bpf_jit_comp.c 22.1 KB
Newer Older
1 2
/* bpf_jit_comp.c : BPF JIT compiler
 *
3
 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
4 5 6 7 8 9 10 11 12 13
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */
#include <linux/moduleloader.h>
#include <asm/cacheflush.h>
#include <linux/netdevice.h>
#include <linux/filter.h>
14
#include <linux/if_vlan.h>
15
#include <linux/random.h>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

/*
 * Conventions :
 *  EAX : BPF A accumulator
 *  EBX : BPF X accumulator
 *  RDI : pointer to skb   (first argument given to JIT function)
 *  RBP : frame pointer (even if CONFIG_FRAME_POINTER=n)
 *  ECX,EDX,ESI : scratch registers
 *  r9d : skb->len - skb->data_len (headlen)
 *  r8  : skb->data
 * -8(RBP) : saved RBX value
 * -16(RBP)..-80(RBP) : BPF_MEMWORDS values
 */
int bpf_jit_enable __read_mostly;

/*
 * assembly code in arch/x86/net/bpf_jit.S
 */
extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
35 36 37 38
extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
extern u8 sk_load_byte_positive_offset[], sk_load_byte_msh_positive_offset[];
extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
extern u8 sk_load_byte_negative_offset[], sk_load_byte_msh_negative_offset[];
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
{
	if (len == 1)
		*ptr = bytes;
	else if (len == 2)
		*(u16 *)ptr = bytes;
	else {
		*(u32 *)ptr = bytes;
		barrier();
	}
	return ptr + len;
}

#define EMIT(bytes, len)	do { prog = emit_code(prog, bytes, len); } while (0)

#define EMIT1(b1)		EMIT(b1, 1)
#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
#define EMIT1_off32(b1, off)	do { EMIT1(b1); EMIT(off, 4);} while (0)

#define CLEAR_A() EMIT2(0x31, 0xc0) /* xor %eax,%eax */
#define CLEAR_X() EMIT2(0x31, 0xdb) /* xor %ebx,%ebx */

static inline bool is_imm8(int value)
{
	return value <= 127 && value >= -128;
}

static inline bool is_near(int offset)
{
	return offset <= 127 && offset >= -128;
}

#define EMIT_JMP(offset)						\
do {									\
	if (offset) {							\
		if (is_near(offset))					\
			EMIT2(0xeb, offset); /* jmp .+off8 */		\
		else							\
			EMIT1_off32(0xe9, offset); /* jmp .+off32 */	\
	}								\
} while (0)

/* list of x86 cond jumps opcodes (. + s8)
 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
 */
#define X86_JB  0x72
#define X86_JAE 0x73
#define X86_JE  0x74
#define X86_JNE 0x75
#define X86_JBE 0x76
#define X86_JA  0x77

#define EMIT_COND_JMP(op, offset)				\
do {								\
	if (is_near(offset))					\
		EMIT2(op, offset); /* jxx .+off8 */		\
	else {							\
		EMIT2(0x0f, op + 0x10);				\
		EMIT(offset, 4); /* jxx .+off32 */		\
	}							\
} while (0)

#define COND_SEL(CODE, TOP, FOP)	\
	case CODE:			\
		t_op = TOP;		\
		f_op = FOP;		\
		goto cond_branch


#define SEEN_DATAREF 1 /* might call external helpers */
#define SEEN_XREG    2 /* ebx is used */
#define SEEN_MEM     4 /* use mem[] for temporary storage */

static inline void bpf_flush_icache(void *start, void *end)
{
	mm_segment_t old_fs = get_fs();

	set_fs(KERNEL_DS);
	smp_wmb();
	flush_icache_range((unsigned long)start, (unsigned long)end);
	set_fs(old_fs);
}

125 126
#define CHOOSE_LOAD_FUNC(K, func) \
	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
/* Helper to find the offset of pkt_type in sk_buff
 * We want to make sure its still a 3bit field starting at a byte boundary.
 */
#define PKT_TYPE_MAX 7
static int pkt_type_offset(void)
{
	struct sk_buff skb_probe = {
		.pkt_type = ~0,
	};
	char *ct = (char *)&skb_probe;
	unsigned int off;

	for (off = 0; off < sizeof(struct sk_buff); off++) {
		if (ct[off] == PKT_TYPE_MAX)
			return off;
	}
	pr_err_once("Please fix pkt_type_offset(), as pkt_type couldn't be found\n");
	return -1;
}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
struct bpf_binary_header {
	unsigned int	pages;
	/* Note : for security reasons, bpf code will follow a randomly
	 * sized amount of int3 instructions
	 */
	u8		image[];
};

static struct bpf_binary_header *bpf_alloc_binary(unsigned int proglen,
						  u8 **image_ptr)
{
	unsigned int sz, hole;
	struct bpf_binary_header *header;

	/* Most of BPF filters are really small,
	 * but if some of them fill a page, allow at least
	 * 128 extra bytes to insert a random section of int3
	 */
	sz = round_up(proglen + sizeof(*header) + 128, PAGE_SIZE);
	header = module_alloc(sz);
	if (!header)
		return NULL;

	memset(header, 0xcc, sz); /* fill whole space with int3 instructions */

	header->pages = sz / PAGE_SIZE;
	hole = sz - (proglen + sizeof(*header));

	/* insert a random number of int3 instructions before BPF code */
	*image_ptr = &header->image[prandom_u32() % hole];
	return header;
}

181 182 183 184 185 186 187 188 189
void bpf_jit_compile(struct sk_filter *fp)
{
	u8 temp[64];
	u8 *prog;
	unsigned int proglen, oldproglen = 0;
	int ilen, i;
	int t_offset, f_offset;
	u8 t_op, f_op, seen = 0, pass;
	u8 *image = NULL;
190
	struct bpf_binary_header *header = NULL;
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
	u8 *func;
	int pc_ret0 = -1; /* bpf index of first RET #0 instruction (if any) */
	unsigned int cleanup_addr; /* epilogue code offset */
	unsigned int *addrs;
	const struct sock_filter *filter = fp->insns;
	int flen = fp->len;

	if (!bpf_jit_enable)
		return;

	addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
	if (addrs == NULL)
		return;

	/* Before first pass, make a rough estimation of addrs[]
	 * each bpf instruction is translated to less than 64 bytes
	 */
	for (proglen = 0, i = 0; i < flen; i++) {
		proglen += 64;
		addrs[i] = proglen;
	}
	cleanup_addr = proglen; /* epilogue address */

	for (pass = 0; pass < 10; pass++) {
215
		u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
216 217 218 219
		/* no prologue/epilogue for trivial filters (RET something) */
		proglen = 0;
		prog = temp;

220
		if (seen_or_pass0) {
221 222 223
			EMIT4(0x55, 0x48, 0x89, 0xe5); /* push %rbp; mov %rsp,%rbp */
			EMIT4(0x48, 0x83, 0xec, 96);	/* subq  $96,%rsp	*/
			/* note : must save %rbx in case bpf_error is hit */
224
			if (seen_or_pass0 & (SEEN_XREG | SEEN_DATAREF))
225
				EMIT4(0x48, 0x89, 0x5d, 0xf8); /* mov %rbx, -8(%rbp) */
226
			if (seen_or_pass0 & SEEN_XREG)
227 228 229 230 231 232 233 234
				CLEAR_X(); /* make sure we dont leek kernel memory */

			/*
			 * If this filter needs to access skb data,
			 * loads r9 and r8 with :
			 *  r9 = skb->len - skb->data_len
			 *  r8 = skb->data
			 */
235
			if (seen_or_pass0 & SEEN_DATAREF) {
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
				if (offsetof(struct sk_buff, len) <= 127)
					/* mov    off8(%rdi),%r9d */
					EMIT4(0x44, 0x8b, 0x4f, offsetof(struct sk_buff, len));
				else {
					/* mov    off32(%rdi),%r9d */
					EMIT3(0x44, 0x8b, 0x8f);
					EMIT(offsetof(struct sk_buff, len), 4);
				}
				if (is_imm8(offsetof(struct sk_buff, data_len)))
					/* sub    off8(%rdi),%r9d */
					EMIT4(0x44, 0x2b, 0x4f, offsetof(struct sk_buff, data_len));
				else {
					EMIT3(0x44, 0x2b, 0x8f);
					EMIT(offsetof(struct sk_buff, data_len), 4);
				}

				if (is_imm8(offsetof(struct sk_buff, data)))
					/* mov off8(%rdi),%r8 */
					EMIT4(0x4c, 0x8b, 0x47, offsetof(struct sk_buff, data));
				else {
					/* mov off32(%rdi),%r8 */
					EMIT3(0x4c, 0x8b, 0x87);
					EMIT(offsetof(struct sk_buff, data), 4);
				}
			}
		}

		switch (filter[0].code) {
		case BPF_S_RET_K:
		case BPF_S_LD_W_LEN:
		case BPF_S_ANC_PROTOCOL:
		case BPF_S_ANC_IFINDEX:
		case BPF_S_ANC_MARK:
		case BPF_S_ANC_RXHASH:
		case BPF_S_ANC_CPU:
271 272
		case BPF_S_ANC_VLAN_TAG:
		case BPF_S_ANC_VLAN_TAG_PRESENT:
273
		case BPF_S_ANC_QUEUE:
274
		case BPF_S_ANC_PKTTYPE:
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
		case BPF_S_LD_W_ABS:
		case BPF_S_LD_H_ABS:
		case BPF_S_LD_B_ABS:
			/* first instruction sets A register (or is RET 'constant') */
			break;
		default:
			/* make sure we dont leak kernel information to user */
			CLEAR_A(); /* A = 0 */
		}

		for (i = 0; i < flen; i++) {
			unsigned int K = filter[i].k;

			switch (filter[i].code) {
			case BPF_S_ALU_ADD_X: /* A += X; */
				seen |= SEEN_XREG;
				EMIT2(0x01, 0xd8);		/* add %ebx,%eax */
				break;
			case BPF_S_ALU_ADD_K: /* A += K; */
				if (!K)
					break;
				if (is_imm8(K))
					EMIT3(0x83, 0xc0, K);	/* add imm8,%eax */
				else
					EMIT1_off32(0x05, K);	/* add imm32,%eax */
				break;
			case BPF_S_ALU_SUB_X: /* A -= X; */
				seen |= SEEN_XREG;
				EMIT2(0x29, 0xd8);		/* sub    %ebx,%eax */
				break;
			case BPF_S_ALU_SUB_K: /* A -= K */
				if (!K)
					break;
				if (is_imm8(K))
					EMIT3(0x83, 0xe8, K); /* sub imm8,%eax */
				else
					EMIT1_off32(0x2d, K); /* sub imm32,%eax */
				break;
			case BPF_S_ALU_MUL_X: /* A *= X; */
				seen |= SEEN_XREG;
				EMIT3(0x0f, 0xaf, 0xc3);	/* imul %ebx,%eax */
				break;
			case BPF_S_ALU_MUL_K: /* A *= K */
				if (is_imm8(K))
					EMIT3(0x6b, 0xc0, K); /* imul imm8,%eax,%eax */
				else {
					EMIT2(0x69, 0xc0);		/* imul imm32,%eax */
					EMIT(K, 4);
				}
				break;
			case BPF_S_ALU_DIV_X: /* A /= X; */
				seen |= SEEN_XREG;
				EMIT2(0x85, 0xdb);	/* test %ebx,%ebx */
328 329 330 331 332 333 334 335
				if (pc_ret0 > 0) {
					/* addrs[pc_ret0 - 1] is start address of target
					 * (addrs[i] - 4) is the address following this jmp
					 * ("xor %edx,%edx; div %ebx" being 4 bytes long)
					 */
					EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
								(addrs[i] - 4));
				} else {
336 337 338 339 340 341
					EMIT_COND_JMP(X86_JNE, 2 + 5);
					CLEAR_A();
					EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 4)); /* jmp .+off32 */
				}
				EMIT4(0x31, 0xd2, 0xf7, 0xf3); /* xor %edx,%edx; div %ebx */
				break;
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
			case BPF_S_ALU_MOD_X: /* A %= X; */
				seen |= SEEN_XREG;
				EMIT2(0x85, 0xdb);	/* test %ebx,%ebx */
				if (pc_ret0 > 0) {
					/* addrs[pc_ret0 - 1] is start address of target
					 * (addrs[i] - 6) is the address following this jmp
					 * ("xor %edx,%edx; div %ebx;mov %edx,%eax" being 6 bytes long)
					 */
					EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
								(addrs[i] - 6));
				} else {
					EMIT_COND_JMP(X86_JNE, 2 + 5);
					CLEAR_A();
					EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 6)); /* jmp .+off32 */
				}
				EMIT2(0x31, 0xd2);	/* xor %edx,%edx */
				EMIT2(0xf7, 0xf3);	/* div %ebx */
				EMIT2(0x89, 0xd0);	/* mov %edx,%eax */
				break;
			case BPF_S_ALU_MOD_K: /* A %= K; */
				EMIT2(0x31, 0xd2);	/* xor %edx,%edx */
				EMIT1(0xb9);EMIT(K, 4);	/* mov imm32,%ecx */
				EMIT2(0xf7, 0xf1);	/* div %ecx */
				EMIT2(0x89, 0xd0);	/* mov %edx,%eax */
				break;
367 368 369 370 371 372 373 374 375 376 377 378 379 380
			case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
				EMIT3(0x48, 0x69, 0xc0); /* imul imm32,%rax,%rax */
				EMIT(K, 4);
				EMIT4(0x48, 0xc1, 0xe8, 0x20); /* shr $0x20,%rax */
				break;
			case BPF_S_ALU_AND_X:
				seen |= SEEN_XREG;
				EMIT2(0x21, 0xd8);		/* and %ebx,%eax */
				break;
			case BPF_S_ALU_AND_K:
				if (K >= 0xFFFFFF00) {
					EMIT2(0x24, K & 0xFF); /* and imm8,%al */
				} else if (K >= 0xFFFF0000) {
					EMIT2(0x66, 0x25);	/* and imm16,%ax */
381
					EMIT(K, 2);
382 383 384 385 386 387 388 389 390 391 392 393 394
				} else {
					EMIT1_off32(0x25, K);	/* and imm32,%eax */
				}
				break;
			case BPF_S_ALU_OR_X:
				seen |= SEEN_XREG;
				EMIT2(0x09, 0xd8);		/* or %ebx,%eax */
				break;
			case BPF_S_ALU_OR_K:
				if (is_imm8(K))
					EMIT3(0x83, 0xc8, K); /* or imm8,%eax */
				else
					EMIT1_off32(0x0d, K);	/* or imm32,%eax */
395 396
				break;
			case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
397
			case BPF_S_ALU_XOR_X:
398 399
				seen |= SEEN_XREG;
				EMIT2(0x31, 0xd8);		/* xor %ebx,%eax */
400 401 402 403 404 405 406 407
				break;
			case BPF_S_ALU_XOR_K: /* A ^= K; */
				if (K == 0)
					break;
				if (is_imm8(K))
					EMIT3(0x83, 0xf0, K);	/* xor imm8,%eax */
				else
					EMIT1_off32(0x35, K);	/* xor imm32,%eax */
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
				break;
			case BPF_S_ALU_LSH_X: /* A <<= X; */
				seen |= SEEN_XREG;
				EMIT4(0x89, 0xd9, 0xd3, 0xe0);	/* mov %ebx,%ecx; shl %cl,%eax */
				break;
			case BPF_S_ALU_LSH_K:
				if (K == 0)
					break;
				else if (K == 1)
					EMIT2(0xd1, 0xe0); /* shl %eax */
				else
					EMIT3(0xc1, 0xe0, K);
				break;
			case BPF_S_ALU_RSH_X: /* A >>= X; */
				seen |= SEEN_XREG;
				EMIT4(0x89, 0xd9, 0xd3, 0xe8);	/* mov %ebx,%ecx; shr %cl,%eax */
				break;
			case BPF_S_ALU_RSH_K: /* A >>= K; */
				if (K == 0)
					break;
				else if (K == 1)
					EMIT2(0xd1, 0xe8); /* shr %eax */
				else
					EMIT3(0xc1, 0xe8, K);
				break;
			case BPF_S_ALU_NEG:
				EMIT2(0xf7, 0xd8);		/* neg %eax */
				break;
			case BPF_S_RET_K:
				if (!K) {
					if (pc_ret0 == -1)
						pc_ret0 = i;
					CLEAR_A();
				} else {
					EMIT1_off32(0xb8, K);	/* mov $imm32,%eax */
				}
				/* fallinto */
			case BPF_S_RET_A:
446
				if (seen_or_pass0) {
447 448 449 450
					if (i != flen - 1) {
						EMIT_JMP(cleanup_addr - addrs[i]);
						break;
					}
451
					if (seen_or_pass0 & SEEN_XREG)
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
						EMIT4(0x48, 0x8b, 0x5d, 0xf8);  /* mov  -8(%rbp),%rbx */
					EMIT1(0xc9);		/* leaveq */
				}
				EMIT1(0xc3);		/* ret */
				break;
			case BPF_S_MISC_TAX: /* X = A */
				seen |= SEEN_XREG;
				EMIT2(0x89, 0xc3);	/* mov    %eax,%ebx */
				break;
			case BPF_S_MISC_TXA: /* A = X */
				seen |= SEEN_XREG;
				EMIT2(0x89, 0xd8);	/* mov    %ebx,%eax */
				break;
			case BPF_S_LD_IMM: /* A = K */
				if (!K)
					CLEAR_A();
				else
					EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
				break;
			case BPF_S_LDX_IMM: /* X = K */
				seen |= SEEN_XREG;
				if (!K)
					CLEAR_X();
				else
					EMIT1_off32(0xbb, K); /* mov $imm32,%ebx */
				break;
			case BPF_S_LD_MEM: /* A = mem[K] : mov off8(%rbp),%eax */
				seen |= SEEN_MEM;
				EMIT3(0x8b, 0x45, 0xf0 - K*4);
				break;
			case BPF_S_LDX_MEM: /* X = mem[K] : mov off8(%rbp),%ebx */
				seen |= SEEN_XREG | SEEN_MEM;
				EMIT3(0x8b, 0x5d, 0xf0 - K*4);
				break;
			case BPF_S_ST: /* mem[K] = A : mov %eax,off8(%rbp) */
				seen |= SEEN_MEM;
				EMIT3(0x89, 0x45, 0xf0 - K*4);
				break;
			case BPF_S_STX: /* mem[K] = X : mov %ebx,off8(%rbp) */
				seen |= SEEN_XREG | SEEN_MEM;
				EMIT3(0x89, 0x5d, 0xf0 - K*4);
				break;
			case BPF_S_LD_W_LEN: /*	A = skb->len; */
				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
				if (is_imm8(offsetof(struct sk_buff, len)))
					/* mov    off8(%rdi),%eax */
					EMIT3(0x8b, 0x47, offsetof(struct sk_buff, len));
				else {
					EMIT2(0x8b, 0x87);
					EMIT(offsetof(struct sk_buff, len), 4);
				}
				break;
			case BPF_S_LDX_W_LEN: /* X = skb->len; */
				seen |= SEEN_XREG;
				if (is_imm8(offsetof(struct sk_buff, len)))
					/* mov off8(%rdi),%ebx */
					EMIT3(0x8b, 0x5f, offsetof(struct sk_buff, len));
				else {
					EMIT2(0x8b, 0x9f);
					EMIT(offsetof(struct sk_buff, len), 4);
				}
				break;
			case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
				if (is_imm8(offsetof(struct sk_buff, protocol))) {
					/* movzwl off8(%rdi),%eax */
					EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, protocol));
				} else {
					EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
					EMIT(offsetof(struct sk_buff, protocol), 4);
				}
				EMIT2(0x86, 0xc4); /* ntohs() : xchg   %al,%ah */
				break;
			case BPF_S_ANC_IFINDEX:
				if (is_imm8(offsetof(struct sk_buff, dev))) {
					/* movq off8(%rdi),%rax */
					EMIT4(0x48, 0x8b, 0x47, offsetof(struct sk_buff, dev));
				} else {
					EMIT3(0x48, 0x8b, 0x87); /* movq off32(%rdi),%rax */
					EMIT(offsetof(struct sk_buff, dev), 4);
				}
				EMIT3(0x48, 0x85, 0xc0);	/* test %rax,%rax */
				EMIT_COND_JMP(X86_JE, cleanup_addr - (addrs[i] - 6));
				BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
				EMIT2(0x8b, 0x80);	/* mov off32(%rax),%eax */
				EMIT(offsetof(struct net_device, ifindex), 4);
				break;
			case BPF_S_ANC_MARK:
				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
				if (is_imm8(offsetof(struct sk_buff, mark))) {
					/* mov off8(%rdi),%eax */
					EMIT3(0x8b, 0x47, offsetof(struct sk_buff, mark));
				} else {
					EMIT2(0x8b, 0x87);
					EMIT(offsetof(struct sk_buff, mark), 4);
				}
				break;
			case BPF_S_ANC_RXHASH:
				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
				if (is_imm8(offsetof(struct sk_buff, rxhash))) {
					/* mov off8(%rdi),%eax */
					EMIT3(0x8b, 0x47, offsetof(struct sk_buff, rxhash));
				} else {
					EMIT2(0x8b, 0x87);
					EMIT(offsetof(struct sk_buff, rxhash), 4);
				}
				break;
			case BPF_S_ANC_QUEUE:
				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
				if (is_imm8(offsetof(struct sk_buff, queue_mapping))) {
					/* movzwl off8(%rdi),%eax */
					EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, queue_mapping));
				} else {
					EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
					EMIT(offsetof(struct sk_buff, queue_mapping), 4);
				}
				break;
			case BPF_S_ANC_CPU:
#ifdef CONFIG_SMP
				EMIT4(0x65, 0x8b, 0x04, 0x25); /* mov %gs:off32,%eax */
				EMIT((u32)(unsigned long)&cpu_number, 4); /* A = smp_processor_id(); */
#else
				CLEAR_A();
#endif
				break;
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
			case BPF_S_ANC_VLAN_TAG:
			case BPF_S_ANC_VLAN_TAG_PRESENT:
				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
				if (is_imm8(offsetof(struct sk_buff, vlan_tci))) {
					/* movzwl off8(%rdi),%eax */
					EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, vlan_tci));
				} else {
					EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
					EMIT(offsetof(struct sk_buff, vlan_tci), 4);
				}
				BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
				if (filter[i].code == BPF_S_ANC_VLAN_TAG) {
					EMIT3(0x80, 0xe4, 0xef); /* and    $0xef,%ah */
				} else {
					EMIT3(0xc1, 0xe8, 0x0c); /* shr    $0xc,%eax */
					EMIT3(0x83, 0xe0, 0x01); /* and    $0x1,%eax */
				}
				break;
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
			case BPF_S_ANC_PKTTYPE:
			{
				int off = pkt_type_offset();

				if (off < 0)
					goto out;
				if (is_imm8(off)) {
					/* movzbl off8(%rdi),%eax */
					EMIT4(0x0f, 0xb6, 0x47, off);
				} else {
					/* movbl off32(%rdi),%eax */
					EMIT3(0x0f, 0xb6, 0x87);
					EMIT(off, 4);
				}
				EMIT3(0x83, 0xe0, PKT_TYPE_MAX); /* and    $0x7,%eax */
				break;
			}
612
			case BPF_S_LD_W_ABS:
613
				func = CHOOSE_LOAD_FUNC(K, sk_load_word);
614 615 616 617 618 619
common_load:			seen |= SEEN_DATAREF;
				t_offset = func - (image + addrs[i]);
				EMIT1_off32(0xbe, K); /* mov imm32,%esi */
				EMIT1_off32(0xe8, t_offset); /* call */
				break;
			case BPF_S_LD_H_ABS:
620
				func = CHOOSE_LOAD_FUNC(K, sk_load_half);
621 622
				goto common_load;
			case BPF_S_LD_B_ABS:
623
				func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
624 625
				goto common_load;
			case BPF_S_LDX_B_MSH:
626
				func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
627
				seen |= SEEN_DATAREF | SEEN_XREG;
628
				t_offset = func - (image + addrs[i]);
629 630 631 632
				EMIT1_off32(0xbe, K);	/* mov imm32,%esi */
				EMIT1_off32(0xe8, t_offset); /* call sk_load_byte_msh */
				break;
			case BPF_S_LD_W_IND:
633
				func = sk_load_word;
634 635
common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG;
				t_offset = func - (image + addrs[i]);
636 637 638 639 640 641 642 643 644 645
				if (K) {
					if (is_imm8(K)) {
						EMIT3(0x8d, 0x73, K); /* lea imm8(%rbx), %esi */
					} else {
						EMIT2(0x8d, 0xb3); /* lea imm32(%rbx),%esi */
						EMIT(K, 4);
					}
				} else {
					EMIT2(0x89,0xde); /* mov %ebx,%esi */
				}
646 647 648
				EMIT1_off32(0xe8, t_offset);	/* call sk_load_xxx_ind */
				break;
			case BPF_S_LD_H_IND:
649
				func = sk_load_half;
650 651
				goto common_load_ind;
			case BPF_S_LD_B_IND:
652
				func = sk_load_byte;
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
				goto common_load_ind;
			case BPF_S_JMP_JA:
				t_offset = addrs[i + K] - addrs[i];
				EMIT_JMP(t_offset);
				break;
			COND_SEL(BPF_S_JMP_JGT_K, X86_JA, X86_JBE);
			COND_SEL(BPF_S_JMP_JGE_K, X86_JAE, X86_JB);
			COND_SEL(BPF_S_JMP_JEQ_K, X86_JE, X86_JNE);
			COND_SEL(BPF_S_JMP_JSET_K,X86_JNE, X86_JE);
			COND_SEL(BPF_S_JMP_JGT_X, X86_JA, X86_JBE);
			COND_SEL(BPF_S_JMP_JGE_X, X86_JAE, X86_JB);
			COND_SEL(BPF_S_JMP_JEQ_X, X86_JE, X86_JNE);
			COND_SEL(BPF_S_JMP_JSET_X,X86_JNE, X86_JE);

cond_branch:			f_offset = addrs[i + filter[i].jf] - addrs[i];
				t_offset = addrs[i + filter[i].jt] - addrs[i];

				/* same targets, can avoid doing the test :) */
				if (filter[i].jt == filter[i].jf) {
					EMIT_JMP(t_offset);
					break;
				}

				switch (filter[i].code) {
				case BPF_S_JMP_JGT_X:
				case BPF_S_JMP_JGE_X:
				case BPF_S_JMP_JEQ_X:
					seen |= SEEN_XREG;
					EMIT2(0x39, 0xd8); /* cmp %ebx,%eax */
					break;
				case BPF_S_JMP_JSET_X:
					seen |= SEEN_XREG;
					EMIT2(0x85, 0xd8); /* test %ebx,%eax */
					break;
				case BPF_S_JMP_JEQ_K:
					if (K == 0) {
						EMIT2(0x85, 0xc0); /* test   %eax,%eax */
						break;
					}
				case BPF_S_JMP_JGT_K:
				case BPF_S_JMP_JGE_K:
					if (K <= 127)
						EMIT3(0x83, 0xf8, K); /* cmp imm8,%eax */
					else
						EMIT1_off32(0x3d, K); /* cmp imm32,%eax */
					break;
				case BPF_S_JMP_JSET_K:
					if (K <= 0xFF)
						EMIT2(0xa8, K); /* test imm8,%al */
					else if (!(K & 0xFFFF00FF))
						EMIT3(0xf6, 0xc4, K >> 8); /* test imm8,%ah */
					else if (K <= 0xFFFF) {
						EMIT2(0x66, 0xa9); /* test imm16,%ax */
						EMIT(K, 2);
					} else {
						EMIT1_off32(0xa9, K); /* test imm32,%eax */
					}
					break;
				}
				if (filter[i].jt != 0) {
713 714
					if (filter[i].jf && f_offset)
						t_offset += is_near(f_offset) ? 2 : 5;
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
					EMIT_COND_JMP(t_op, t_offset);
					if (filter[i].jf)
						EMIT_JMP(f_offset);
					break;
				}
				EMIT_COND_JMP(f_op, f_offset);
				break;
			default:
				/* hmm, too complex filter, give up with jit compiler */
				goto out;
			}
			ilen = prog - temp;
			if (image) {
				if (unlikely(proglen + ilen > oldproglen)) {
					pr_err("bpb_jit_compile fatal error\n");
					kfree(addrs);
731
					module_free(NULL, header);
732 733 734 735 736 737 738 739 740 741 742 743
					return;
				}
				memcpy(image + proglen, temp, ilen);
			}
			proglen += ilen;
			addrs[i] = proglen;
			prog = temp;
		}
		/* last bpf instruction is always a RET :
		 * use it to give the cleanup instruction(s) addr
		 */
		cleanup_addr = proglen - 1; /* ret */
744
		if (seen_or_pass0)
745
			cleanup_addr -= 1; /* leaveq */
746
		if (seen_or_pass0 & SEEN_XREG)
747 748 749
			cleanup_addr -= 4; /* mov  -8(%rbp),%rbx */

		if (image) {
750 751
			if (proglen != oldproglen)
				pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n", proglen, oldproglen);
752 753 754
			break;
		}
		if (proglen == oldproglen) {
755 756
			header = bpf_alloc_binary(proglen, &image);
			if (!header)
757 758 759 760
				goto out;
		}
		oldproglen = proglen;
	}
761

762
	if (bpf_jit_enable > 1)
763
		bpf_jit_dump(flen, proglen, pass, image);
764 765

	if (image) {
766 767
		bpf_flush_icache(header, image + proglen);
		set_memory_ro((unsigned long)header, header->pages);
768 769 770 771 772 773 774 775 776
		fp->bpf_func = (void *)image;
	}
out:
	kfree(addrs);
	return;
}

void bpf_jit_free(struct sk_filter *fp)
{
777 778 779 780 781 782 783
	if (fp->bpf_func != sk_run_filter) {
		unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
		struct bpf_binary_header *header = (void *)addr;

		set_memory_rw(addr, header->pages);
		module_free(NULL, header);
	}
784
}