */
1845
	read_mac_address(ndev, pd->mac_addr);
1846 1847 1848

	/* First device only init */
	if (!devno) {
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
		if (mdp->cd->tsu) {
			struct resource *rtsu;
			rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
			if (!rtsu) {
				dev_err(&pdev->dev, "Not found TSU resource\n");
				goto out_release;
			}
			mdp->tsu_addr = ioremap(rtsu->start,
						resource_size(rtsu));
		}
1859 1860
		if (mdp->cd->chip_reset)
			mdp->cd->chip_reset(ndev);
1861

1862 1863 1864 1865
		if (mdp->cd->tsu) {
			/* TSU init (Init only)*/
			sh_eth_tsu_init(mdp);
		}
1866 1867 1868 1869 1870 1871 1872 1873
	}

	/* network device register */
	ret = register_netdev(ndev);
	if (ret)
		goto out_release;

	/* mdio bus init */
1874
	ret = sh_mdio_init(ndev, pdev->id, pd);
1875 1876 1877
	if (ret)
		goto out_unregister;

L
Lucas De Marchi 已提交
1878
	/* print device information */
1879 1880
	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

	platform_set_drvdata(pdev, ndev);

	return ret;

out_unregister:
	unregister_netdev(ndev);

out_release:
	/* net_dev free */
1891
	if (mdp && mdp->tsu_addr)
1892
		iounmap(mdp->tsu_addr);
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	if (ndev)
		free_netdev(ndev);

out:
	return ret;
}

static int sh_eth_drv_remove(struct platform_device *pdev)
{
	struct net_device *ndev = platform_get_drvdata(pdev);
1903
	struct sh_eth_private *mdp = netdev_priv(ndev);
1904

1905
	iounmap(mdp->tsu_addr);
1906 1907
	sh_mdio_release(ndev);
	unregister_netdev(ndev);
1908
	pm_runtime_disable(&pdev->dev);
1909 1910 1911 1912 1913 1914
	free_netdev(ndev);
	platform_set_drvdata(pdev, NULL);

	return 0;
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
static int sh_eth_runtime_nop(struct device *dev)
{
	/*
	 * Runtime PM callback shared between ->runtime_suspend()
	 * and ->runtime_resume(). Simply returns success.
	 *
	 * This driver re-initializes all registers after
	 * pm_runtime_get_sync() anyway so there is no need
	 * to save and restore registers here.
	 */
	return 0;
}

static struct dev_pm_ops sh_eth_dev_pm_ops = {
	.runtime_suspend = sh_eth_runtime_nop,
	.runtime_resume = sh_eth_runtime_nop,
};

1933 1934 1935 1936 1937
static struct platform_driver sh_eth_driver = {
	.probe = sh_eth_drv_probe,
	.remove = sh_eth_drv_remove,
	.driver = {
		   .name = CARDNAME,
1938
		   .pm = &sh_eth_dev_pm_ops,
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	},
};

static int __init sh_eth_init(void)
{
	return platform_driver_register(&sh_eth_driver);
}

static void __exit sh_eth_cleanup(void)
{
	platform_driver_unregister(&sh_eth_driver);
}

module_init(sh_eth_init);
module_exit(sh_eth_cleanup);

MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
MODULE_LICENSE("GPL v2");