sonixb.c 44.8 KB
Newer Older
1 2 3
/*
 *		sonix sn9c102 (bayer) library
 *
4 5 6
 * Copyright (C) 2009-2011 Jean-François Moine <http://moinejf.free.fr>
 * Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
 * Add Pas106 Stefano Mozzi (C) 2004
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

23 24 25
/* Some documentation on known sonixb registers:

Reg	Use
26
sn9c101 / sn9c102:
27 28
0x10	high nibble red gain low nibble blue gain
0x11	low nibble green gain
29 30 31 32 33 34
sn9c103:
0x05	red gain 0-127
0x06	blue gain 0-127
0x07	green gain 0-127
all:
0x08-0x0f i2c / 3wire registers
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
0x12	hstart
0x13	vstart
0x15	hsize (hsize = register-value * 16)
0x16	vsize (vsize = register-value * 16)
0x17	bit 0 toggle compression quality (according to sn9c102 driver)
0x18	bit 7 enables compression, bit 4-5 set image down scaling:
	00 scale 1, 01 scale 1/2, 10, scale 1/4
0x19	high-nibble is sensor clock divider, changes exposure on sensors which
	use a clock generated by the bridge. Some sensors have their own clock.
0x1c	auto_exposure area (for avg_lum) startx (startx = register-value * 32)
0x1d	auto_exposure area (for avg_lum) starty (starty = register-value * 32)
0x1e	auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
0x1f	auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
*/

50 51
#define MODULE_NAME "sonixb"

52
#include <linux/input.h>
53 54
#include "gspca.h"

55
MODULE_AUTHOR("Jean-François Moine <http://moinejf.free.fr>");
56 57 58 59 60 61
MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
MODULE_LICENSE("GPL");

/* specific webcam descriptor */
struct sd {
	struct gspca_dev gspca_dev;	/* !! must be the first item */
62

63 64
	struct v4l2_ctrl *brightness;
	struct v4l2_ctrl *plfreq;
65

66
	atomic_t avg_lum;
67
	int prev_avg_lum;
68
	int exposure_knee;
69 70
	int header_read;
	u8 header[12]; /* Header without sof marker */
71 72

	unsigned char autogain_ignore_frames;
73
	unsigned char frames_to_drop;
74

75 76 77 78 79 80
	__u8 bridge;			/* Type of bridge */
#define BRIDGE_101 0
#define BRIDGE_102 0 /* We make no difference between 101 and 102 */
#define BRIDGE_103 1

	__u8 sensor;			/* Type of image sensor chip */
81 82 83 84 85 86 87 88 89
#define SENSOR_HV7131D 0
#define SENSOR_HV7131R 1
#define SENSOR_OV6650 2
#define SENSOR_OV7630 3
#define SENSOR_PAS106 4
#define SENSOR_PAS202 5
#define SENSOR_TAS5110C 6
#define SENSOR_TAS5110D 7
#define SENSOR_TAS5130CXX 8
90
	__u8 reg11;
91 92
};

93 94 95
typedef const __u8 sensor_init_t[8];

struct sensor_data {
96
	const __u8 *bridge_init;
97 98 99 100 101 102 103
	sensor_init_t *sensor_init;
	int sensor_init_size;
	int flags;
	__u8 sensor_addr;
};

/* sensor_data flags */
104
#define F_SIF		0x01	/* sif or vga */
105 106 107

/* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
#define MODE_RAW 0x10		/* raw bayer mode */
108
#define MODE_REDUCED_SIF 0x20	/* vga mode (320x240 / 160x120) on sif cam */
109

110 111 112 113 114 115 116 117
#define COMP 0xc7		/* 0x87 //0x07 */
#define COMP1 0xc9		/* 0x89 //0x09 */

#define MCK_INIT 0x63
#define MCK_INIT1 0x20		/*fixme: Bayer - 0x50 for JPEG ??*/

#define SYS_CLK 0x04

118
#define SENS(bridge, sensor, _flags, _sensor_addr) \
119
{ \
120
	.bridge_init = bridge, \
121 122
	.sensor_init = sensor, \
	.sensor_init_size = sizeof(sensor), \
123
	.flags = _flags, .sensor_addr = _sensor_addr \
124 125
}

126
/* We calculate the autogain at the end of the transfer of a frame, at this
127 128 129 130
   moment a frame with the old settings is being captured and transmitted. So
   if we adjust the gain or exposure we must ignore atleast the next frame for
   the new settings to come into effect before doing any other adjustments. */
#define AUTOGAIN_IGNORE_FRAMES 1
131

132
static const struct v4l2_pix_format vga_mode[] = {
133 134
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
135
		.sizeimage = 160 * 120,
136 137
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2 | MODE_RAW},
138 139
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
140
		.sizeimage = 160 * 120 * 5 / 4,
141 142 143 144
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2},
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
145
		.sizeimage = 320 * 240 * 5 / 4,
146 147 148 149
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
	{640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 640,
150
		.sizeimage = 640 * 480 * 5 / 4,
151 152
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
153
};
154
static const struct v4l2_pix_format sif_mode[] = {
155 156 157 158 159 160 161 162 163 164
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_REDUCED_SIF},
165 166
	{176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 176,
167
		.sizeimage = 176 * 144,
168 169
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW},
170 171
	{176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 176,
172
		.sizeimage = 176 * 144 * 5 / 4,
173 174
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
175 176 177 178 179
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
		.sizeimage = 320 * 240 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0 | MODE_REDUCED_SIF},
180 181
	{352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 352,
182
		.sizeimage = 352 * 288 * 5 / 4,
183 184
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
185 186
};

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
static const __u8 initHv7131d[] = {
	0x04, 0x03, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
	0x00, 0x00, 0x00, 0x02, 0x02, 0x00,
	0x28, 0x1e, 0x60, 0x8e, 0x42,
};
static const __u8 hv7131d_sensor_init[][8] = {
	{0xa0, 0x11, 0x01, 0x04, 0x00, 0x00, 0x00, 0x17},
	{0xa0, 0x11, 0x02, 0x00, 0x00, 0x00, 0x00, 0x17},
	{0xa0, 0x11, 0x28, 0x00, 0x00, 0x00, 0x00, 0x17},
	{0xa0, 0x11, 0x30, 0x30, 0x00, 0x00, 0x00, 0x17}, /* reset level */
	{0xa0, 0x11, 0x34, 0x02, 0x00, 0x00, 0x00, 0x17}, /* pixel bias volt */
};

static const __u8 initHv7131r[] = {
202 203
	0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
204
	0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
205 206
	0x28, 0x1e, 0x60, 0x8a, 0x20,
};
207
static const __u8 hv7131r_sensor_init[][8] = {
208 209 210 211 212 213 214 215 216
	{0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
	{0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
	{0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
	{0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
	{0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
};
static const __u8 initOv6650[] = {
	0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
	0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
217
	0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
218
	0x10,
219
};
220
static const __u8 ov6650_sensor_init[][8] = {
221
	/* Bright, contrast, etc are set through SCBB interface.
222
	 * AVCAP on win2 do not send any data on this controls. */
223
	/* Anyway, some registers appears to alter bright and constrat */
224 225

	/* Reset sensor */
226
	{0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
227
	/* Set clock register 0x11 low nibble is clock divider */
228
	{0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
229
	/* Next some unknown stuff */
230 231 232 233 234 235 236
	{0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
/*	{0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
		 * THIS SET GREEN SCREEN
		 * (pixels could be innverted in decode kind of "brg",
		 * but blue wont be there. Avoid this data ... */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
237
	{0xa0, 0x60, 0x30, 0x3d, 0x0a, 0xd8, 0xa4, 0x10},
238 239 240 241 242 243 244 245 246
	/* Enable rgb brightness control */
	{0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
	/* HDG: Note windows uses the line below, which sets both register 0x60
	   and 0x61 I believe these registers of the ov6650 are identical as
	   those of the ov7630, because if this is true the windows settings
	   add a bit additional red gain and a lot additional blue gain, which
	   matches my findings that the windows settings make blue much too
	   blue and red a little too red.
	{0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
247
	/* Some more unknown stuff */
248 249 250
	{0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
	{0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
};
251

252 253 254
static const __u8 initOv7630[] = {
	0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,	/* r01 .. r08 */
	0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,	/* r09 .. r10 */
255
	0x00, 0x01, 0x01, 0x0a,				/* r11 .. r14 */
256
	0x28, 0x1e,			/* H & V sizes     r15 .. r16 */
257
	0x68, 0x8f, MCK_INIT1,				/* r17 .. r19 */
258
};
259
static const __u8 ov7630_sensor_init[][8] = {
260 261 262
	{0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
	{0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
/*	{0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10},	   jfm */
263
	{0xd0, 0x21, 0x12, 0x5c, 0x00, 0x80, 0x34, 0x10},	/* jfm */
264 265 266 267 268 269 270
	{0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
	{0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
271 272
	{0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
/*	{0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10},	 * jfm */
273 274 275 276 277 278 279 280 281 282 283
	{0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
	{0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
	{0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
	{0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
	{0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
};

static const __u8 initPas106[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
284
	0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
285
	0x16, 0x12, 0x24, COMP1, MCK_INIT1,
286 287
};
/* compression 0x86 mckinit1 0x2b */
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

/* "Known" PAS106B registers:
  0x02 clock divider
  0x03 Variable framerate bits 4-11
  0x04 Var framerate bits 0-3, one must leave the 4 msb's at 0 !!
       The variable framerate control must never be set lower then 300,
       which sets the framerate at 90 / reg02, otherwise vsync is lost.
  0x05 Shutter Time Line Offset, this can be used as an exposure control:
       0 = use full frame time, 255 = no exposure at all
       Note this may never be larger then "var-framerate control" / 2 - 2.
       When var-framerate control is < 514, no exposure is reached at the max
       allowed value for the framerate control value, rather then at 255.
  0x06 Shutter Time Pixel Offset, like reg05 this influences exposure, but
       only a very little bit, leave at 0xcd
  0x07 offset sign bit (bit0 1 > negative offset)
  0x08 offset
  0x09 Blue Gain
  0x0a Green1 Gain
  0x0b Green2 Gain
  0x0c Red Gain
  0x0e Global gain
  0x13 Write 1 to commit settings to sensor
*/

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static const __u8 pas106_sensor_init[][8] = {
	/* Pixel Clock Divider 6 */
	{ 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time MSB (also seen as 0x12) */
	{ 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time LSB (also seen as 0x05) */
	{ 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Line Offset (also seen as 0x6d) */
	{ 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Pixel Offset (also seen as 0xb1) */
	{ 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Sign (also seen 0x00) */
	{ 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Level (also seen 0x01) */
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain B Pixel 5 a */
	{ 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G1 Pixel 1 5 */
	{ 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G2 Pixel 1 0 5 */
	{ 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain R Pixel 3 1 */
	{ 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color GainH  Pixel */
	{ 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* Global Gain */
	{ 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
	/* Contrast */
	{ 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* H&V synchro polarity */
	{ 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* DAC scale */
	{ 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
	/* Validate Settings */
	{ 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
352
};
353

354 355 356
static const __u8 initPas202[] = {
	0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
357
	0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
358
	0x28, 0x1e, 0x20, 0x89, 0x20,
359
};
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

/* "Known" PAS202BCB registers:
  0x02 clock divider
  0x04 Variable framerate bits 6-11 (*)
  0x05 Var framerate  bits 0-5, one must leave the 2 msb's at 0 !!
  0x07 Blue Gain
  0x08 Green Gain
  0x09 Red Gain
  0x0b offset sign bit (bit0 1 > negative offset)
  0x0c offset
  0x0e Unknown image is slightly brighter when bit 0 is 0, if reg0f is 0 too,
       leave at 1 otherwise we get a jump in our exposure control
  0x0f Exposure 0-255, 0 = use full frame time, 255 = no exposure at all
  0x10 Master gain 0 - 31
  0x11 write 1 to apply changes
  (*) The variable framerate control must never be set lower then 500
      which sets the framerate at 30 / reg02, otherwise vsync is lost.
*/
378
static const __u8 pas202_sensor_init[][8] = {
379 380 381 382
	/* Set the clock divider to 4 -> 30 / 4 = 7.5 fps, we would like
	   to set it lower, but for some reason the bridge starts missing
	   vsync's then */
	{0xa0, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x10},
383 384
	{0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
	{0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
385
	{0xd0, 0x40, 0x0c, 0x00, 0x0c, 0x01, 0x32, 0x10},
386 387 388 389 390 391 392 393
	{0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
};

394
static const __u8 initTas5110c[] = {
395 396
	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
397
	0x00, 0x00, 0x00, 0x45, 0x09, 0x0a,
398 399
	0x16, 0x12, 0x60, 0x86, 0x2b,
};
400 401 402 403
/* Same as above, except a different hstart */
static const __u8 initTas5110d[] = {
	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
404
	0x00, 0x00, 0x00, 0x41, 0x09, 0x0a,
405 406
	0x16, 0x12, 0x60, 0x86, 0x2b,
};
407 408
/* tas5110c is 3 wire, tas5110d is 2 wire (regular i2c) */
static const __u8 tas5110c_sensor_init[][8] = {
409 410
	{0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
	{0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
411 412 413 414 415 416 417 418
};
/* Known TAS5110D registers
 * reg02: gain, bit order reversed!! 0 == max gain, 255 == min gain
 * reg03: bit3: vflip, bit4: ~hflip, bit7: ~gainboost (~ == inverted)
 *        Note: writing reg03 seems to only work when written together with 02
 */
static const __u8 tas5110d_sensor_init[][8] = {
	{0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17}, /* reset */
419 420 421 422 423
};

static const __u8 initTas5130[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
424
	0x00, 0x00, 0x00, 0x68, 0x0c, 0x0a,
425 426 427
	0x28, 0x1e, 0x60, COMP, MCK_INIT,
};
static const __u8 tas5130_sensor_init[][8] = {
428
/*	{0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
429 430 431 432 433 434
					* shutter 0x47 short exposure? */
	{0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
					/* shutter 0x01 long exposure */
	{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
};

435
static const struct sensor_data sensor_data[] = {
436 437 438 439 440 441 442 443 444
	SENS(initHv7131d, hv7131d_sensor_init, 0, 0),
	SENS(initHv7131r, hv7131r_sensor_init, 0, 0),
	SENS(initOv6650, ov6650_sensor_init, F_SIF, 0x60),
	SENS(initOv7630, ov7630_sensor_init, 0, 0x21),
	SENS(initPas106, pas106_sensor_init, F_SIF, 0),
	SENS(initPas202, pas202_sensor_init, 0, 0),
	SENS(initTas5110c, tas5110c_sensor_init, F_SIF, 0),
	SENS(initTas5110d, tas5110d_sensor_init, F_SIF, 0),
	SENS(initTas5130, tas5130_sensor_init, 0, 0),
445 446
};

447 448 449
/* get one byte in gspca_dev->usb_buf */
static void reg_r(struct gspca_dev *gspca_dev,
		  __u16 value)
450
{
451 452 453 454 455 456
	int res;

	if (gspca_dev->usb_err < 0)
		return;

	res = usb_control_msg(gspca_dev->dev,
457
			usb_rcvctrlpipe(gspca_dev->dev, 0),
458 459 460 461
			0,			/* request */
			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
462
			gspca_dev->usb_buf, 1,
463
			500);
464 465 466 467 468 469

	if (res < 0) {
		dev_err(gspca_dev->v4l2_dev.dev,
			"Error reading register %02x: %d\n", value, res);
		gspca_dev->usb_err = res;
	}
470 471
}

472 473 474 475
static void reg_w(struct gspca_dev *gspca_dev,
		  __u16 value,
		  const __u8 *buffer,
		  int len)
476
{
477 478 479
	int res;

	if (gspca_dev->usb_err < 0)
480
		return;
481

482
	memcpy(gspca_dev->usb_buf, buffer, len);
483
	res = usb_control_msg(gspca_dev->dev,
484 485 486 487 488 489 490
			usb_sndctrlpipe(gspca_dev->dev, 0),
			0x08,			/* request */
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
			gspca_dev->usb_buf, len,
			500);
491 492 493 494 495 496

	if (res < 0) {
		dev_err(gspca_dev->v4l2_dev.dev,
			"Error writing register %02x: %d\n", value, res);
		gspca_dev->usb_err = res;
	}
497 498
}

499
static void i2c_w(struct gspca_dev *gspca_dev, const u8 *buf)
500 501 502
{
	int retry = 60;

503 504 505
	if (gspca_dev->usb_err < 0)
		return;

506
	/* is i2c ready */
507
	reg_w(gspca_dev, 0x08, buf, 8);
508
	while (retry--) {
509 510
		if (gspca_dev->usb_err < 0)
			return;
511
		msleep(1);
512
		reg_r(gspca_dev, 0x08);
513
		if (gspca_dev->usb_buf[0] & 0x04) {
514 515
			if (gspca_dev->usb_buf[0] & 0x08) {
				dev_err(gspca_dev->v4l2_dev.dev,
516 517 518 519
					"i2c error writing %02x %02x %02x %02x"
					" %02x %02x %02x %02x\n",
					buf[0], buf[1], buf[2], buf[3],
					buf[4], buf[5], buf[6], buf[7]);
520 521 522
				gspca_dev->usb_err = -EIO;
			}
			return;
523
		}
524
	}
525 526 527

	dev_err(gspca_dev->v4l2_dev.dev, "i2c write timeout\n");
	gspca_dev->usb_err = -EIO;
528 529
}

530
static void i2c_w_vector(struct gspca_dev *gspca_dev,
531 532 533
			const __u8 buffer[][8], int len)
{
	for (;;) {
534 535
		if (gspca_dev->usb_err < 0)
			return;
536
		i2c_w(gspca_dev, *buffer);
537 538 539 540 541 542 543 544 545 546 547 548
		len -= 8;
		if (len <= 0)
			break;
		buffer++;
	}
}

static void setbrightness(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
549
	case  SENSOR_OV6650:
550 551
	case  SENSOR_OV7630: {
		__u8 i2cOV[] =
552
			{0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
553 554

		/* change reg 0x06 */
555
		i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
556
		i2cOV[3] = sd->brightness->val;
557
		i2c_w(gspca_dev, i2cOV);
558
		break;
559
	}
560
	case SENSOR_PAS106:
561
	case SENSOR_PAS202: {
562 563
		__u8 i2cpbright[] =
			{0xb0, 0x40, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x16};
564
		__u8 i2cpdoit[] =
565 566
			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};

567 568 569 570 571 572
		/* PAS106 uses reg 7 and 8 instead of b and c */
		if (sd->sensor == SENSOR_PAS106) {
			i2cpbright[2] = 7;
			i2cpdoit[2] = 0x13;
		}

573
		if (sd->brightness->val < 127) {
574 575 576
			/* change reg 0x0b, signreg */
			i2cpbright[3] = 0x01;
			/* set reg 0x0c, offset */
577
			i2cpbright[4] = 127 - sd->brightness->val;
578
		} else
579
			i2cpbright[4] = sd->brightness->val - 127;
580

581 582 583 584 585
		i2c_w(gspca_dev, i2cpbright);
		i2c_w(gspca_dev, i2cpdoit);
		break;
	}
	default:
586 587 588
		break;
	}
}
589

590
static void setgain(struct gspca_dev *gspca_dev)
591 592
{
	struct sd *sd = (struct sd *) gspca_dev;
593
	u8 gain = gspca_dev->gain->val;
594 595

	switch (sd->sensor) {
596 597 598 599
	case SENSOR_HV7131D: {
		__u8 i2c[] =
			{0xc0, 0x11, 0x31, 0x00, 0x00, 0x00, 0x00, 0x17};

600 601 602
		i2c[3] = 0x3f - gain;
		i2c[4] = 0x3f - gain;
		i2c[5] = 0x3f - gain;
603

604
		i2c_w(gspca_dev, i2c);
605
		break;
606
	}
607 608
	case SENSOR_TAS5110C:
	case SENSOR_TAS5130CXX: {
609 610 611
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

612
		i2c[4] = 255 - gain;
613
		i2c_w(gspca_dev, i2c);
614
		break;
615
	}
616 617 618 619 620 621 622 623 624 625 626 627 628
	case SENSOR_TAS5110D: {
		__u8 i2c[] = {
			0xb0, 0x61, 0x02, 0x00, 0x10, 0x00, 0x00, 0x17 };
		gain = 255 - gain;
		/* The bits in the register are the wrong way around!! */
		i2c[3] |= (gain & 0x80) >> 7;
		i2c[3] |= (gain & 0x40) >> 5;
		i2c[3] |= (gain & 0x20) >> 3;
		i2c[3] |= (gain & 0x10) >> 1;
		i2c[3] |= (gain & 0x08) << 1;
		i2c[3] |= (gain & 0x04) << 3;
		i2c[3] |= (gain & 0x02) << 5;
		i2c[3] |= (gain & 0x01) << 7;
629
		i2c_w(gspca_dev, i2c);
630
		break;
631
	}
632
	case SENSOR_OV6650:
633
	case SENSOR_OV7630: {
634
		__u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
635

636 637 638 639 640 641 642
		/*
		 * The ov7630's gain is weird, at 32 the gain drops to the
		 * same level as at 16, so skip 32-47 (of the 0-63 scale).
		 */
		if (sd->sensor == SENSOR_OV7630 && gain >= 32)
			gain += 16;

643
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
644
		i2c[3] = gain;
645
		i2c_w(gspca_dev, i2c);
646
		break;
647
	}
648
	case SENSOR_PAS106:
649 650
	case SENSOR_PAS202: {
		__u8 i2cpgain[] =
651
			{0xa0, 0x40, 0x10, 0x00, 0x00, 0x00, 0x00, 0x15};
652 653
		__u8 i2cpcolorgain[] =
			{0xc0, 0x40, 0x07, 0x00, 0x00, 0x00, 0x00, 0x15};
654 655 656 657 658 659 660 661 662 663
		__u8 i2cpdoit[] =
			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};

		/* PAS106 uses different regs (and has split green gains) */
		if (sd->sensor == SENSOR_PAS106) {
			i2cpgain[2] = 0x0e;
			i2cpcolorgain[0] = 0xd0;
			i2cpcolorgain[2] = 0x09;
			i2cpdoit[2] = 0x13;
		}
664

665 666 667 668 669
		i2cpgain[3] = gain;
		i2cpcolorgain[3] = gain >> 1;
		i2cpcolorgain[4] = gain >> 1;
		i2cpcolorgain[5] = gain >> 1;
		i2cpcolorgain[6] = gain >> 1;
670

671 672 673 674 675 676
		i2c_w(gspca_dev, i2cpgain);
		i2c_w(gspca_dev, i2cpcolorgain);
		i2c_w(gspca_dev, i2cpdoit);
		break;
	}
	default:
677 678 679 680 681 682 683 684 685
		if (sd->bridge == BRIDGE_103) {
			u8 buf[3] = { gain, gain, gain }; /* R, G, B */
			reg_w(gspca_dev, 0x05, buf, 3);
		} else {
			u8 buf[2];
			buf[0] = gain << 4 | gain; /* Red and blue */
			buf[1] = gain; /* Green */
			reg_w(gspca_dev, 0x10, buf, 2);
		}
686
	}
687 688 689 690 691 692 693
}

static void setexposure(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
694 695 696 697
	case SENSOR_HV7131D: {
		/* Note the datasheet wrongly says line mode exposure uses reg
		   0x26 and 0x27, testing has shown 0x25 + 0x26 */
		__u8 i2c[] = {0xc0, 0x11, 0x25, 0x00, 0x00, 0x00, 0x00, 0x17};
698
		u16 reg = gspca_dev->exposure->val;
699

700 701
		i2c[3] = reg >> 8;
		i2c[4] = reg & 0xff;
702
		i2c_w(gspca_dev, i2c);
703
		break;
704
	}
705 706
	case SENSOR_TAS5110C:
	case SENSOR_TAS5110D: {
707 708 709
		/* register 19's high nibble contains the sn9c10x clock divider
		   The high nibble configures the no fps according to the
		   formula: 60 / high_nibble. With a maximum of 30 fps */
710
		u8 reg = gspca_dev->exposure->val;
711

712
		reg = (reg << 4) | 0x0b;
713
		reg_w(gspca_dev, 0x19, &reg, 1);
714
		break;
715
	}
716
	case SENSOR_OV6650:
717
	case SENSOR_OV7630: {
718 719
		/* The ov6650 / ov7630 have 2 registers which both influence
		   exposure, register 11, whose low nibble sets the nr off fps
720 721 722 723 724 725
		   according to: fps = 30 / (low_nibble + 1)

		   The fps configures the maximum exposure setting, but it is
		   possible to use less exposure then what the fps maximum
		   allows by setting register 10. register 10 configures the
		   actual exposure as quotient of the full exposure, with 0
L
Lucas De Marchi 已提交
726
		   being no exposure at all (not very useful) and reg10_max
727 728 729 730 731
		   being max exposure possible at that framerate.

		   The code maps our 0 - 510 ms exposure ctrl to these 2
		   registers, trying to keep fps as high as possible.
		*/
732 733 734
		__u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
		int reg10, reg11, reg10_max;

735 736 737 738 739
		/* ov6645 datasheet says reg10_max is 9a, but that uses
		   tline * 2 * reg10 as formula for calculating texpo, the
		   ov6650 probably uses the same formula as the 7730 which uses
		   tline * 4 * reg10, which explains why the reg10max we've
		   found experimentally for the ov6650 is exactly half that of
740
		   the ov6645. The ov7630 datasheet says the max is 0x41. */
741 742 743 744 745
		if (sd->sensor == SENSOR_OV6650) {
			reg10_max = 0x4d;
			i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
		} else
			reg10_max = 0x41;
746

747
		reg11 = (15 * gspca_dev->exposure->val + 999) / 1000;
748 749 750 751 752
		if (reg11 < 1)
			reg11 = 1;
		else if (reg11 > 16)
			reg11 = 16;

753 754 755 756 757
		/* In 640x480, if the reg11 has less than 4, the image is
		   unstable (the bridge goes into a higher compression mode
		   which we have not reverse engineered yet). */
		if (gspca_dev->width == 640 && reg11 < 4)
			reg11 = 4;
758

759
		/* frame exposure time in ms = 1000 * reg11 / 30    ->
760
		reg10 = (gspca_dev->exposure->val / 2) * reg10_max
761
				/ (1000 * reg11 / 30) */
762
		reg10 = (gspca_dev->exposure->val * 15 * reg10_max)
763
				/ (1000 * reg11);
764

765 766 767 768
		/* Don't allow this to get below 10 when using autogain, the
		   steps become very large (relatively) when below 10 causing
		   the image to oscilate from much too dark, to much too bright
		   and back again. */
769
		if (gspca_dev->autogain->val && reg10 < 10)
770
			reg10 = 10;
771 772 773 774
		else if (reg10 > reg10_max)
			reg10 = reg10_max;

		/* Write reg 10 and reg11 low nibble */
775
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
776 777
		i2c[3] = reg10;
		i2c[4] |= reg11 - 1;
778 779

		/* If register 11 didn't change, don't change it */
780
		if (sd->reg11 == reg11)
781 782
			i2c[0] = 0xa0;

783 784
		i2c_w(gspca_dev, i2c);
		if (gspca_dev->usb_err == 0)
785
			sd->reg11 = reg11;
786
		break;
787
	}
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
	case SENSOR_PAS202: {
		__u8 i2cpframerate[] =
			{0xb0, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16};
		__u8 i2cpexpo[] =
			{0xa0, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x16};
		const __u8 i2cpdoit[] =
			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
		int framerate_ctrl;

		/* The exposure knee for the autogain algorithm is 200
		   (100 ms / 10 fps on other sensors), for values below this
		   use the control for setting the partial frame expose time,
		   above that use variable framerate. This way we run at max
		   framerate (640x480@7.5 fps, 320x240@10fps) until the knee
		   is reached. Using the variable framerate control above 200
		   is better then playing around with both clockdiv + partial
		   frame exposure times (like we are doing with the ov chips),
		   as that sometimes leads to jumps in the exposure control,
		   which are bad for auto exposure. */
807 808
		if (gspca_dev->exposure->val < 200) {
			i2cpexpo[3] = 255 - (gspca_dev->exposure->val * 255)
809
						/ 200;
810 811 812 813 814
			framerate_ctrl = 500;
		} else {
			/* The PAS202's exposure control goes from 0 - 4095,
			   but anything below 500 causes vsync issues, so scale
			   our 200-1023 to 500-4095 */
815
			framerate_ctrl = (gspca_dev->exposure->val - 200)
816
							* 1000 / 229 +  500;
817 818 819 820
		}

		i2cpframerate[3] = framerate_ctrl >> 6;
		i2cpframerate[4] = framerate_ctrl & 0x3f;
821 822 823
		i2c_w(gspca_dev, i2cpframerate);
		i2c_w(gspca_dev, i2cpexpo);
		i2c_w(gspca_dev, i2cpdoit);
824
		break;
825
	}
826 827 828 829 830 831 832 833 834 835 836
	case SENSOR_PAS106: {
		__u8 i2cpframerate[] =
			{0xb1, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x14};
		__u8 i2cpexpo[] =
			{0xa1, 0x40, 0x05, 0x00, 0x00, 0x00, 0x00, 0x14};
		const __u8 i2cpdoit[] =
			{0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14};
		int framerate_ctrl;

		/* For values below 150 use partial frame exposure, above
		   that use framerate ctrl */
837 838
		if (gspca_dev->exposure->val < 150) {
			i2cpexpo[3] = 150 - gspca_dev->exposure->val;
839 840 841 842 843
			framerate_ctrl = 300;
		} else {
			/* The PAS106's exposure control goes from 0 - 4095,
			   but anything below 300 causes vsync issues, so scale
			   our 150-1023 to 300-4095 */
844
			framerate_ctrl = (gspca_dev->exposure->val - 150)
845
						* 1000 / 230 + 300;
846 847 848 849
		}

		i2cpframerate[3] = framerate_ctrl >> 4;
		i2cpframerate[4] = framerate_ctrl & 0x0f;
850 851 852 853 854 855
		i2c_w(gspca_dev, i2cpframerate);
		i2c_w(gspca_dev, i2cpexpo);
		i2c_w(gspca_dev, i2cpdoit);
		break;
	}
	default:
856
		break;
857 858 859
	}
}

860 861 862 863
static void setfreq(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

864
	if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630) {
865
		/* Framerate adjust register for artificial light 50 hz flicker
866 867 868
		   compensation, for the ov6650 this is identical to ov6630
		   0x2b register, see ov6630 datasheet.
		   0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
869
		__u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
870
		switch (sd->plfreq->val) {
871 872 873 874 875 876
		default:
/*		case 0:			 * no filter*/
/*		case 2:			 * 60 hz */
			i2c[3] = 0;
			break;
		case 1:			/* 50 hz */
877 878
			i2c[3] = (sd->sensor == SENSOR_OV6650)
					? 0x4f : 0x8a;
879 880
			break;
		}
881
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
882
		i2c_w(gspca_dev, i2c);
883 884 885
	}
}

886 887 888
static void do_autogain(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
889
	int deadzone, desired_avg_lum, avg_lum;
890

891 892
	avg_lum = atomic_read(&sd->avg_lum);
	if (avg_lum == -1)
893 894 895 896
		return;

	if (sd->autogain_ignore_frames > 0) {
		sd->autogain_ignore_frames--;
897
		return;
898
	}
899

900 901 902
	/* SIF / VGA sensors have a different autoexposure area and thus
	   different avg_lum values for the same picture brightness */
	if (sensor_data[sd->sensor].flags & F_SIF) {
903 904 905
		deadzone = 500;
		/* SIF sensors tend to overexpose, so keep this small */
		desired_avg_lum = 5000;
906
	} else {
907
		deadzone = 1500;
908
		desired_avg_lum = 13000;
909 910
	}

911 912 913 914 915 916 917 918 919 920 921 922
	if (sd->brightness)
		desired_avg_lum = sd->brightness->val * desired_avg_lum / 127;

	if (gspca_dev->exposure->maximum < 500) {
		if (gspca_coarse_grained_expo_autogain(gspca_dev, avg_lum,
				desired_avg_lum, deadzone))
			sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
	} else {
		int gain_knee = gspca_dev->gain->maximum * 9 / 10;
		if (gspca_expo_autogain(gspca_dev, avg_lum, desired_avg_lum,
				deadzone, gain_knee, sd->exposure_knee))
			sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
923
	}
924 925 926 927 928 929 930 931
}

/* this function is called at probe time */
static int sd_config(struct gspca_dev *gspca_dev,
			const struct usb_device_id *id)
{
	struct sd *sd = (struct sd *) gspca_dev;
	struct cam *cam;
932 933 934 935

	reg_r(gspca_dev, 0x00);
	if (gspca_dev->usb_buf[0] != 0x10)
		return -ENODEV;
936

937
	/* copy the webcam info from the device id */
938 939
	sd->sensor = id->driver_info >> 8;
	sd->bridge = id->driver_info & 0xff;
940

941
	cam = &gspca_dev->cam;
942
	if (!(sensor_data[sd->sensor].flags & F_SIF)) {
943
		cam->cam_mode = vga_mode;
944
		cam->nmodes = ARRAY_SIZE(vga_mode);
945 946
	} else {
		cam->cam_mode = sif_mode;
947
		cam->nmodes = ARRAY_SIZE(sif_mode);
948
	}
949 950
	cam->npkt = 36;			/* 36 packets per ISOC message */

951 952 953
	return 0;
}

954 955
/* this function is called at probe and resume time */
static int sd_init(struct gspca_dev *gspca_dev)
956
{
957 958
	const __u8 stop = 0x09; /* Disable stream turn of LED */

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	reg_w(gspca_dev, 0x01, &stop, 1);

	return gspca_dev->usb_err;
}

static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
{
	struct gspca_dev *gspca_dev =
		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
	struct sd *sd = (struct sd *)gspca_dev;

	gspca_dev->usb_err = 0;

	if (ctrl->id == V4L2_CID_AUTOGAIN && ctrl->is_new && ctrl->val) {
		/* when switching to autogain set defaults to make sure
		   we are on a valid point of the autogain gain /
		   exposure knee graph, and give this change time to
		   take effect before doing autogain. */
		gspca_dev->gain->val = gspca_dev->gain->default_value;
		gspca_dev->exposure->val = gspca_dev->exposure->default_value;
		sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
980 981
	}

982 983
	if (!gspca_dev->streaming)
		return 0;
984

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		setbrightness(gspca_dev);
		break;
	case V4L2_CID_AUTOGAIN:
		if (gspca_dev->exposure->is_new || (ctrl->is_new && ctrl->val))
			setexposure(gspca_dev);
		if (gspca_dev->gain->is_new || (ctrl->is_new && ctrl->val))
			setgain(gspca_dev);
		break;
	case V4L2_CID_POWER_LINE_FREQUENCY:
		setfreq(gspca_dev);
		break;
	default:
		return -EINVAL;
	}
1001
	return gspca_dev->usb_err;
1002 1003
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static const struct v4l2_ctrl_ops sd_ctrl_ops = {
	.s_ctrl = sd_s_ctrl,
};

/* this function is called at probe time */
static int sd_init_controls(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;

	gspca_dev->vdev.ctrl_handler = hdl;
	v4l2_ctrl_handler_init(hdl, 5);

	if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630 ||
	    sd->sensor == SENSOR_PAS106 || sd->sensor == SENSOR_PAS202)
		sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
					V4L2_CID_BRIGHTNESS, 0, 255, 1, 127);

	/* Gain range is sensor dependent */
	switch (sd->sensor) {
	case SENSOR_OV6650:
	case SENSOR_PAS106:
	case SENSOR_PAS202:
		gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
					V4L2_CID_GAIN, 0, 31, 1, 15);
		break;
	case SENSOR_OV7630:
1031 1032 1033 1034
		gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
					V4L2_CID_GAIN, 0, 47, 1, 31);
		break;
	case SENSOR_HV7131D:
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
		gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
					V4L2_CID_GAIN, 0, 63, 1, 31);
		break;
	case SENSOR_TAS5110C:
	case SENSOR_TAS5110D:
	case SENSOR_TAS5130CXX:
		gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
					V4L2_CID_GAIN, 0, 255, 1, 127);
		break;
	default:
		if (sd->bridge == BRIDGE_103) {
			gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
						V4L2_CID_GAIN, 0, 127, 1, 63);
		} else {
			gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
						V4L2_CID_GAIN, 0, 15, 1, 7);
		}
	}

	/* Exposure range is sensor dependent, and not all have exposure */
	switch (sd->sensor) {
	case SENSOR_HV7131D:
		gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
					V4L2_CID_EXPOSURE, 0, 8191, 1, 482);
		sd->exposure_knee = 964;
		break;
	case SENSOR_OV6650:
	case SENSOR_OV7630:
	case SENSOR_PAS106:
	case SENSOR_PAS202:
		gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
					V4L2_CID_EXPOSURE, 0, 1023, 1, 66);
		sd->exposure_knee = 200;
		break;
	case SENSOR_TAS5110C:
	case SENSOR_TAS5110D:
		gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
					V4L2_CID_EXPOSURE, 2, 15, 1, 2);
		break;
	}

	if (gspca_dev->exposure) {
		gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
						V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
	}

	if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630)
		sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
			V4L2_CID_POWER_LINE_FREQUENCY,
			V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0,
			V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);

	if (hdl->error) {
		pr_err("Could not initialize controls\n");
		return hdl->error;
	}

	if (gspca_dev->autogain)
		v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, false);

	return 0;
}

1098
/* -- start the camera -- */
1099
static int sd_start(struct gspca_dev *gspca_dev)
1100 1101
{
	struct sd *sd = (struct sd *) gspca_dev;
1102
	struct cam *cam = &gspca_dev->cam;
1103 1104
	int i, mode;
	__u8 regs[0x31];
1105

1106
	mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	/* Copy registers 0x01 - 0x19 from the template */
	memcpy(&regs[0x01], sensor_data[sd->sensor].bridge_init, 0x19);
	/* Set the mode */
	regs[0x18] |= mode << 4;

	/* Set bridge gain to 1.0 */
	if (sd->bridge == BRIDGE_103) {
		regs[0x05] = 0x20; /* Red */
		regs[0x06] = 0x20; /* Green */
		regs[0x07] = 0x20; /* Blue */
	} else {
		regs[0x10] = 0x00; /* Red and blue */
		regs[0x11] = 0x00; /* Green */
	}

	/* Setup pixel numbers and auto exposure window */
	if (sensor_data[sd->sensor].flags & F_SIF) {
		regs[0x1a] = 0x14; /* HO_SIZE 640, makes no sense */
		regs[0x1b] = 0x0a; /* VO_SIZE 320, makes no sense */
		regs[0x1c] = 0x02; /* AE H-start 64 */
		regs[0x1d] = 0x02; /* AE V-start 64 */
		regs[0x1e] = 0x09; /* AE H-end 288 */
		regs[0x1f] = 0x07; /* AE V-end 224 */
	} else {
		regs[0x1a] = 0x1d; /* HO_SIZE 960, makes no sense */
		regs[0x1b] = 0x10; /* VO_SIZE 512, makes no sense */
1133
		regs[0x1c] = 0x05; /* AE H-start 160 */
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		regs[0x1d] = 0x03; /* AE V-start 96 */
		regs[0x1e] = 0x0f; /* AE H-end 480 */
		regs[0x1f] = 0x0c; /* AE V-end 384 */
	}

	/* Setup the gamma table (only used with the sn9c103 bridge) */
	for (i = 0; i < 16; i++)
		regs[0x20 + i] = i * 16;
	regs[0x20 + i] = 255;

	/* Special cases where some regs depend on mode or bridge */
1145
	switch (sd->sensor) {
1146
	case SENSOR_TAS5130CXX:
1147 1148
		/* FIXME / TESTME
		   probably not mode specific at all most likely the upper
1149 1150
		   nibble of 0x19 is exposure (clock divider) just as with
		   the tas5110, we need someone to test this. */
1151
		regs[0x19] = mode ? 0x23 : 0x43;
1152
		break;
1153 1154 1155 1156 1157 1158 1159 1160 1161
	case SENSOR_OV7630:
		/* FIXME / TESTME for some reason with the 101/102 bridge the
		   clock is set to 12 Mhz (reg1 == 0x04), rather then 24.
		   Also the hstart needs to go from 1 to 2 when using a 103,
		   which is likely related. This does not seem right. */
		if (sd->bridge == BRIDGE_103) {
			regs[0x01] = 0x44; /* Select 24 Mhz clock */
			regs[0x12] = 0x02; /* Set hstart to 2 */
		}
1162
	}
1163
	/* Disable compression when the raw bayer format has been selected */
1164
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
1165
		regs[0x18] &= ~0x80;
1166 1167 1168

	/* Vga mode emulation on SIF sensor? */
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
1169 1170 1171 1172
		regs[0x12] += 16;	/* hstart adjust */
		regs[0x13] += 24;	/* vstart adjust */
		regs[0x15]  = 320 / 16; /* hsize */
		regs[0x16]  = 240 / 16; /* vsize */
1173
	}
1174

1175
	/* reg 0x01 bit 2 video transfert on */
1176
	reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1177
	/* reg 0x17 SensorClk enable inv Clk 0x60 */
1178
	reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1179
	/* Set the registers from the template */
1180 1181
	reg_w(gspca_dev, 0x01, &regs[0x01],
	      (sd->bridge == BRIDGE_103) ? 0x30 : 0x1f);
1182 1183 1184 1185 1186

	/* Init the sensor */
	i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
			sensor_data[sd->sensor].sensor_init_size);

1187
	/* Mode / bridge specific sensor setup */
1188 1189 1190 1191 1192 1193 1194
	switch (sd->sensor) {
	case SENSOR_PAS202: {
		const __u8 i2cpclockdiv[] =
			{0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10};
		/* clockdiv from 4 to 3 (7.5 -> 10 fps) when in low res mode */
		if (mode)
			i2c_w(gspca_dev, i2cpclockdiv);
1195
		break;
1196
	    }
1197 1198 1199 1200 1201 1202 1203 1204 1205
	case SENSOR_OV7630:
		/* FIXME / TESTME We should be able to handle this identical
		   for the 101/102 and the 103 case */
		if (sd->bridge == BRIDGE_103) {
			const __u8 i2c[] = { 0xa0, 0x21, 0x13,
					     0x80, 0x00, 0x00, 0x00, 0x10 };
			i2c_w(gspca_dev, i2c);
		}
		break;
1206
	}
1207
	/* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
1208
	reg_w(gspca_dev, 0x15, &regs[0x15], 2);
1209
	/* compression register */
1210
	reg_w(gspca_dev, 0x18, &regs[0x18], 1);
1211
	/* H_start */
1212
	reg_w(gspca_dev, 0x12, &regs[0x12], 1);
1213
	/* V_START */
1214
	reg_w(gspca_dev, 0x13, &regs[0x13], 1);
1215 1216
	/* reset 0x17 SensorClk enable inv Clk 0x60 */
				/*fixme: ov7630 [17]=68 8f (+20 if 102)*/
1217
	reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1218
	/*MCKSIZE ->3 */	/*fixme: not ov7630*/
1219
	reg_w(gspca_dev, 0x19, &regs[0x19], 1);
1220
	/* AE_STRX AE_STRY AE_ENDX AE_ENDY */
1221
	reg_w(gspca_dev, 0x1c, &regs[0x1c], 4);
1222
	/* Enable video transfert */
1223
	reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1224
	/* Compression */
1225
	reg_w(gspca_dev, 0x18, &regs[0x18], 2);
1226 1227
	msleep(20);

1228 1229
	sd->reg11 = -1;

1230
	setgain(gspca_dev);
1231
	setbrightness(gspca_dev);
1232
	setexposure(gspca_dev);
1233
	setfreq(gspca_dev);
1234

1235
	sd->frames_to_drop = 0;
1236
	sd->autogain_ignore_frames = 0;
1237 1238
	gspca_dev->exp_too_high_cnt = 0;
	gspca_dev->exp_too_low_cnt = 0;
1239
	atomic_set(&sd->avg_lum, -1);
1240
	return gspca_dev->usb_err;
1241 1242 1243 1244
}

static void sd_stopN(struct gspca_dev *gspca_dev)
{
1245
	sd_init(gspca_dev);
1246 1247
}

1248
static u8* find_sof(struct gspca_dev *gspca_dev, u8 *data, int len)
1249
{
1250
	struct sd *sd = (struct sd *) gspca_dev;
1251
	int i, header_size = (sd->bridge == BRIDGE_103) ? 18 : 12;
1252

1253 1254 1255 1256 1257 1258 1259 1260 1261
	/* frames start with:
	 *	ff ff 00 c4 c4 96	synchro
	 *	00		(unknown)
	 *	xx		(frame sequence / size / compression)
	 *	(xx)		(idem - extra byte for sn9c103)
	 *	ll mm		brightness sum inside auto exposure
	 *	ll mm		brightness sum outside auto exposure
	 *	(xx xx xx xx xx)	audio values for snc103
	 */
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	for (i = 0; i < len; i++) {
		switch (sd->header_read) {
		case 0:
			if (data[i] == 0xff)
				sd->header_read++;
			break;
		case 1:
			if (data[i] == 0xff)
				sd->header_read++;
			else
				sd->header_read = 0;
			break;
		case 2:
			if (data[i] == 0x00)
				sd->header_read++;
			else if (data[i] != 0xff)
				sd->header_read = 0;
			break;
		case 3:
			if (data[i] == 0xc4)
				sd->header_read++;
			else if (data[i] == 0xff)
				sd->header_read = 1;
			else
				sd->header_read = 0;
			break;
		case 4:
			if (data[i] == 0xc4)
				sd->header_read++;
			else if (data[i] == 0xff)
				sd->header_read = 1;
			else
				sd->header_read = 0;
			break;
		case 5:
			if (data[i] == 0x96)
				sd->header_read++;
			else if (data[i] == 0xff)
				sd->header_read = 1;
			else
				sd->header_read = 0;
			break;
		default:
			sd->header[sd->header_read - 6] = data[i];
			sd->header_read++;
			if (sd->header_read == header_size) {
				sd->header_read = 0;
				return data + i + 1;
1310 1311 1312
			}
		}
	}
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	return NULL;
}

static void sd_pkt_scan(struct gspca_dev *gspca_dev,
			u8 *data,			/* isoc packet */
			int len)			/* iso packet length */
{
	int fr_h_sz = 0, lum_offset = 0, len_after_sof = 0;
	struct sd *sd = (struct sd *) gspca_dev;
	struct cam *cam = &gspca_dev->cam;
	u8 *sof;

	sof = find_sof(gspca_dev, data, len);
	if (sof) {
		if (sd->bridge == BRIDGE_103) {
			fr_h_sz = 18;
			lum_offset = 3;
		} else {
			fr_h_sz = 12;
			lum_offset = 2;
		}

		len_after_sof = len - (sof - data);
		len = (sof - data) - fr_h_sz;
		if (len < 0)
			len = 0;
	}
1340 1341 1342 1343

	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
		/* In raw mode we sometimes get some garbage after the frame
		   ignore this */
1344
		int used;
1345 1346
		int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;

1347
		used = gspca_dev->image_len;
1348 1349 1350 1351
		if (used + len > size)
			len = size - used;
	}

1352
	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

	if (sof) {
		int  lum = sd->header[lum_offset] +
			  (sd->header[lum_offset + 1] << 8);

		/* When exposure changes midway a frame we
		   get a lum of 0 in this case drop 2 frames
		   as the frames directly after an exposure
		   change have an unstable image. Sometimes lum
		   *really* is 0 (cam used in low light with
		   low exposure setting), so do not drop frames
		   if the previous lum was 0 too. */
		if (lum == 0 && sd->prev_avg_lum != 0) {
			lum = -1;
			sd->frames_to_drop = 2;
			sd->prev_avg_lum = 0;
		} else
			sd->prev_avg_lum = lum;
		atomic_set(&sd->avg_lum, lum);

		if (sd->frames_to_drop)
			sd->frames_to_drop--;
		else
			gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);

		gspca_frame_add(gspca_dev, FIRST_PACKET, sof, len_after_sof);
	}
1380 1381
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
static int sd_querymenu(struct gspca_dev *gspca_dev,
			struct v4l2_querymenu *menu)
{
	switch (menu->id) {
	case V4L2_CID_POWER_LINE_FREQUENCY:
		switch (menu->index) {
		case 0:		/* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
			strcpy((char *) menu->name, "NoFliker");
			return 0;
		case 1:		/* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
			strcpy((char *) menu->name, "50 Hz");
			return 0;
		case 2:		/* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
			strcpy((char *) menu->name, "60 Hz");
			return 0;
		}
		break;
	}
	return -EINVAL;
}

1403
#if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
static int sd_int_pkt_scan(struct gspca_dev *gspca_dev,
			u8 *data,		/* interrupt packet data */
			int len)		/* interrupt packet length */
{
	int ret = -EINVAL;

	if (len == 1 && data[0] == 1) {
		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 1);
		input_sync(gspca_dev->input_dev);
		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
		input_sync(gspca_dev->input_dev);
		ret = 0;
	}

	return ret;
}
#endif

1422
/* sub-driver description */
1423
static const struct sd_desc sd_desc = {
1424 1425
	.name = MODULE_NAME,
	.config = sd_config,
1426
	.init = sd_init,
1427
	.init_controls = sd_init_controls,
1428 1429 1430
	.start = sd_start,
	.stopN = sd_stopN,
	.pkt_scan = sd_pkt_scan,
1431
	.querymenu = sd_querymenu,
1432
	.dq_callback = do_autogain,
1433
#if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
1434 1435
	.int_pkt_scan = sd_int_pkt_scan,
#endif
1436 1437 1438
};

/* -- module initialisation -- */
1439 1440 1441
#define SB(sensor, bridge) \
	.driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge

1442

1443
static const struct usb_device_id device_table[] = {
1444 1445 1446
	{USB_DEVICE(0x0c45, 0x6001), SB(TAS5110C, 102)}, /* TAS5110C1B */
	{USB_DEVICE(0x0c45, 0x6005), SB(TAS5110C, 101)}, /* TAS5110C1B */
	{USB_DEVICE(0x0c45, 0x6007), SB(TAS5110D, 101)}, /* TAS5110D */
1447 1448 1449 1450
	{USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
	{USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
	{USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
	{USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
1451
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1452 1453
	{USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
	{USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
1454
#endif
1455
	{USB_DEVICE(0x0c45, 0x6027), SB(OV7630, 101)}, /* Genius Eye 310 */
1456 1457
	{USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
	{USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
1458 1459
	{USB_DEVICE(0x0c45, 0x602a), SB(HV7131D, 102)},
	/* {USB_DEVICE(0x0c45, 0x602b), SB(MI0343, 102)}, */
1460
	{USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
1461 1462
	{USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
	{USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
1463 1464 1465 1466 1467
	/* {USB_DEVICE(0x0c45, 0x6030), SB(MI03XX, 102)}, */ /* MI0343 MI0360 MI0330 */
	/* {USB_DEVICE(0x0c45, 0x6082), SB(MI03XX, 103)}, */ /* MI0343 MI0360 */
	{USB_DEVICE(0x0c45, 0x6083), SB(HV7131D, 103)},
	{USB_DEVICE(0x0c45, 0x608c), SB(HV7131R, 103)},
	/* {USB_DEVICE(0x0c45, 0x608e), SB(CISVF10, 103)}, */
1468
	{USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
1469 1470
	{USB_DEVICE(0x0c45, 0x60a8), SB(PAS106, 103)},
	{USB_DEVICE(0x0c45, 0x60aa), SB(TAS5130CXX, 103)},
1471
	{USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
1472
	{USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
1473 1474 1475 1476 1477
	{}
};
MODULE_DEVICE_TABLE(usb, device_table);

/* -- device connect -- */
1478
static int sd_probe(struct usb_interface *intf,
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
			const struct usb_device_id *id)
{
	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
				THIS_MODULE);
}

static struct usb_driver sd_driver = {
	.name = MODULE_NAME,
	.id_table = device_table,
	.probe = sd_probe,
	.disconnect = gspca_disconnect,
1490 1491 1492
#ifdef CONFIG_PM
	.suspend = gspca_suspend,
	.resume = gspca_resume,
1493
	.reset_resume = gspca_resume,
1494
#endif
1495 1496
};

1497
module_usb_driver(sd_driver);