numa.c 28.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
20
#include <linux/lmb.h>
21
#include <linux/of.h>
22
#include <linux/pfn.h>
23
#include <asm/sparsemem.h>
24
#include <asm/prom.h>
25
#include <asm/system.h>
P
Paul Mackerras 已提交
26
#include <asm/smp.h>
L
Linus Torvalds 已提交
27 28 29

static int numa_enabled = 1;

30 31
static char *cmdline __initdata;

L
Linus Torvalds 已提交
32 33 34
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

35
int numa_cpu_lookup_table[NR_CPUS];
36
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
37
struct pglist_data *node_data[MAX_NUMNODES];
38 39

EXPORT_SYMBOL(numa_cpu_lookup_table);
40
EXPORT_SYMBOL(node_to_cpumask_map);
41 42
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
43
static int min_common_depth;
44
static int n_mem_addr_cells, n_mem_size_cells;
L
Linus Torvalds 已提交
45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
 * Note: node_to_cpumask() is not valid until after this is done.
 */
static void __init setup_node_to_cpumask_map(void)
{
	unsigned int node, num = 0;

	/* setup nr_node_ids if not done yet */
	if (nr_node_ids == MAX_NUMNODES) {
		for_each_node_mask(node, node_possible_map)
			num = node;
		nr_node_ids = num + 1;
	}

	/* allocate the map */
	for (node = 0; node < nr_node_ids; node++)
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
}

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/*
 * get_active_region_work_fn - A helper function for get_node_active_region
 *	Returns datax set to the start_pfn and end_pfn if they contain
 *	the initial value of datax->start_pfn between them
 * @start_pfn: start page(inclusive) of region to check
 * @end_pfn: end page(exclusive) of region to check
 * @datax: comes in with ->start_pfn set to value to search for and
 *	goes out with active range if it contains it
 * Returns 1 if search value is in range else 0
 */
static int __init get_active_region_work_fn(unsigned long start_pfn,
					unsigned long end_pfn, void *datax)
{
	struct node_active_region *data;
	data = (struct node_active_region *)datax;

	if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
		data->start_pfn = start_pfn;
		data->end_pfn = end_pfn;
		return 1;
	}
	return 0;

}

/*
 * get_node_active_region - Return active region containing start_pfn
145
 * Active range returned is empty if none found.
146 147 148 149 150 151 152 153 154 155
 * @start_pfn: The page to return the region for.
 * @node_ar: Returned set to the active region containing start_pfn
 */
static void __init get_node_active_region(unsigned long start_pfn,
		       struct node_active_region *node_ar)
{
	int nid = early_pfn_to_nid(start_pfn);

	node_ar->nid = nid;
	node_ar->start_pfn = start_pfn;
156
	node_ar->end_pfn = start_pfn;
157 158 159
	work_with_active_regions(nid, get_active_region_work_fn, node_ar);
}

160
static void __cpuinit map_cpu_to_node(int cpu, int node)
L
Linus Torvalds 已提交
161 162
{
	numa_cpu_lookup_table[cpu] = node;
163

164 165
	dbg("adding cpu %d to node %d\n", cpu, node);

166 167
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
168 169 170 171 172 173 174 175 176
}

#ifdef CONFIG_HOTPLUG_CPU
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

177 178
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
179 180 181 182 183 184 185 186
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

/* must hold reference to node during call */
187
static const int *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
188
{
189
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
190 191
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Returns the property linux,drconf-usable-memory if
 * it exists (the property exists only in kexec/kdump kernels,
 * added by kexec-tools)
 */
static const u32 *of_get_usable_memory(struct device_node *memory)
{
	const u32 *prop;
	u32 len;
	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;
	return prop;
}

207 208 209
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
210
static int of_node_to_nid_single(struct device_node *device)
L
Linus Torvalds 已提交
211
{
212
	int nid = -1;
213
	const unsigned int *tmp;
L
Linus Torvalds 已提交
214 215

	if (min_common_depth == -1)
216
		goto out;
L
Linus Torvalds 已提交
217 218

	tmp = of_get_associativity(device);
219 220 221 222
	if (!tmp)
		goto out;

	if (tmp[0] >= min_common_depth)
223
		nid = tmp[min_common_depth];
224 225

	/* POWER4 LPAR uses 0xffff as invalid node */
226 227 228
	if (nid == 0xffff || nid >= MAX_NUMNODES)
		nid = -1;
out:
229
	return nid;
L
Linus Torvalds 已提交
230 231
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	struct device_node *tmp;
	int nid = -1;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

	        tmp = device;
		device = of_get_parent(tmp);
		of_node_put(tmp);
	}
	of_node_put(device);

	return nid;
}
EXPORT_SYMBOL_GPL(of_node_to_nid);

L
Linus Torvalds 已提交
254 255 256 257 258 259 260
/*
 * In theory, the "ibm,associativity" property may contain multiple
 * associativity lists because a resource may be multiply connected
 * into the machine.  This resource then has different associativity
 * characteristics relative to its multiple connections.  We ignore
 * this for now.  We also assume that all cpu and memory sets have
 * their distances represented at a common level.  This won't be
261
 * true for hierarchical NUMA.
L
Linus Torvalds 已提交
262 263 264 265 266 267 268 269 270
 *
 * In any case the ibm,associativity-reference-points should give
 * the correct depth for a normal NUMA system.
 *
 * - Dave Hansen <haveblue@us.ibm.com>
 */
static int __init find_min_common_depth(void)
{
	int depth;
271
	const unsigned int *ref_points;
L
Linus Torvalds 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285
	struct device_node *rtas_root;
	unsigned int len;

	rtas_root = of_find_node_by_path("/rtas");

	if (!rtas_root)
		return -1;

	/*
	 * this property is 2 32-bit integers, each representing a level of
	 * depth in the associativity nodes.  The first is for an SMP
	 * configuration (should be all 0's) and the second is for a normal
	 * NUMA configuration.
	 */
286
	ref_points = of_get_property(rtas_root,
L
Linus Torvalds 已提交
287 288
			"ibm,associativity-reference-points", &len);

289
	if ((len >= 2 * sizeof(unsigned int)) && ref_points) {
L
Linus Torvalds 已提交
290 291
		depth = ref_points[1];
	} else {
292
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
L
Linus Torvalds 已提交
293 294 295 296 297 298 299
		depth = -1;
	}
	of_node_put(rtas_root);

	return depth;
}

300
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
301 302 303 304
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
305
	if (!memory)
306
		panic("numa.c: No memory nodes found!");
307

308
	*n_addr_cells = of_n_addr_cells(memory);
309
	*n_size_cells = of_n_size_cells(memory);
310
	of_node_put(memory);
L
Linus Torvalds 已提交
311 312
}

313
static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
L
Linus Torvalds 已提交
314 315 316 317 318 319 320 321 322 323
{
	unsigned long result = 0;

	while (n--) {
		result = (result << 32) | **buf;
		(*buf)++;
	}
	return result;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
struct of_drconf_cell {
	u64	base_addr;
	u32	drc_index;
	u32	reserved;
	u32	aa_index;
	u32	flags;
};

#define DRCONF_MEM_ASSIGNED	0x00000008
#define DRCONF_MEM_AI_INVALID	0x00000040
#define DRCONF_MEM_RESERVED	0x00000080

/*
 * Read the next lmb list entry from the ibm,dynamic-memory property
 * and return the information in the provided of_drconf_cell structure.
 */
static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
{
	const u32 *cp;

	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);

	cp = *cellp;
	drmem->drc_index = cp[0];
	drmem->reserved = cp[1];
	drmem->aa_index = cp[2];
	drmem->flags = cp[3];

	*cellp = cp + 4;
}

/*
 * Retreive and validate the ibm,dynamic-memory property of the device tree.
 *
 * The layout of the ibm,dynamic-memory property is a number N of lmb
 * list entries followed by N lmb list entries.  Each lmb list entry
 * contains information as layed out in the of_drconf_cell struct above.
 */
static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
{
	const u32 *prop;
	u32 len, entries;

	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

	entries = *prop++;

	/* Now that we know the number of entries, revalidate the size
	 * of the property read in to ensure we have everything
	 */
	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
		return 0;

	*dm = prop;
	return entries;
}

/*
 * Retreive and validate the ibm,lmb-size property for drconf memory
 * from the device tree.
 */
static u64 of_get_lmb_size(struct device_node *memory)
{
	const u32 *prop;
	u32 len;

	prop = of_get_property(memory, "ibm,lmb-size", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

	return read_n_cells(n_mem_size_cells, &prop);
}

struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
	const u32 *arrays;
};

/*
 * Retreive and validate the list of associativity arrays for drconf
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
static int of_get_assoc_arrays(struct device_node *memory,
			       struct assoc_arrays *aa)
{
	const u32 *prop;
	u32 len;

	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
	if (!prop || len < 2 * sizeof(unsigned int))
		return -1;

	aa->n_arrays = *prop++;
	aa->array_sz = *prop++;

	/* Now that we know the number of arrrays and size of each array,
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
				   struct assoc_arrays *aa)
{
	int default_nid = 0;
	int nid = default_nid;
	int index;

	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
	    drmem->aa_index < aa->n_arrays) {
		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
		nid = aa->arrays[index];

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
	}

	return nid;
}

L
Linus Torvalds 已提交
462 463 464 465
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
466
static int __cpuinit numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
467
{
468
	int nid = 0;
469
	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
470 471 472 473 474 475

	if (!cpu) {
		WARN_ON(1);
		goto out;
	}

476
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
477

478
	if (nid < 0 || !node_online(nid))
479
		nid = first_online_node;
L
Linus Torvalds 已提交
480
out:
481
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
482 483 484

	of_node_put(cpu);

485
	return nid;
L
Linus Torvalds 已提交
486 487
}

488
static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
L
Linus Torvalds 已提交
489 490 491 492 493 494 495 496
			     unsigned long action,
			     void *hcpu)
{
	unsigned long lcpu = (unsigned long)hcpu;
	int ret = NOTIFY_DONE;

	switch (action) {
	case CPU_UP_PREPARE:
497
	case CPU_UP_PREPARE_FROZEN:
498
		numa_setup_cpu(lcpu);
L
Linus Torvalds 已提交
499 500 501 502
		ret = NOTIFY_OK;
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
503
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
504
	case CPU_UP_CANCELED:
505
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
		unmap_cpu_from_node(lcpu);
		break;
		ret = NOTIFY_OK;
#endif
	}
	return ret;
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
 * discarded as it lies wholy above the memory limit.
 */
522 523
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
524 525 526 527
{
	/*
	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
	 * we've already adjusted it for the limit and it takes care of
528 529
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
530 531 532 533 534 535 536 537 538 539 540
	 */

	if (start + size <= lmb_end_of_DRAM())
		return size;

	if (start >= lmb_end_of_DRAM())
		return 0;

	return lmb_end_of_DRAM() - start;
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
static inline int __init read_usm_ranges(const u32 **usm)
{
	/*
	 * For each lmb in ibm,dynamic-memory a corresponding
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

556 557 558 559 560 561
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
static void __init parse_drconf_memory(struct device_node *memory)
{
562 563 564
	const u32 *dm, *usm;
	unsigned int n, rc, ranges, is_kexec_kdump = 0;
	unsigned long lmb_size, base, size, sz;
565 566 567 568 569
	int nid;
	struct assoc_arrays aa;

	n = of_get_drconf_memory(memory, &dm);
	if (!n)
570 571
		return;

572 573 574 575 576 577
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
		return;

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
578 579
		return;

580 581 582 583 584
	/* check if this is a kexec/kdump kernel */
	usm = of_get_usable_memory(memory);
	if (usm != NULL)
		is_kexec_kdump = 1;

585
	for (; n != 0; --n) {
586 587 588 589 590 591 592 593
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
594
			continue;
595

596 597 598
		base = drmem.base_addr;
		size = lmb_size;
		ranges = 1;
599

600 601 602 603 604 605 606 607 608 609 610 611 612
		if (is_kexec_kdump) {
			ranges = read_usm_ranges(&usm);
			if (!ranges) /* there are no (base, size) duple */
				continue;
		}
		do {
			if (is_kexec_kdump) {
				base = read_n_cells(n_mem_addr_cells, &usm);
				size = read_n_cells(n_mem_size_cells, &usm);
			}
			nid = of_drconf_to_nid_single(&drmem, &aa);
			fake_numa_create_new_node(
				((base + size) >> PAGE_SHIFT),
613
					   &nid);
614 615 616 617 618 619 620
			node_set_online(nid);
			sz = numa_enforce_memory_limit(base, size);
			if (sz)
				add_active_range(nid, base >> PAGE_SHIFT,
						 (base >> PAGE_SHIFT)
						 + (sz >> PAGE_SHIFT));
		} while (--ranges);
621 622 623
	}
}

L
Linus Torvalds 已提交
624 625 626 627
static int __init parse_numa_properties(void)
{
	struct device_node *cpu = NULL;
	struct device_node *memory = NULL;
628
	int default_nid = 0;
L
Linus Torvalds 已提交
629 630 631 632 633 634 635 636 637 638 639 640
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

641 642
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
643
	/*
644 645 646
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
647
	 */
648
	for_each_present_cpu(i) {
649
		int nid;
L
Linus Torvalds 已提交
650

651
		cpu = of_get_cpu_node(i, NULL);
652
		BUG_ON(!cpu);
653
		nid = of_node_to_nid_single(cpu);
654
		of_node_put(cpu);
L
Linus Torvalds 已提交
655

656 657 658 659 660 661 662 663
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
664 665
	}

666
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
L
Linus Torvalds 已提交
667 668 669 670
	memory = NULL;
	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
		unsigned long start;
		unsigned long size;
671
		int nid;
L
Linus Torvalds 已提交
672
		int ranges;
673
		const unsigned int *memcell_buf;
L
Linus Torvalds 已提交
674 675
		unsigned int len;

676
		memcell_buf = of_get_property(memory,
677 678
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
679
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
680 681 682
		if (!memcell_buf || len <= 0)
			continue;

683 684
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
685 686
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
687 688
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
689

690 691 692 693 694
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
695
		nid = of_node_to_nid_single(memory);
696 697
		if (nid < 0)
			nid = default_nid;
698 699

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
700
		node_set_online(nid);
L
Linus Torvalds 已提交
701

702
		if (!(size = numa_enforce_memory_limit(start, size))) {
L
Linus Torvalds 已提交
703 704 705 706 707 708
			if (--ranges)
				goto new_range;
			else
				continue;
		}

709 710
		add_active_range(nid, start >> PAGE_SHIFT,
				(start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
L
Linus Torvalds 已提交
711 712 713 714 715

		if (--ranges)
			goto new_range;
	}

716 717 718 719 720 721 722 723
	/*
	 * Now do the same thing for each LMB listed in the ibm,dynamic-memory
	 * property in the ibm,dynamic-reconfiguration-memory node.
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory)
		parse_drconf_memory(memory);

L
Linus Torvalds 已提交
724 725 726 727 728 729 730
	return 0;
}

static void __init setup_nonnuma(void)
{
	unsigned long top_of_ram = lmb_end_of_DRAM();
	unsigned long total_ram = lmb_phys_mem_size();
731
	unsigned long start_pfn, end_pfn;
732
	unsigned int i, nid = 0;
L
Linus Torvalds 已提交
733

734
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
735
	       top_of_ram, total_ram);
736
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
737 738
	       (top_of_ram - total_ram) >> 20);

739 740 741
	for (i = 0; i < lmb.memory.cnt; ++i) {
		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
742 743 744 745

		fake_numa_create_new_node(end_pfn, &nid);
		add_active_range(nid, start_pfn, end_pfn);
		node_set_online(nid);
746
	}
L
Linus Torvalds 已提交
747 748
}

749 750 751 752 753 754 755 756 757
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
758
		printk(KERN_DEBUG "Node %d CPUs:", node);
759 760 761 762 763 764

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
765 766 767
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
768 769 770 771 772 773 774 775 776 777 778
				if (count == 0)
					printk(" %u", cpu);
				++count;
			} else {
				if (count > 1)
					printk("-%u", cpu - 1);
				count = 0;
			}
		}

		if (count > 1)
779
			printk("-%u", nr_cpu_ids - 1);
780 781 782 783 784
		printk("\n");
	}
}

static void __init dump_numa_memory_topology(void)
L
Linus Torvalds 已提交
785 786 787 788 789 790 791 792 793 794
{
	unsigned int node;
	unsigned int count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
		unsigned long i;

795
		printk(KERN_DEBUG "Node %d Memory:", node);
L
Linus Torvalds 已提交
796 797 798

		count = 0;

799 800 801
		for (i = 0; i < lmb_end_of_DRAM();
		     i += (1 << SECTION_SIZE_BITS)) {
			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
L
Linus Torvalds 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
				if (count == 0)
					printk(" 0x%lx", i);
				++count;
			} else {
				if (count > 0)
					printk("-0x%lx", i);
				count = 0;
			}
		}

		if (count > 0)
			printk("-0x%lx", i);
		printk("\n");
	}
}

/*
 * Allocate some memory, satisfying the lmb or bootmem allocator where
 * required. nid is the preferred node and end is the physical address of
 * the highest address in the node.
 *
823
 * Returns the virtual address of the memory.
L
Linus Torvalds 已提交
824
 */
825
static void __init *careful_zallocation(int nid, unsigned long size,
826 827
				       unsigned long align,
				       unsigned long end_pfn)
L
Linus Torvalds 已提交
828
{
829
	void *ret;
830
	int new_nid;
831 832 833
	unsigned long ret_paddr;

	ret_paddr = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
834 835

	/* retry over all memory */
836 837
	if (!ret_paddr)
		ret_paddr = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
L
Linus Torvalds 已提交
838

839
	if (!ret_paddr)
840
		panic("numa.c: cannot allocate %lu bytes for node %d",
L
Linus Torvalds 已提交
841 842
		      size, nid);

843 844
	ret = __va(ret_paddr);

L
Linus Torvalds 已提交
845
	/*
846 847 848 849 850 851 852 853 854 855
	 * We initialize the nodes in numeric order: 0, 1, 2...
	 * and hand over control from the LMB allocator to the
	 * bootmem allocator.  If this function is called for
	 * node 5, then we know that all nodes <5 are using the
	 * bootmem allocator instead of the LMB allocator.
	 *
	 * So, check the nid from which this allocation came
	 * and double check to see if we need to use bootmem
	 * instead of the LMB.  We don't free the LMB memory
	 * since it would be useless.
L
Linus Torvalds 已提交
856
	 */
857
	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
858
	if (new_nid < nid) {
859
		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
L
Linus Torvalds 已提交
860 861
				size, align, 0);

862
		dbg("alloc_bootmem %p %lx\n", ret, size);
L
Linus Torvalds 已提交
863 864
	}

865
	memset(ret, 0, size);
866
	return ret;
L
Linus Torvalds 已提交
867 868
}

869 870 871 872 873
static struct notifier_block __cpuinitdata ppc64_numa_nb = {
	.notifier_call = cpu_numa_callback,
	.priority = 1 /* Must run before sched domains notifier. */
};

874 875 876 877 878 879 880 881 882
static void mark_reserved_regions_for_nid(int nid)
{
	struct pglist_data *node = NODE_DATA(nid);
	int i;

	for (i = 0; i < lmb.reserved.cnt; i++) {
		unsigned long physbase = lmb.reserved.region[i].base;
		unsigned long size = lmb.reserved.region[i].size;
		unsigned long start_pfn = physbase >> PAGE_SHIFT;
883
		unsigned long end_pfn = PFN_UP(physbase + size);
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
		struct node_active_region node_ar;
		unsigned long node_end_pfn = node->node_start_pfn +
					     node->node_spanned_pages;

		/*
		 * Check to make sure that this lmb.reserved area is
		 * within the bounds of the node that we care about.
		 * Checking the nid of the start and end points is not
		 * sufficient because the reserved area could span the
		 * entire node.
		 */
		if (end_pfn <= node->node_start_pfn ||
		    start_pfn >= node_end_pfn)
			continue;

		get_node_active_region(start_pfn, &node_ar);
		while (start_pfn < end_pfn &&
			node_ar.start_pfn < node_ar.end_pfn) {
			unsigned long reserve_size = size;
			/*
			 * if reserved region extends past active region
			 * then trim size to active region
			 */
			if (end_pfn > node_ar.end_pfn)
				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
909
					- physbase;
910 911 912 913 914 915 916 917 918 919 920
			/*
			 * Only worry about *this* node, others may not
			 * yet have valid NODE_DATA().
			 */
			if (node_ar.nid == nid) {
				dbg("reserve_bootmem %lx %lx nid=%d\n",
					physbase, reserve_size, node_ar.nid);
				reserve_bootmem_node(NODE_DATA(node_ar.nid),
						physbase, reserve_size,
						BOOTMEM_DEFAULT);
			}
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
			/*
			 * if reserved region is contained in the active region
			 * then done.
			 */
			if (end_pfn <= node_ar.end_pfn)
				break;

			/*
			 * reserved region extends past the active region
			 *   get next active region that contains this
			 *   reserved region
			 */
			start_pfn = node_ar.end_pfn;
			physbase = start_pfn << PAGE_SHIFT;
			size = size - reserve_size;
			get_node_active_region(start_pfn, &node_ar);
		}
	}
}


L
Linus Torvalds 已提交
942 943 944 945 946 947 948 949 950 951 952
void __init do_init_bootmem(void)
{
	int nid;

	min_low_pfn = 0;
	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();
	else
953
		dump_numa_memory_topology();
L
Linus Torvalds 已提交
954 955

	for_each_online_node(nid) {
956
		unsigned long start_pfn, end_pfn;
957
		void *bootmem_vaddr;
L
Linus Torvalds 已提交
958 959
		unsigned long bootmap_pages;

960
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
L
Linus Torvalds 已提交
961

962 963 964 965 966 967 968
		/*
		 * Allocate the node structure node local if possible
		 *
		 * Be careful moving this around, as it relies on all
		 * previous nodes' bootmem to be initialized and have
		 * all reserved areas marked.
		 */
969
		NODE_DATA(nid) = careful_zallocation(nid,
L
Linus Torvalds 已提交
970
					sizeof(struct pglist_data),
971
					SMP_CACHE_BYTES, end_pfn);
L
Linus Torvalds 已提交
972 973 974 975

  		dbg("node %d\n", nid);
		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));

976
		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
977 978
		NODE_DATA(nid)->node_start_pfn = start_pfn;
		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
L
Linus Torvalds 已提交
979 980 981 982

		if (NODE_DATA(nid)->node_spanned_pages == 0)
  			continue;

983 984
  		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
  		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
985

986
		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
987
		bootmem_vaddr = careful_zallocation(nid,
988 989
					bootmap_pages << PAGE_SHIFT,
					PAGE_SIZE, end_pfn);
L
Linus Torvalds 已提交
990

991
		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
L
Linus Torvalds 已提交
992

993 994
		init_bootmem_node(NODE_DATA(nid),
				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
995
				  start_pfn, end_pfn);
L
Linus Torvalds 已提交
996

997
		free_bootmem_with_active_regions(nid, end_pfn);
998 999
		/*
		 * Be very careful about moving this around.  Future
1000
		 * calls to careful_zallocation() depend on this getting
1001 1002 1003
		 * done correctly.
		 */
		mark_reserved_regions_for_nid(nid);
1004
		sparse_memory_present_with_active_regions(nid);
1005
	}
1006 1007

	init_bootmem_done = 1;
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

	/*
	 * Now bootmem is initialised we can create the node to cpumask
	 * lookup tables and setup the cpu callback to populate them.
	 */
	setup_node_to_cpumask_map();

	register_cpu_notifier(&ppc64_numa_nb);
	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
			  (void *)(unsigned long)boot_cpuid);
L
Linus Torvalds 已提交
1018 1019 1020 1021
}

void __init paging_init(void)
{
1022 1023 1024
	unsigned long max_zone_pfns[MAX_NR_ZONES];
	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
	max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
1025
	free_area_init_nodes(max_zone_pfns);
L
Linus Torvalds 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

1039 1040 1041 1042
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
1043 1044 1045
	return 0;
}
early_param("numa", early_numa);
1046 1047

#ifdef CONFIG_MEMORY_HOTPLUG
1048
/*
1049 1050 1051
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1052 1053 1054 1055 1056
 */
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
				     unsigned long scn_addr)
{
	const u32 *dm;
1057
	unsigned int drconf_cell_cnt, rc;
1058 1059
	unsigned long lmb_size;
	struct assoc_arrays aa;
1060
	int nid = -1;
1061

1062 1063 1064
	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
	if (!drconf_cell_cnt)
		return -1;
1065 1066 1067

	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
1068
		return -1;
1069 1070 1071

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
1072
		return -1;
1073

1074
	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if it is reserved or not assigned to
		 * this partition */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
			continue;

1085 1086 1087 1088
		if ((scn_addr < drmem.base_addr)
		    || (scn_addr >= (drmem.base_addr + lmb_size)))
			continue;

1089
		nid = of_drconf_to_nid_single(&drmem, &aa);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
 * each lmb.
 */
int hot_add_node_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
	int nid = -1;

	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
		unsigned long start, size;
		int ranges;
		const unsigned int *memcell_buf;
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1129

1130 1131 1132
		of_node_put(memory);
		if (nid >= 0)
			break;
1133 1134
	}

1135
	return nid;
1136 1137
}

1138 1139 1140 1141 1142 1143 1144 1145
/*
 * Find the node associated with a hot added memory section.  Section
 * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that
 * sections are fully contained within a single LMB.
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1146
	int nid, found = 0;
1147 1148

	if (!numa_enabled || (min_common_depth < 0))
1149
		return first_online_node;
1150 1151 1152 1153 1154

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
		of_node_put(memory);
1155 1156
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1157
	}
1158

1159
	if (nid < 0 || !node_online(nid))
1160
		nid = first_online_node;
1161

1162 1163
	if (NODE_DATA(nid)->node_spanned_pages)
		return nid;
1164

1165 1166 1167 1168
	for_each_online_node(nid) {
		if (NODE_DATA(nid)->node_spanned_pages) {
			found = 1;
			break;
1169 1170
		}
	}
1171 1172 1173

	BUG_ON(!found);
	return nid;
1174
}
1175

1176
#endif /* CONFIG_MEMORY_HOTPLUG */