posix-timers.c 43.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * linux/kernel/posix_timers.c
 *
 *
 * 2002-10-15  Posix Clocks & timers
 *                           by George Anzinger george@mvista.com
 *
 *			     Copyright (C) 2002 2003 by MontaVista Software.
 *
 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
 *			     Copyright (C) 2004 Boris Hu
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
 */

/* These are all the functions necessary to implement
 * POSIX clocks & timers
 */
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/time.h>
38
#include <linux/calc64.h>
L
Linus Torvalds 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

#include <asm/uaccess.h>
#include <asm/semaphore.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/compiler.h>
#include <linux/idr.h>
#include <linux/posix-timers.h>
#include <linux/syscalls.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <linux/module.h>

#define CLOCK_REALTIME_RES TICK_NSEC  /* In nano seconds. */

static inline u64  mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2)
{
	return (u64)mpy1 * mpy2;
}
/*
 * Management arrays for POSIX timers.	 Timers are kept in slab memory
 * Timer ids are allocated by an external routine that keeps track of the
 * id and the timer.  The external interface is:
 *
 * void *idr_find(struct idr *idp, int id);           to find timer_id <id>
 * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and
 *                                                    related it to <ptr>
 * void idr_remove(struct idr *idp, int id);          to release <id>
 * void idr_init(struct idr *idp);                    to initialize <idp>
 *                                                    which we supply.
 * The idr_get_new *may* call slab for more memory so it must not be
 * called under a spin lock.  Likewise idr_remore may release memory
 * (but it may be ok to do this under a lock...).
 * idr_find is just a memory look up and is quite fast.  A -1 return
 * indicates that the requested id does not exist.
 */

/*
 * Lets keep our timers in a slab cache :-)
 */
static kmem_cache_t *posix_timers_cache;
static struct idr posix_timers_id;
static DEFINE_SPINLOCK(idr_lock);

/*
 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
 * SIGEV values.  Here we put out an error if this assumption fails.
 */
#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
#endif


/*
 * The timer ID is turned into a timer address by idr_find().
 * Verifying a valid ID consists of:
 *
 * a) checking that idr_find() returns other than -1.
 * b) checking that the timer id matches the one in the timer itself.
 * c) that the timer owner is in the callers thread group.
 */

/*
 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
 *	    to implement others.  This structure defines the various
 *	    clocks and allows the possibility of adding others.	 We
 *	    provide an interface to add clocks to the table and expect
 *	    the "arch" code to add at least one clock that is high
 *	    resolution.	 Here we define the standard CLOCK_REALTIME as a
 *	    1/HZ resolution clock.
 *
 * RESOLUTION: Clock resolution is used to round up timer and interval
 *	    times, NOT to report clock times, which are reported with as
 *	    much resolution as the system can muster.  In some cases this
 *	    resolution may depend on the underlying clock hardware and
 *	    may not be quantifiable until run time, and only then is the
 *	    necessary code is written.	The standard says we should say
 *	    something about this issue in the documentation...
 *
 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
 *	    various clock functions.  For clocks that use the standard
 *	    system timer code these entries should be NULL.  This will
 *	    allow dispatch without the overhead of indirect function
 *	    calls.  CLOCKS that depend on other sources (e.g. WWV or GPS)
 *	    must supply functions here, even if the function just returns
 *	    ENOSYS.  The standard POSIX timer management code assumes the
 *	    following: 1.) The k_itimer struct (sched.h) is used for the
 *	    timer.  2.) The list, it_lock, it_clock, it_id and it_process
 *	    fields are not modified by timer code.
 *
 *          At this time all functions EXCEPT clock_nanosleep can be
 *          redirected by the CLOCKS structure.  Clock_nanosleep is in
 *          there, but the code ignores it.
 *
 * Permissions: It is assumed that the clock_settime() function defined
 *	    for each clock will take care of permission checks.	 Some
 *	    clocks may be set able by any user (i.e. local process
 *	    clocks) others not.	 Currently the only set able clock we
 *	    have is CLOCK_REALTIME and its high res counter part, both of
 *	    which we beg off on and pass to do_sys_settimeofday().
 */

static struct k_clock posix_clocks[MAX_CLOCKS];
/*
 * We only have one real clock that can be set so we need only one abs list,
 * even if we should want to have several clocks with differing resolutions.
 */
static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list),
				      .lock = SPIN_LOCK_UNLOCKED};

static void posix_timer_fn(unsigned long);
static u64 do_posix_clock_monotonic_gettime_parts(
	struct timespec *tp, struct timespec *mo);
int do_posix_clock_monotonic_gettime(struct timespec *tp);
154
static int do_posix_clock_monotonic_get(const clockid_t, struct timespec *tp);
L
Linus Torvalds 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);

static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
{
	spin_unlock_irqrestore(&timr->it_lock, flags);
}

/*
 * Call the k_clock hook function if non-null, or the default function.
 */
#define CLOCK_DISPATCH(clock, call, arglist) \
 	((clock) < 0 ? posix_cpu_##call arglist : \
 	 (posix_clocks[clock].call != NULL \
 	  ? (*posix_clocks[clock].call) arglist : common_##call arglist))

/*
 * Default clock hook functions when the struct k_clock passed
 * to register_posix_clock leaves a function pointer null.
 *
 * The function common_CALL is the default implementation for
 * the function pointer CALL in struct k_clock.
 */

179
static inline int common_clock_getres(const clockid_t which_clock,
L
Linus Torvalds 已提交
180 181 182 183 184 185 186
				      struct timespec *tp)
{
	tp->tv_sec = 0;
	tp->tv_nsec = posix_clocks[which_clock].res;
	return 0;
}

187 188
static inline int common_clock_get(const clockid_t which_clock,
				   struct timespec *tp)
L
Linus Torvalds 已提交
189 190 191 192 193
{
	getnstimeofday(tp);
	return 0;
}

194 195
static inline int common_clock_set(const clockid_t which_clock,
				   struct timespec *tp)
L
Linus Torvalds 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
{
	return do_sys_settimeofday(tp, NULL);
}

static inline int common_timer_create(struct k_itimer *new_timer)
{
	INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry);
	init_timer(&new_timer->it.real.timer);
	new_timer->it.real.timer.data = (unsigned long) new_timer;
	new_timer->it.real.timer.function = posix_timer_fn;
	return 0;
}

/*
 * These ones are defined below.
 */
212
static int common_nsleep(const clockid_t, int flags, struct timespec *t);
L
Linus Torvalds 已提交
213 214 215 216 217 218 219 220
static void common_timer_get(struct k_itimer *, struct itimerspec *);
static int common_timer_set(struct k_itimer *, int,
			    struct itimerspec *, struct itimerspec *);
static int common_timer_del(struct k_itimer *timer);

/*
 * Return nonzero iff we know a priori this clockid_t value is bogus.
 */
221
static inline int invalid_clockid(const clockid_t which_clock)
L
Linus Torvalds 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
{
	if (which_clock < 0)	/* CPU clock, posix_cpu_* will check it */
		return 0;
	if ((unsigned) which_clock >= MAX_CLOCKS)
		return 1;
	if (posix_clocks[which_clock].clock_getres != NULL)
		return 0;
#ifndef CLOCK_DISPATCH_DIRECT
	if (posix_clocks[which_clock].res != 0)
		return 0;
#endif
	return 1;
}


/*
 * Initialize everything, well, just everything in Posix clocks/timers ;)
 */
static __init int init_posix_timers(void)
{
	struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES,
					 .abs_struct = &abs_list
	};
	struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES,
		.abs_struct = NULL,
		.clock_get = do_posix_clock_monotonic_get,
		.clock_set = do_posix_clock_nosettime
	};

	register_posix_clock(CLOCK_REALTIME, &clock_realtime);
	register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);

	posix_timers_cache = kmem_cache_create("posix_timers_cache",
					sizeof (struct k_itimer), 0, 0, NULL, NULL);
	idr_init(&posix_timers_id);
	return 0;
}

__initcall(init_posix_timers);

static void tstojiffie(struct timespec *tp, int res, u64 *jiff)
{
	long sec = tp->tv_sec;
	long nsec = tp->tv_nsec + res - 1;

267
	if (nsec >= NSEC_PER_SEC) {
L
Linus Torvalds 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
		sec++;
		nsec -= NSEC_PER_SEC;
	}

	/*
	 * The scaling constants are defined in <linux/time.h>
	 * The difference between there and here is that we do the
	 * res rounding and compute a 64-bit result (well so does that
	 * but it then throws away the high bits).
  	 */
	*jiff =  (mpy_l_X_l_ll(sec, SEC_CONVERSION) +
		  (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >> 
		   (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
}

/*
 * This function adjusts the timer as needed as a result of the clock
 * being set.  It should only be called for absolute timers, and then
 * under the abs_list lock.  It computes the time difference and sets
 * the new jiffies value in the timer.  It also updates the timers
 * reference wall_to_monotonic value.  It is complicated by the fact
 * that tstojiffies() only handles positive times and it needs to work
 * with both positive and negative times.  Also, for negative offsets,
 * we need to defeat the res round up.
 *
 * Return is true if there is a new time, else false.
 */
static long add_clockset_delta(struct k_itimer *timr,
			       struct timespec *new_wall_to)
{
	struct timespec delta;
	int sign = 0;
	u64 exp;

	set_normalized_timespec(&delta,
				new_wall_to->tv_sec -
				timr->it.real.wall_to_prev.tv_sec,
				new_wall_to->tv_nsec -
				timr->it.real.wall_to_prev.tv_nsec);
	if (likely(!(delta.tv_sec | delta.tv_nsec)))
		return 0;
	if (delta.tv_sec < 0) {
		set_normalized_timespec(&delta,
					-delta.tv_sec,
					1 - delta.tv_nsec -
					posix_clocks[timr->it_clock].res);
		sign++;
	}
	tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp);
	timr->it.real.wall_to_prev = *new_wall_to;
	timr->it.real.timer.expires += (sign ? -exp : exp);
	return 1;
}

static void remove_from_abslist(struct k_itimer *timr)
{
	if (!list_empty(&timr->it.real.abs_timer_entry)) {
		spin_lock(&abs_list.lock);
		list_del_init(&timr->it.real.abs_timer_entry);
		spin_unlock(&abs_list.lock);
	}
}

static void schedule_next_timer(struct k_itimer *timr)
{
	struct timespec new_wall_to;
	struct now_struct now;
	unsigned long seq;

	/*
	 * Set up the timer for the next interval (if there is one).
	 * Note: this code uses the abs_timer_lock to protect
	 * it.real.wall_to_prev and must hold it until exp is set, not exactly
	 * obvious...

	 * This function is used for CLOCK_REALTIME* and
	 * CLOCK_MONOTONIC* timers.  If we ever want to handle other
	 * CLOCKs, the calling code (do_schedule_next_timer) would need
	 * to pull the "clock" info from the timer and dispatch the
	 * "other" CLOCKs "next timer" code (which, I suppose should
	 * also be added to the k_clock structure).
	 */
	if (!timr->it.real.incr)
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		new_wall_to =	wall_to_monotonic;
		posix_get_now(&now);
	} while (read_seqretry(&xtime_lock, seq));

	if (!list_empty(&timr->it.real.abs_timer_entry)) {
		spin_lock(&abs_list.lock);
		add_clockset_delta(timr, &new_wall_to);

		posix_bump_timer(timr, now);

		spin_unlock(&abs_list.lock);
	} else {
		posix_bump_timer(timr, now);
	}
	timr->it_overrun_last = timr->it_overrun;
	timr->it_overrun = -1;
	++timr->it_requeue_pending;
	add_timer(&timr->it.real.timer);
}

/*
 * This function is exported for use by the signal deliver code.  It is
 * called just prior to the info block being released and passes that
 * block to us.  It's function is to update the overrun entry AND to
 * restart the timer.  It should only be called if the timer is to be
 * restarted (i.e. we have flagged this in the sys_private entry of the
 * info block).
 *
 * To protect aginst the timer going away while the interrupt is queued,
 * we require that the it_requeue_pending flag be set.
 */
void do_schedule_next_timer(struct siginfo *info)
{
	struct k_itimer *timr;
	unsigned long flags;

	timr = lock_timer(info->si_tid, &flags);

	if (!timr || timr->it_requeue_pending != info->si_sys_private)
		goto exit;

	if (timr->it_clock < 0)	/* CPU clock */
		posix_cpu_timer_schedule(timr);
	else
		schedule_next_timer(timr);
	info->si_overrun = timr->it_overrun_last;
exit:
	if (timr)
		unlock_timer(timr, flags);
}

int posix_timer_event(struct k_itimer *timr,int si_private)
{
	memset(&timr->sigq->info, 0, sizeof(siginfo_t));
	timr->sigq->info.si_sys_private = si_private;
	/*
	 * Send signal to the process that owns this timer.

	 * This code assumes that all the possible abs_lists share the
	 * same lock (there is only one list at this time). If this is
	 * not the case, the CLOCK info would need to be used to find
	 * the proper abs list lock.
	 */

	timr->sigq->info.si_signo = timr->it_sigev_signo;
	timr->sigq->info.si_errno = 0;
	timr->sigq->info.si_code = SI_TIMER;
	timr->sigq->info.si_tid = timr->it_id;
	timr->sigq->info.si_value = timr->it_sigev_value;
424

L
Linus Torvalds 已提交
425
	if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
426 427 428 429 430 431 432 433 434 435 436
		struct task_struct *leader;
		int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
					timr->it_process);

		if (likely(ret >= 0))
			return ret;

		timr->it_sigev_notify = SIGEV_SIGNAL;
		leader = timr->it_process->group_leader;
		put_task_struct(timr->it_process);
		timr->it_process = leader;
L
Linus Torvalds 已提交
437
	}
438 439 440

	return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
				   timr->it_process);
L
Linus Torvalds 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
}
EXPORT_SYMBOL_GPL(posix_timer_event);

/*
 * This function gets called when a POSIX.1b interval timer expires.  It
 * is used as a callback from the kernel internal timer.  The
 * run_timer_list code ALWAYS calls with interrupts on.

 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 */
static void posix_timer_fn(unsigned long __data)
{
	struct k_itimer *timr = (struct k_itimer *) __data;
	unsigned long flags;
	unsigned long seq;
	struct timespec delta, new_wall_to;
	u64 exp = 0;
	int do_notify = 1;

	spin_lock_irqsave(&timr->it_lock, flags);
	if (!list_empty(&timr->it.real.abs_timer_entry)) {
		spin_lock(&abs_list.lock);
		do {
			seq = read_seqbegin(&xtime_lock);
			new_wall_to =	wall_to_monotonic;
		} while (read_seqretry(&xtime_lock, seq));
		set_normalized_timespec(&delta,
					new_wall_to.tv_sec -
					timr->it.real.wall_to_prev.tv_sec,
					new_wall_to.tv_nsec -
					timr->it.real.wall_to_prev.tv_nsec);
		if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) {
			/* do nothing, timer is on time */
		} else if (delta.tv_sec < 0) {
			/* do nothing, timer is already late */
		} else {
			/* timer is early due to a clock set */
			tstojiffie(&delta,
				   posix_clocks[timr->it_clock].res,
				   &exp);
			timr->it.real.wall_to_prev = new_wall_to;
			timr->it.real.timer.expires += exp;
			add_timer(&timr->it.real.timer);
			do_notify = 0;
		}
		spin_unlock(&abs_list.lock);

	}
	if (do_notify)  {
		int si_private=0;

		if (timr->it.real.incr)
			si_private = ++timr->it_requeue_pending;
		else {
			remove_from_abslist(timr);
		}

		if (posix_timer_event(timr, si_private))
			/*
			 * signal was not sent because of sig_ignor
			 * we will not get a call back to restart it AND
			 * it should be restarted.
			 */
			schedule_next_timer(timr);
	}
	unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */
}


static inline struct task_struct * good_sigevent(sigevent_t * event)
{
	struct task_struct *rtn = current->group_leader;

	if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
		(!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
		 rtn->tgid != current->tgid ||
		 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
		return NULL;

	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
		return NULL;

	return rtn;
}

527
void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
L
Linus Torvalds 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
{
	if ((unsigned) clock_id >= MAX_CLOCKS) {
		printk("POSIX clock register failed for clock_id %d\n",
		       clock_id);
		return;
	}

	posix_clocks[clock_id] = *new_clock;
}
EXPORT_SYMBOL_GPL(register_posix_clock);

static struct k_itimer * alloc_posix_timer(void)
{
	struct k_itimer *tmr;
	tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
	if (!tmr)
		return tmr;
	memset(tmr, 0, sizeof (struct k_itimer));
	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
		kmem_cache_free(posix_timers_cache, tmr);
		tmr = NULL;
	}
	return tmr;
}

#define IT_ID_SET	1
#define IT_ID_NOT_SET	0
static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
{
	if (it_id_set) {
		unsigned long flags;
		spin_lock_irqsave(&idr_lock, flags);
		idr_remove(&posix_timers_id, tmr->it_id);
		spin_unlock_irqrestore(&idr_lock, flags);
	}
	sigqueue_free(tmr->sigq);
	if (unlikely(tmr->it_process) &&
	    tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
		put_task_struct(tmr->it_process);
	kmem_cache_free(posix_timers_cache, tmr);
}

/* Create a POSIX.1b interval timer. */

asmlinkage long
573
sys_timer_create(const clockid_t which_clock,
L
Linus Torvalds 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
		 struct sigevent __user *timer_event_spec,
		 timer_t __user * created_timer_id)
{
	int error = 0;
	struct k_itimer *new_timer = NULL;
	int new_timer_id;
	struct task_struct *process = NULL;
	unsigned long flags;
	sigevent_t event;
	int it_id_set = IT_ID_NOT_SET;

	if (invalid_clockid(which_clock))
		return -EINVAL;

	new_timer = alloc_posix_timer();
	if (unlikely(!new_timer))
		return -EAGAIN;

	spin_lock_init(&new_timer->it_lock);
 retry:
	if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
		error = -EAGAIN;
		goto out;
	}
	spin_lock_irq(&idr_lock);
	error = idr_get_new(&posix_timers_id,
			    (void *) new_timer,
			    &new_timer_id);
	spin_unlock_irq(&idr_lock);
	if (error == -EAGAIN)
		goto retry;
	else if (error) {
		/*
		 * Wierd looking, but we return EAGAIN if the IDR is
		 * full (proper POSIX return value for this)
		 */
		error = -EAGAIN;
		goto out;
	}

	it_id_set = IT_ID_SET;
	new_timer->it_id = (timer_t) new_timer_id;
	new_timer->it_clock = which_clock;
	new_timer->it_overrun = -1;
	error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
	if (error)
		goto out;

	/*
	 * return the timer_id now.  The next step is hard to
	 * back out if there is an error.
	 */
	if (copy_to_user(created_timer_id,
			 &new_timer_id, sizeof (new_timer_id))) {
		error = -EFAULT;
		goto out;
	}
	if (timer_event_spec) {
		if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
			error = -EFAULT;
			goto out;
		}
		new_timer->it_sigev_notify = event.sigev_notify;
		new_timer->it_sigev_signo = event.sigev_signo;
		new_timer->it_sigev_value = event.sigev_value;

		read_lock(&tasklist_lock);
		if ((process = good_sigevent(&event))) {
			/*
			 * We may be setting up this process for another
			 * thread.  It may be exiting.  To catch this
			 * case the we check the PF_EXITING flag.  If
			 * the flag is not set, the siglock will catch
			 * him before it is too late (in exit_itimers).
			 *
			 * The exec case is a bit more invloved but easy
			 * to code.  If the process is in our thread
			 * group (and it must be or we would not allow
			 * it here) and is doing an exec, it will cause
			 * us to be killed.  In this case it will wait
			 * for us to die which means we can finish this
			 * linkage with our last gasp. I.e. no code :)
			 */
			spin_lock_irqsave(&process->sighand->siglock, flags);
			if (!(process->flags & PF_EXITING)) {
				new_timer->it_process = process;
				list_add(&new_timer->list,
					 &process->signal->posix_timers);
				spin_unlock_irqrestore(&process->sighand->siglock, flags);
				if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
					get_task_struct(process);
			} else {
				spin_unlock_irqrestore(&process->sighand->siglock, flags);
				process = NULL;
			}
		}
		read_unlock(&tasklist_lock);
		if (!process) {
			error = -EINVAL;
			goto out;
		}
	} else {
		new_timer->it_sigev_notify = SIGEV_SIGNAL;
		new_timer->it_sigev_signo = SIGALRM;
		new_timer->it_sigev_value.sival_int = new_timer->it_id;
		process = current->group_leader;
		spin_lock_irqsave(&process->sighand->siglock, flags);
		new_timer->it_process = process;
		list_add(&new_timer->list, &process->signal->posix_timers);
		spin_unlock_irqrestore(&process->sighand->siglock, flags);
	}

 	/*
	 * In the case of the timer belonging to another task, after
	 * the task is unlocked, the timer is owned by the other task
	 * and may cease to exist at any time.  Don't use or modify
	 * new_timer after the unlock call.
	 */

out:
	if (error)
		release_posix_timer(new_timer, it_id_set);

	return error;
}

/*
 * good_timespec
 *
 * This function checks the elements of a timespec structure.
 *
 * Arguments:
 * ts	     : Pointer to the timespec structure to check
 *
 * Return value:
 * If a NULL pointer was passed in, or the tv_nsec field was less than 0
 * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
 * this function returns 0. Otherwise it returns 1.
 */
static int good_timespec(const struct timespec *ts)
{
	if ((!ts) || (ts->tv_sec < 0) ||
			((unsigned) ts->tv_nsec >= NSEC_PER_SEC))
		return 0;
	return 1;
}

/*
 * Locking issues: We need to protect the result of the id look up until
 * we get the timer locked down so it is not deleted under us.  The
 * removal is done under the idr spinlock so we use that here to bridge
 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 * be release with out holding the timer lock.
 */
static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
{
	struct k_itimer *timr;
	/*
	 * Watch out here.  We do a irqsave on the idr_lock and pass the
	 * flags part over to the timer lock.  Must not let interrupts in
	 * while we are moving the lock.
	 */

	spin_lock_irqsave(&idr_lock, *flags);
	timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
	if (timr) {
		spin_lock(&timr->it_lock);
		spin_unlock(&idr_lock);

		if ((timr->it_id != timer_id) || !(timr->it_process) ||
				timr->it_process->tgid != current->tgid) {
			unlock_timer(timr, *flags);
			timr = NULL;
		}
	} else
		spin_unlock_irqrestore(&idr_lock, *flags);

	return timr;
}

/*
 * Get the time remaining on a POSIX.1b interval timer.  This function
 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 * mess with irq.
 *
 * We have a couple of messes to clean up here.  First there is the case
 * of a timer that has a requeue pending.  These timers should appear to
 * be in the timer list with an expiry as if we were to requeue them
 * now.
 *
 * The second issue is the SIGEV_NONE timer which may be active but is
 * not really ever put in the timer list (to save system resources).
 * This timer may be expired, and if so, we will do it here.  Otherwise
 * it is the same as a requeue pending timer WRT to what we should
 * report.
 */
static void
common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
{
	unsigned long expires;
	struct now_struct now;

	do
		expires = timr->it.real.timer.expires;
	while ((volatile long) (timr->it.real.timer.expires) != expires);

	posix_get_now(&now);

	if (expires &&
	    ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) &&
	    !timr->it.real.incr &&
	    posix_time_before(&timr->it.real.timer, &now))
		timr->it.real.timer.expires = expires = 0;
	if (expires) {
		if (timr->it_requeue_pending & REQUEUE_PENDING ||
		    (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
			posix_bump_timer(timr, now);
			expires = timr->it.real.timer.expires;
		}
		else
			if (!timer_pending(&timr->it.real.timer))
				expires = 0;
		if (expires)
			expires -= now.jiffies;
	}
	jiffies_to_timespec(expires, &cur_setting->it_value);
	jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval);

	if (cur_setting->it_value.tv_sec < 0) {
		cur_setting->it_value.tv_nsec = 1;
		cur_setting->it_value.tv_sec = 0;
	}
}

/* Get the time remaining on a POSIX.1b interval timer. */
asmlinkage long
sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
{
	struct k_itimer *timr;
	struct itimerspec cur_setting;
	unsigned long flags;

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

	CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));

	unlock_timer(timr, flags);

	if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
		return -EFAULT;

	return 0;
}
/*
 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 * be the overrun of the timer last delivered.  At the same time we are
 * accumulating overruns on the next timer.  The overrun is frozen when
 * the signal is delivered, either at the notify time (if the info block
 * is not queued) or at the actual delivery time (as we are informed by
 * the call back to do_schedule_next_timer().  So all we need to do is
 * to pick up the frozen overrun.
 */

asmlinkage long
sys_timer_getoverrun(timer_t timer_id)
{
	struct k_itimer *timr;
	int overrun;
	long flags;

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

	overrun = timr->it_overrun_last;
	unlock_timer(timr, flags);

	return overrun;
}
/*
 * Adjust for absolute time
 *
 * If absolute time is given and it is not CLOCK_MONOTONIC, we need to
 * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
 * what ever clock he is using.
 *
 * If it is relative time, we need to add the current (CLOCK_MONOTONIC)
 * time to it to get the proper time for the timer.
 */
static int adjust_abs_time(struct k_clock *clock, struct timespec *tp, 
			   int abs, u64 *exp, struct timespec *wall_to)
{
	struct timespec now;
	struct timespec oc = *tp;
	u64 jiffies_64_f;
	int rtn =0;

	if (abs) {
		/*
		 * The mask pick up the 4 basic clocks 
		 */
		if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) {
			jiffies_64_f = do_posix_clock_monotonic_gettime_parts(
				&now,  wall_to);
			/*
			 * If we are doing a MONOTONIC clock
			 */
			if((clock - &posix_clocks[0]) & CLOCKS_MONO){
				now.tv_sec += wall_to->tv_sec;
				now.tv_nsec += wall_to->tv_nsec;
			}
		} else {
			/*
			 * Not one of the basic clocks
			 */
			clock->clock_get(clock - posix_clocks, &now);
			jiffies_64_f = get_jiffies_64();
		}
		/*
895
		 * Take away now to get delta and normalize
L
Linus Torvalds 已提交
896
		 */
897 898
		set_normalized_timespec(&oc, oc.tv_sec - now.tv_sec,
					oc.tv_nsec - now.tv_nsec);
L
Linus Torvalds 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
	}else{
		jiffies_64_f = get_jiffies_64();
	}
	/*
	 * Check if the requested time is prior to now (if so set now)
	 */
	if (oc.tv_sec < 0)
		oc.tv_sec = oc.tv_nsec = 0;

	if (oc.tv_sec | oc.tv_nsec)
		set_normalized_timespec(&oc, oc.tv_sec,
					oc.tv_nsec + clock->res);
	tstojiffie(&oc, clock->res, exp);

	/*
	 * Check if the requested time is more than the timer code
	 * can handle (if so we error out but return the value too).
	 */
	if (*exp > ((u64)MAX_JIFFY_OFFSET))
			/*
			 * This is a considered response, not exactly in
			 * line with the standard (in fact it is silent on
			 * possible overflows).  We assume such a large 
			 * value is ALMOST always a programming error and
			 * try not to compound it by setting a really dumb
			 * value.
			 */
			rtn = -EINVAL;
	/*
	 * return the actual jiffies expire time, full 64 bits
	 */
	*exp += jiffies_64_f;
	return rtn;
}

/* Set a POSIX.1b interval timer. */
/* timr->it_lock is taken. */
static inline int
common_timer_set(struct k_itimer *timr, int flags,
		 struct itimerspec *new_setting, struct itimerspec *old_setting)
{
	struct k_clock *clock = &posix_clocks[timr->it_clock];
	u64 expire_64;

	if (old_setting)
		common_timer_get(timr, old_setting);

	/* disable the timer */
	timr->it.real.incr = 0;
	/*
	 * careful here.  If smp we could be in the "fire" routine which will
	 * be spinning as we hold the lock.  But this is ONLY an SMP issue.
	 */
952
	if (try_to_del_timer_sync(&timr->it.real.timer) < 0) {
L
Linus Torvalds 已提交
953 954 955 956 957 958 959 960 961 962 963
#ifdef CONFIG_SMP
		/*
		 * It can only be active if on an other cpu.  Since
		 * we have cleared the interval stuff above, it should
		 * clear once we release the spin lock.  Of course once
		 * we do that anything could happen, including the
		 * complete melt down of the timer.  So return with
		 * a "retry" exit status.
		 */
		return TIMER_RETRY;
#endif
964 965
	}

L
Linus Torvalds 已提交
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	remove_from_abslist(timr);

	timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 
		~REQUEUE_PENDING;
	timr->it_overrun_last = 0;
	timr->it_overrun = -1;
	/*
	 *switch off the timer when it_value is zero
	 */
	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) {
		timr->it.real.timer.expires = 0;
		return 0;
	}

	if (adjust_abs_time(clock,
			    &new_setting->it_value, flags & TIMER_ABSTIME, 
			    &expire_64, &(timr->it.real.wall_to_prev))) {
		return -EINVAL;
	}
	timr->it.real.timer.expires = (unsigned long)expire_64;
	tstojiffie(&new_setting->it_interval, clock->res, &expire_64);
	timr->it.real.incr = (unsigned long)expire_64;

	/*
	 * We do not even queue SIGEV_NONE timers!  But we do put them
	 * in the abs list so we can do that right.
	 */
	if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE))
		add_timer(&timr->it.real.timer);

	if (flags & TIMER_ABSTIME && clock->abs_struct) {
		spin_lock(&clock->abs_struct->lock);
		list_add_tail(&(timr->it.real.abs_timer_entry),
			      &(clock->abs_struct->list));
		spin_unlock(&clock->abs_struct->lock);
	}
	return 0;
}

/* Set a POSIX.1b interval timer */
asmlinkage long
sys_timer_settime(timer_t timer_id, int flags,
		  const struct itimerspec __user *new_setting,
		  struct itimerspec __user *old_setting)
{
	struct k_itimer *timr;
	struct itimerspec new_spec, old_spec;
	int error = 0;
	long flag;
	struct itimerspec *rtn = old_setting ? &old_spec : NULL;

	if (!new_setting)
		return -EINVAL;

	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
		return -EFAULT;

	if ((!good_timespec(&new_spec.it_interval)) ||
	    (!good_timespec(&new_spec.it_value)))
		return -EINVAL;
retry:
	timr = lock_timer(timer_id, &flag);
	if (!timr)
		return -EINVAL;

	error = CLOCK_DISPATCH(timr->it_clock, timer_set,
			       (timr, flags, &new_spec, rtn));

	unlock_timer(timr, flag);
	if (error == TIMER_RETRY) {
		rtn = NULL;	// We already got the old time...
		goto retry;
	}

	if (old_setting && !error && copy_to_user(old_setting,
						  &old_spec, sizeof (old_spec)))
		error = -EFAULT;

	return error;
}

static inline int common_timer_del(struct k_itimer *timer)
{
	timer->it.real.incr = 0;
1050 1051

	if (try_to_del_timer_sync(&timer->it.real.timer) < 0) {
L
Linus Torvalds 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
#ifdef CONFIG_SMP
		/*
		 * It can only be active if on an other cpu.  Since
		 * we have cleared the interval stuff above, it should
		 * clear once we release the spin lock.  Of course once
		 * we do that anything could happen, including the
		 * complete melt down of the timer.  So return with
		 * a "retry" exit status.
		 */
		return TIMER_RETRY;
#endif
1063 1064
	}

L
Linus Torvalds 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	remove_from_abslist(timer);

	return 0;
}

static inline int timer_delete_hook(struct k_itimer *timer)
{
	return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
}

/* Delete a POSIX.1b interval timer. */
asmlinkage long
sys_timer_delete(timer_t timer_id)
{
	struct k_itimer *timer;
	long flags;

#ifdef CONFIG_SMP
	int error;
retry_delete:
#endif
	timer = lock_timer(timer_id, &flags);
	if (!timer)
		return -EINVAL;

#ifdef CONFIG_SMP
	error = timer_delete_hook(timer);

	if (error == TIMER_RETRY) {
		unlock_timer(timer, flags);
		goto retry_delete;
	}
#else
	timer_delete_hook(timer);
#endif
	spin_lock(&current->sighand->siglock);
	list_del(&timer->list);
	spin_unlock(&current->sighand->siglock);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
	if (timer->it_process) {
		if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
			put_task_struct(timer->it_process);
		timer->it_process = NULL;
	}
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
	return 0;
}
/*
 * return timer owned by the process, used by exit_itimers
 */
static inline void itimer_delete(struct k_itimer *timer)
{
	unsigned long flags;

#ifdef CONFIG_SMP
	int error;
retry_delete:
#endif
	spin_lock_irqsave(&timer->it_lock, flags);

#ifdef CONFIG_SMP
	error = timer_delete_hook(timer);

	if (error == TIMER_RETRY) {
		unlock_timer(timer, flags);
		goto retry_delete;
	}
#else
	timer_delete_hook(timer);
#endif
	list_del(&timer->list);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
	if (timer->it_process) {
		if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
			put_task_struct(timer->it_process);
		timer->it_process = NULL;
	}
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
}

/*
1154
 * This is called by do_exit or de_thread, only when there are no more
L
Linus Torvalds 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
 * references to the shared signal_struct.
 */
void exit_itimers(struct signal_struct *sig)
{
	struct k_itimer *tmr;

	while (!list_empty(&sig->posix_timers)) {
		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
		itimer_delete(tmr);
	}
}

/*
 * And now for the "clock" calls
 *
 * These functions are called both from timer functions (with the timer
 * spin_lock_irq() held and from clock calls with no locking.	They must
 * use the save flags versions of locks.
 */

/*
 * We do ticks here to avoid the irq lock ( they take sooo long).
 * The seqlock is great here.  Since we a reader, we don't really care
 * if we are interrupted since we don't take lock that will stall us or
 * any other cpu. Voila, no irq lock is needed.
 *
 */

static u64 do_posix_clock_monotonic_gettime_parts(
	struct timespec *tp, struct timespec *mo)
{
	u64 jiff;
	unsigned int seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(tp);
		*mo = wall_to_monotonic;
		jiff = jiffies_64;

	} while(read_seqretry(&xtime_lock, seq));

	return jiff;
}

1200 1201
static int do_posix_clock_monotonic_get(const clockid_t clock,
					struct timespec *tp)
L
Linus Torvalds 已提交
1202 1203 1204 1205 1206
{
	struct timespec wall_to_mono;

	do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono);

1207 1208
	set_normalized_timespec(tp, tp->tv_sec + wall_to_mono.tv_sec,
				tp->tv_nsec + wall_to_mono.tv_nsec);
L
Linus Torvalds 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217

	return 0;
}

int do_posix_clock_monotonic_gettime(struct timespec *tp)
{
	return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp);
}

1218
int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
L
Linus Torvalds 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
{
	return -EINVAL;
}
EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);

int do_posix_clock_notimer_create(struct k_itimer *timer)
{
	return -EINVAL;
}
EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create);

1230 1231
int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
			       struct timespec *t)
L
Linus Torvalds 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240
{
#ifndef ENOTSUP
	return -EOPNOTSUPP;	/* aka ENOTSUP in userland for POSIX */
#else  /*  parisc does define it separately.  */
	return -ENOTSUP;
#endif
}
EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);

1241 1242
asmlinkage long sys_clock_settime(const clockid_t which_clock,
				  const struct timespec __user *tp)
L
Linus Torvalds 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
{
	struct timespec new_tp;

	if (invalid_clockid(which_clock))
		return -EINVAL;
	if (copy_from_user(&new_tp, tp, sizeof (*tp)))
		return -EFAULT;

	return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
}

asmlinkage long
1255
sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
L
Linus Torvalds 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
{
	struct timespec kernel_tp;
	int error;

	if (invalid_clockid(which_clock))
		return -EINVAL;
	error = CLOCK_DISPATCH(which_clock, clock_get,
			       (which_clock, &kernel_tp));
	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
		error = -EFAULT;

	return error;

}

asmlinkage long
1272
sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
L
Linus Torvalds 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
{
	struct timespec rtn_tp;
	int error;

	if (invalid_clockid(which_clock))
		return -EINVAL;

	error = CLOCK_DISPATCH(which_clock, clock_getres,
			       (which_clock, &rtn_tp));

	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
		error = -EFAULT;
	}

	return error;
}

/*
 * The standard says that an absolute nanosleep call MUST wake up at
 * the requested time in spite of clock settings.  Here is what we do:
 * For each nanosleep call that needs it (only absolute and not on
 * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
 * into the "nanosleep_abs_list".  All we need is the task_struct pointer.
 * When ever the clock is set we just wake up all those tasks.	 The rest
 * is done by the while loop in clock_nanosleep().
 *
 * On locking, clock_was_set() is called from update_wall_clock which
 * holds (or has held for it) a write_lock_irq( xtime_lock) and is
 * called from the timer bh code.  Thus we need the irq save locks.
 *
 * Also, on the call from update_wall_clock, that is done as part of a
 * softirq thing.  We don't want to delay the system that much (possibly
 * long list of timers to fix), so we defer that work to keventd.
 */

static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue);
static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL);

static DECLARE_MUTEX(clock_was_set_lock);

void clock_was_set(void)
{
	struct k_itimer *timr;
	struct timespec new_wall_to;
	LIST_HEAD(cws_list);
	unsigned long seq;


	if (unlikely(in_interrupt())) {
		schedule_work(&clock_was_set_work);
		return;
	}
	wake_up_all(&nanosleep_abs_wqueue);

	/*
	 * Check if there exist TIMER_ABSTIME timers to correct.
	 *
	 * Notes on locking: This code is run in task context with irq
	 * on.  We CAN be interrupted!  All other usage of the abs list
	 * lock is under the timer lock which holds the irq lock as
	 * well.  We REALLY don't want to scan the whole list with the
	 * interrupt system off, AND we would like a sequence lock on
	 * this code as well.  Since we assume that the clock will not
	 * be set often, it seems ok to take and release the irq lock
	 * for each timer.  In fact add_timer will do this, so this is
	 * not an issue.  So we know when we are done, we will move the
	 * whole list to a new location.  Then as we process each entry,
	 * we will move it to the actual list again.  This way, when our
	 * copy is empty, we are done.  We are not all that concerned
	 * about preemption so we will use a semaphore lock to protect
	 * aginst reentry.  This way we will not stall another
	 * processor.  It is possible that this may delay some timers
	 * that should have expired, given the new clock, but even this
	 * will be minimal as we will always update to the current time,
	 * even if it was set by a task that is waiting for entry to
	 * this code.  Timers that expire too early will be caught by
	 * the expire code and restarted.

	 * Absolute timers that repeat are left in the abs list while
	 * waiting for the task to pick up the signal.  This means we
	 * may find timers that are not in the "add_timer" list, but are
	 * in the abs list.  We do the same thing for these, save
	 * putting them back in the "add_timer" list.  (Note, these are
	 * left in the abs list mainly to indicate that they are
	 * ABSOLUTE timers, a fact that is used by the re-arm code, and
	 * for which we have no other flag.)

	 */

	down(&clock_was_set_lock);
	spin_lock_irq(&abs_list.lock);
	list_splice_init(&abs_list.list, &cws_list);
	spin_unlock_irq(&abs_list.lock);
	do {
		do {
			seq = read_seqbegin(&xtime_lock);
			new_wall_to =	wall_to_monotonic;
		} while (read_seqretry(&xtime_lock, seq));

		spin_lock_irq(&abs_list.lock);
		if (list_empty(&cws_list)) {
			spin_unlock_irq(&abs_list.lock);
			break;
		}
		timr = list_entry(cws_list.next, struct k_itimer,
				  it.real.abs_timer_entry);

		list_del_init(&timr->it.real.abs_timer_entry);
		if (add_clockset_delta(timr, &new_wall_to) &&
		    del_timer(&timr->it.real.timer))  /* timer run yet? */
			add_timer(&timr->it.real.timer);
		list_add(&timr->it.real.abs_timer_entry, &abs_list.list);
		spin_unlock_irq(&abs_list.lock);
	} while (1);

	up(&clock_was_set_lock);
}

long clock_nanosleep_restart(struct restart_block *restart_block);

asmlinkage long
1394
sys_clock_nanosleep(const clockid_t which_clock, int flags,
L
Linus Torvalds 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
		    const struct timespec __user *rqtp,
		    struct timespec __user *rmtp)
{
	struct timespec t;
	struct restart_block *restart_block =
	    &(current_thread_info()->restart_block);
	int ret;

	if (invalid_clockid(which_clock))
		return -EINVAL;

	if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
		return -EFAULT;

	if ((unsigned) t.tv_nsec >= NSEC_PER_SEC || t.tv_sec < 0)
		return -EINVAL;

	/*
	 * Do this here as nsleep function does not have the real address.
	 */
	restart_block->arg1 = (unsigned long)rmtp;

	ret = CLOCK_DISPATCH(which_clock, nsleep, (which_clock, flags, &t));

	if ((ret == -ERESTART_RESTARTBLOCK) && rmtp &&
					copy_to_user(rmtp, &t, sizeof (t)))
		return -EFAULT;
	return ret;
}


1426
static int common_nsleep(const clockid_t which_clock,
L
Linus Torvalds 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
			 int flags, struct timespec *tsave)
{
	struct timespec t, dum;
	DECLARE_WAITQUEUE(abs_wqueue, current);
	u64 rq_time = (u64)0;
	s64 left;
	int abs;
	struct restart_block *restart_block =
	    &current_thread_info()->restart_block;

	abs_wqueue.flags = 0;
	abs = flags & TIMER_ABSTIME;

	if (restart_block->fn == clock_nanosleep_restart) {
		/*
		 * Interrupted by a non-delivered signal, pick up remaining
		 * time and continue.  Remaining time is in arg2 & 3.
		 */
		restart_block->fn = do_no_restart_syscall;

		rq_time = restart_block->arg3;
		rq_time = (rq_time << 32) + restart_block->arg2;
		if (!rq_time)
			return -EINTR;
		left = rq_time - get_jiffies_64();
		if (left <= (s64)0)
			return 0;	/* Already passed */
	}

	if (abs && (posix_clocks[which_clock].clock_get !=
			    posix_clocks[CLOCK_MONOTONIC].clock_get))
		add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue);

	do {
		t = *tsave;
		if (abs || !rq_time) {
			adjust_abs_time(&posix_clocks[which_clock], &t, abs,
					&rq_time, &dum);
		}

		left = rq_time - get_jiffies_64();
		if (left >= (s64)MAX_JIFFY_OFFSET)
			left = (s64)MAX_JIFFY_OFFSET;
		if (left < (s64)0)
			break;

1473
		schedule_timeout_interruptible(left);
L
Linus Torvalds 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

		left = rq_time - get_jiffies_64();
	} while (left > (s64)0 && !test_thread_flag(TIF_SIGPENDING));

	if (abs_wqueue.task_list.next)
		finish_wait(&nanosleep_abs_wqueue, &abs_wqueue);

	if (left > (s64)0) {

		/*
		 * Always restart abs calls from scratch to pick up any
		 * clock shifting that happened while we are away.
		 */
		if (abs)
			return -ERESTARTNOHAND;

		left *= TICK_NSEC;
		tsave->tv_sec = div_long_long_rem(left, 
						  NSEC_PER_SEC, 
						  &tsave->tv_nsec);
		/*
		 * Restart works by saving the time remaing in 
		 * arg2 & 3 (it is 64-bits of jiffies).  The other
		 * info we need is the clock_id (saved in arg0). 
		 * The sys_call interface needs the users 
		 * timespec return address which _it_ saves in arg1.
		 * Since we have cast the nanosleep call to a clock_nanosleep
		 * both can be restarted with the same code.
		 */
		restart_block->fn = clock_nanosleep_restart;
		restart_block->arg0 = which_clock;
		/*
		 * Caller sets arg1
		 */
		restart_block->arg2 = rq_time & 0xffffffffLL;
		restart_block->arg3 = rq_time >> 32;

		return -ERESTART_RESTARTBLOCK;
	}

	return 0;
}
/*
 * This will restart clock_nanosleep.
 */
long
clock_nanosleep_restart(struct restart_block *restart_block)
{
	struct timespec t;
	int ret = common_nsleep(restart_block->arg0, 0, &t);

	if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 &&
	    copy_to_user((struct timespec __user *)(restart_block->arg1), &t,
			 sizeof (t)))
		return -EFAULT;
	return ret;
}