builtin-stat.c 8.2 KB
Newer Older
1
/*
2 3 4 5 6 7
 * builtin-stat.c
 *
 * Builtin stat command: Give a precise performance counters summary
 * overview about any workload, CPU or specific PID.
 *
 * Sample output:
8

9 10
   $ perf stat ~/hackbench 10
   Time: 0.104
11

12
    Performance counter stats for '/home/mingo/hackbench':
13

14 15 16 17 18 19 20 21
       1255.538611  task clock ticks     #      10.143 CPU utilization factor
             54011  context switches     #       0.043 M/sec
               385  CPU migrations       #       0.000 M/sec
             17755  pagefaults           #       0.014 M/sec
        3808323185  CPU cycles           #    3033.219 M/sec
        1575111190  instructions         #    1254.530 M/sec
          17367895  cache references     #      13.833 M/sec
           7674421  cache misses         #       6.112 M/sec
22

23
    Wall-clock time elapsed:   123.786620 msecs
24

25 26 27 28 29 30 31 32 33 34 35 36
 *
 * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
 *
 * Improvements and fixes by:
 *
 *   Arjan van de Ven <arjan@linux.intel.com>
 *   Yanmin Zhang <yanmin.zhang@intel.com>
 *   Wu Fengguang <fengguang.wu@intel.com>
 *   Mike Galbraith <efault@gmx.de>
 *   Paul Mackerras <paulus@samba.org>
 *
 * Released under the GPL v2. (and only v2, not any later version)
37 38
 */

39
#include "perf.h"
40
#include "builtin.h"
41
#include "util/util.h"
42 43
#include "util/parse-options.h"
#include "util/parse-events.h"
44 45

#include <sys/prctl.h>
46

47
static int			system_wide			=  0;
48
static int			inherit				=  1;
49

50
static __u64			default_event_id[MAX_COUNTERS]	= {
51 52 53 54 55 56 57 58 59 60
	EID(PERF_TYPE_SOFTWARE, PERF_COUNT_TASK_CLOCK),
	EID(PERF_TYPE_SOFTWARE, PERF_COUNT_CONTEXT_SWITCHES),
	EID(PERF_TYPE_SOFTWARE, PERF_COUNT_CPU_MIGRATIONS),
	EID(PERF_TYPE_SOFTWARE, PERF_COUNT_PAGE_FAULTS),

	EID(PERF_TYPE_HARDWARE, PERF_COUNT_CPU_CYCLES),
	EID(PERF_TYPE_HARDWARE, PERF_COUNT_INSTRUCTIONS),
	EID(PERF_TYPE_HARDWARE, PERF_COUNT_CACHE_REFERENCES),
	EID(PERF_TYPE_HARDWARE, PERF_COUNT_CACHE_MISSES),
};
61

62 63 64 65
static int			default_interval = 100000;
static int			event_count[MAX_COUNTERS];
static int			fd[MAX_NR_CPUS][MAX_COUNTERS];

66
static int			target_pid			= -1;
67 68 69
static int			nr_cpus				=  0;
static unsigned int		page_size;

70
static int			scale				=  1;
71 72 73 74 75 76 77 78 79 80

static const unsigned int default_count[] = {
	1000000,
	1000000,
	  10000,
	  10000,
	1000000,
	  10000,
};

81 82 83
static __u64			event_res[MAX_COUNTERS][3];
static __u64			event_scaled[MAX_COUNTERS];

84
static __u64			runtime_nsecs;
85
static __u64			walltime_nsecs;
86

87 88
static void create_perfstat_counter(int counter)
{
89
	struct perf_counter_attr attr;
90

91 92 93 94 95
	memset(&attr, 0, sizeof(attr));
	attr.config		= event_id[counter];
	attr.sample_type	= 0;
	attr.exclude_kernel = event_mask[counter] & EVENT_MASK_KERNEL;
	attr.exclude_user   = event_mask[counter] & EVENT_MASK_USER;
96

97
	if (scale)
98
		attr.read_format	= PERF_FORMAT_TOTAL_TIME_ENABLED |
99 100 101 102 103
					  PERF_FORMAT_TOTAL_TIME_RUNNING;

	if (system_wide) {
		int cpu;
		for (cpu = 0; cpu < nr_cpus; cpu ++) {
104
			fd[cpu][counter] = sys_perf_counter_open(&attr, -1, cpu, -1, 0);
105 106 107 108 109 110 111
			if (fd[cpu][counter] < 0) {
				printf("perfstat error: syscall returned with %d (%s)\n",
						fd[cpu][counter], strerror(errno));
				exit(-1);
			}
		}
	} else {
112 113
		attr.inherit	= inherit;
		attr.disabled	= 1;
114

115
		fd[0][counter] = sys_perf_counter_open(&attr, 0, -1, -1, 0);
116 117 118 119 120 121 122 123
		if (fd[0][counter] < 0) {
			printf("perfstat error: syscall returned with %d (%s)\n",
					fd[0][counter], strerror(errno));
			exit(-1);
		}
	}
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137
/*
 * Does the counter have nsecs as a unit?
 */
static inline int nsec_counter(int counter)
{
	if (event_id[counter] == EID(PERF_TYPE_SOFTWARE, PERF_COUNT_CPU_CLOCK))
		return 1;
	if (event_id[counter] == EID(PERF_TYPE_SOFTWARE, PERF_COUNT_TASK_CLOCK))
		return 1;

	return 0;
}

/*
138
 * Read out the results of a single counter:
139
 */
140
static void read_counter(int counter)
141
{
142
	__u64 *count, single_count[3];
143 144 145 146
	ssize_t res;
	int cpu, nv;
	int scaled;

147 148
	count = event_res[counter];

149
	count[0] = count[1] = count[2] = 0;
150

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
	nv = scale ? 3 : 1;
	for (cpu = 0; cpu < nr_cpus; cpu ++) {
		res = read(fd[cpu][counter], single_count, nv * sizeof(__u64));
		assert(res == nv * sizeof(__u64));

		count[0] += single_count[0];
		if (scale) {
			count[1] += single_count[1];
			count[2] += single_count[2];
		}
	}

	scaled = 0;
	if (scale) {
		if (count[2] == 0) {
166 167
			event_scaled[counter] = -1;
			count[0] = 0;
168 169
			return;
		}
170

171
		if (count[2] < count[1]) {
172
			event_scaled[counter] = 1;
173 174 175 176
			count[0] = (unsigned long long)
				((double)count[0] * count[1] / count[2] + 0.5);
		}
	}
177 178 179 180 181
	/*
	 * Save the full runtime - to allow normalization during printout:
	 */
	if (event_id[counter] == EID(PERF_TYPE_SOFTWARE, PERF_COUNT_TASK_CLOCK))
		runtime_nsecs = count[0];
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
}

/*
 * Print out the results of a single counter:
 */
static void print_counter(int counter)
{
	__u64 *count;
	int scaled;

	count = event_res[counter];
	scaled = event_scaled[counter];

	if (scaled == -1) {
		fprintf(stderr, " %14s  %-20s\n",
			"<not counted>", event_name(counter));
		return;
	}
200 201 202 203

	if (nsec_counter(counter)) {
		double msecs = (double)count[0] / 1000000;

204
		fprintf(stderr, " %14.6f  %-20s",
205
			msecs, event_name(counter));
206 207 208 209 210 211
		if (event_id[counter] ==
				EID(PERF_TYPE_SOFTWARE, PERF_COUNT_TASK_CLOCK)) {

			fprintf(stderr, " # %11.3f CPU utilization factor",
				(double)count[0] / (double)walltime_nsecs);
		}
212
	} else {
213
		fprintf(stderr, " %14Ld  %-20s",
214
			count[0], event_name(counter));
215
		if (runtime_nsecs)
216
			fprintf(stderr, " # %11.3f M/sec",
217
				(double)count[0]/runtime_nsecs*1000.0);
218 219 220 221 222 223 224
	}
	if (scaled)
		fprintf(stderr, "  (scaled from %.2f%%)",
			(double) count[2] / count[1] * 100);
	fprintf(stderr, "\n");
}

225
static int do_perfstat(int argc, const char **argv)
226 227 228 229 230
{
	unsigned long long t0, t1;
	int counter;
	int status;
	int pid;
I
Ingo Molnar 已提交
231
	int i;
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

	if (!system_wide)
		nr_cpus = 1;

	for (counter = 0; counter < nr_counters; counter++)
		create_perfstat_counter(counter);

	/*
	 * Enable counters and exec the command:
	 */
	t0 = rdclock();
	prctl(PR_TASK_PERF_COUNTERS_ENABLE);

	if ((pid = fork()) < 0)
		perror("failed to fork");
I
Ingo Molnar 已提交
247

248
	if (!pid) {
249
		if (execvp(argv[0], (char **)argv)) {
250 251 252 253
			perror(argv[0]);
			exit(-1);
		}
	}
I
Ingo Molnar 已提交
254

255 256
	while (wait(&status) >= 0)
		;
I
Ingo Molnar 已提交
257

258 259 260
	prctl(PR_TASK_PERF_COUNTERS_DISABLE);
	t1 = rdclock();

261 262
	walltime_nsecs = t1 - t0;

263 264 265
	fflush(stdout);

	fprintf(stderr, "\n");
I
Ingo Molnar 已提交
266 267 268 269 270 271
	fprintf(stderr, " Performance counter stats for \'%s", argv[0]);

	for (i = 1; i < argc; i++)
		fprintf(stderr, " %s", argv[i]);

	fprintf(stderr, "\':\n");
272 273
	fprintf(stderr, "\n");

274 275 276
	for (counter = 0; counter < nr_counters; counter++)
		read_counter(counter);

277 278
	for (counter = 0; counter < nr_counters; counter++)
		print_counter(counter);
279 280 281 282 283 284 285 286 287 288


	fprintf(stderr, "\n");
	fprintf(stderr, " Wall-clock time elapsed: %12.6f msecs\n",
			(double)(t1-t0)/1e6);
	fprintf(stderr, "\n");

	return 0;
}

289
static void skip_signal(int signo)
290
{
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
}

static const char * const stat_usage[] = {
	"perf stat [<options>] <command>",
	NULL
};

static char events_help_msg[EVENTS_HELP_MAX];

static const struct option options[] = {
	OPT_CALLBACK('e', "event", NULL, "event",
		     events_help_msg, parse_events),
	OPT_INTEGER('c', "count", &default_interval,
		    "event period to sample"),
	OPT_BOOLEAN('i', "inherit", &inherit,
		    "child tasks inherit counters"),
	OPT_INTEGER('p', "pid", &target_pid,
		    "stat events on existing pid"),
	OPT_BOOLEAN('a', "all-cpus", &system_wide,
			    "system-wide collection from all CPUs"),
	OPT_BOOLEAN('l', "scale", &scale,
			    "scale/normalize counters"),
	OPT_END()
};

int cmd_stat(int argc, const char **argv, const char *prefix)
{
	int counter;

	page_size = sysconf(_SC_PAGE_SIZE);

	create_events_help(events_help_msg);
	memcpy(event_id, default_event_id, sizeof(default_event_id));

	argc = parse_options(argc, argv, options, stat_usage, 0);
	if (!argc)
		usage_with_options(stat_usage, options);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

	if (!nr_counters) {
		nr_counters = 8;
	}

	for (counter = 0; counter < nr_counters; counter++) {
		if (event_count[counter])
			continue;

		event_count[counter] = default_interval;
	}
	nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
	assert(nr_cpus <= MAX_NR_CPUS);
	assert(nr_cpus >= 0);

I
Ingo Molnar 已提交
343 344 345 346 347 348 349 350 351 352
	/*
	 * We dont want to block the signals - that would cause
	 * child tasks to inherit that and Ctrl-C would not work.
	 * What we want is for Ctrl-C to work in the exec()-ed
	 * task, but being ignored by perf stat itself:
	 */
	signal(SIGINT,  skip_signal);
	signal(SIGALRM, skip_signal);
	signal(SIGABRT, skip_signal);

353 354
	return do_perfstat(argc, argv);
}