mmu-hash64.h 18.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#ifndef _ASM_POWERPC_MMU_HASH64_H_
#define _ASM_POWERPC_MMU_HASH64_H_
/*
 * PowerPC64 memory management structures
 *
 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
 *   PPC64 rework.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <asm/asm-compat.h>
#include <asm/page.h>

18 19 20 21 22 23 24
/*
 * This is necessary to get the definition of PGTABLE_RANGE which we
 * need for various slices related matters. Note that this isn't the
 * complete pgtable.h but only a portion of it.
 */
#include <asm/pgtable-ppc64.h>

25 26 27 28 29 30 31 32 33 34 35 36
/*
 * Segment table
 */

#define STE_ESID_V	0x80
#define STE_ESID_KS	0x20
#define STE_ESID_KP	0x10
#define STE_ESID_N	0x08

#define STE_VSID_SHIFT	12

/* Location of cpu0's segment table */
37
#define STAB0_PAGE	0x8
38 39 40 41 42 43 44 45 46 47 48 49 50
#define STAB0_OFFSET	(STAB0_PAGE << 12)
#define STAB0_PHYS_ADDR	(STAB0_OFFSET + PHYSICAL_START)

#ifndef __ASSEMBLY__
extern char initial_stab[];
#endif /* ! __ASSEMBLY */

/*
 * SLB
 */

#define SLB_NUM_BOLTED		3
#define SLB_CACHE_ENTRIES	8
51
#define SLB_MIN_SIZE		32
52 53 54 55 56 57

/* Bits in the SLB ESID word */
#define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */

/* Bits in the SLB VSID word */
#define SLB_VSID_SHIFT		12
P
Paul Mackerras 已提交
58 59
#define SLB_VSID_SHIFT_1T	24
#define SLB_VSID_SSIZE_SHIFT	62
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#define SLB_VSID_B		ASM_CONST(0xc000000000000000)
#define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000)
#define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000)
#define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
#define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
#define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
#define SLB_VSID_L		ASM_CONST(0x0000000000000100)
#define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
#define SLB_VSID_LP		ASM_CONST(0x0000000000000030)
#define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000)
#define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010)
#define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020)
#define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030)
#define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP)

#define SLB_VSID_KERNEL		(SLB_VSID_KP)
#define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)

#define SLBIE_C			(0x08000000)
P
Paul Mackerras 已提交
79
#define SLBIE_SSIZE_SHIFT	25
80 81 82 83 84 85 86

/*
 * Hash table
 */

#define HPTES_PER_GROUP 8

87
#define HPTE_V_SSIZE_SHIFT	62
88
#define HPTE_V_AVPN_SHIFT	7
89
#define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80)
90
#define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
91
#define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & 0xffffffffffffff80UL))
92 93 94 95 96 97 98 99
#define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010)
#define HPTE_V_LOCK		ASM_CONST(0x0000000000000008)
#define HPTE_V_LARGE		ASM_CONST(0x0000000000000004)
#define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002)
#define HPTE_V_VALID		ASM_CONST(0x0000000000000001)

#define HPTE_R_PP0		ASM_CONST(0x8000000000000000)
#define HPTE_R_TS		ASM_CONST(0x4000000000000000)
100
#define HPTE_R_KEY_HI		ASM_CONST(0x3000000000000000)
101
#define HPTE_R_RPN_SHIFT	12
102
#define HPTE_R_RPN		ASM_CONST(0x0ffffffffffff000)
103 104
#define HPTE_R_PP		ASM_CONST(0x0000000000000003)
#define HPTE_R_N		ASM_CONST(0x0000000000000004)
105 106 107 108 109
#define HPTE_R_G		ASM_CONST(0x0000000000000008)
#define HPTE_R_M		ASM_CONST(0x0000000000000010)
#define HPTE_R_I		ASM_CONST(0x0000000000000020)
#define HPTE_R_W		ASM_CONST(0x0000000000000040)
#define HPTE_R_WIMG		ASM_CONST(0x0000000000000078)
110 111
#define HPTE_R_C		ASM_CONST(0x0000000000000080)
#define HPTE_R_R		ASM_CONST(0x0000000000000100)
112
#define HPTE_R_KEY_LO		ASM_CONST(0x0000000000000e00)
113

114 115 116
#define HPTE_V_1TB_SEG		ASM_CONST(0x4000000000000000)
#define HPTE_V_VRMA_MASK	ASM_CONST(0x4001ffffff000000)

117 118 119 120 121
/* Values for PP (assumes Ks=0, Kp=1) */
#define PP_RWXX	0	/* Supervisor read/write, User none */
#define PP_RWRX 1	/* Supervisor read/write, User read */
#define PP_RWRW 2	/* Supervisor read/write, User read/write */
#define PP_RXRX 3	/* Supervisor read,       User read */
122
#define PP_RXXX	(HPTE_R_PP0 | 2)	/* Supervisor read, user none */
123 124 125

#ifndef __ASSEMBLY__

126
struct hash_pte {
127 128
	unsigned long v;
	unsigned long r;
129
};
130

131
extern struct hash_pte *htab_address;
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
extern unsigned long htab_size_bytes;
extern unsigned long htab_hash_mask;

/*
 * Page size definition
 *
 *    shift : is the "PAGE_SHIFT" value for that page size
 *    sllp  : is a bit mask with the value of SLB L || LP to be or'ed
 *            directly to a slbmte "vsid" value
 *    penc  : is the HPTE encoding mask for the "LP" field:
 *
 */
struct mmu_psize_def
{
	unsigned int	shift;	/* number of bits */
	unsigned int	penc;	/* HPTE encoding */
	unsigned int	tlbiel;	/* tlbiel supported for that page size */
	unsigned long	avpnm;	/* bits to mask out in AVPN in the HPTE */
	unsigned long	sllp;	/* SLB L||LP (exact mask to use in slbmte) */
};

#endif /* __ASSEMBLY__ */

155 156 157 158 159 160 161 162 163
/*
 * Segment sizes.
 * These are the values used by hardware in the B field of
 * SLB entries and the first dword of MMU hashtable entries.
 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
 */
#define MMU_SEGSIZE_256M	0
#define MMU_SEGSIZE_1T		1

164 165 166 167 168 169 170 171 172
/*
 * encode page number shift.
 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
 * 12 bits. This enable us to address upto 76 bit va.
 * For hpt hash from a va we can ignore the page size bits of va and for
 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
 * we work in all cases including 4k page size.
 */
#define VPN_SHIFT	12
P
Paul Mackerras 已提交
173

174 175
#ifndef __ASSEMBLY__

176 177 178 179 180 181 182
static inline int segment_shift(int ssize)
{
	if (ssize == MMU_SEGSIZE_256M)
		return SID_SHIFT;
	return SID_SHIFT_1T;
}

183
/*
P
Paul Mackerras 已提交
184
 * The current system page and segment sizes
185 186 187 188 189
 */
extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
extern int mmu_linear_psize;
extern int mmu_virtual_psize;
extern int mmu_vmalloc_psize;
190
extern int mmu_vmemmap_psize;
191
extern int mmu_io_psize;
P
Paul Mackerras 已提交
192 193
extern int mmu_kernel_ssize;
extern int mmu_highuser_ssize;
194
extern u16 mmu_slb_size;
195
extern unsigned long tce_alloc_start, tce_alloc_end;
196 197 198 199 200 201 202 203 204

/*
 * If the processor supports 64k normal pages but not 64k cache
 * inhibited pages, we have to be prepared to switch processes
 * to use 4k pages when they create cache-inhibited mappings.
 * If this is the case, mmu_ci_restrictions will be set to 1.
 */
extern int mmu_ci_restrictions;

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/*
 * This computes the AVPN and B fields of the first dword of a HPTE,
 * for use when we want to match an existing PTE.  The bottom 7 bits
 * of the returned value are zero.
 */
static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
					     int ssize)
{
	unsigned long v;
	/*
	 * The AVA field omits the low-order 23 bits of the 78 bits VA.
	 * These bits are not needed in the PTE, because the
	 * low-order b of these bits are part of the byte offset
	 * into the virtual page and, if b < 23, the high-order
	 * 23-b of these bits are always used in selecting the
	 * PTEGs to be searched
	 */
	v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
	v <<= HPTE_V_AVPN_SHIFT;
	v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
	return v;
}

228 229 230 231
/*
 * This function sets the AVPN and L fields of the HPTE  appropriately
 * for the page size
 */
232 233
static inline unsigned long hpte_encode_v(unsigned long vpn,
					  int psize, int ssize)
234
{
P
Paul Mackerras 已提交
235
	unsigned long v;
236
	v = hpte_encode_avpn(vpn, psize, ssize);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	if (psize != MMU_PAGE_4K)
		v |= HPTE_V_LARGE;
	return v;
}

/*
 * This function sets the ARPN, and LP fields of the HPTE appropriately
 * for the page size. We assume the pa is already "clean" that is properly
 * aligned for the requested page size
 */
static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
{
	unsigned long r;

	/* A 4K page needs no special encoding */
	if (psize == MMU_PAGE_4K)
		return pa & HPTE_R_RPN;
	else {
		unsigned int penc = mmu_psize_defs[psize].penc;
		unsigned int shift = mmu_psize_defs[psize].shift;
		return (pa & ~((1ul << shift) - 1)) | (penc << 12);
	}
	return r;
}

/*
263
 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
264
 */
265 266
static inline unsigned long hpt_vpn(unsigned long ea,
				    unsigned long vsid, int ssize)
P
Paul Mackerras 已提交
267
{
268 269 270 271 272
	unsigned long mask;
	int s_shift = segment_shift(ssize);

	mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
	return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
P
Paul Mackerras 已提交
273
}
274

P
Paul Mackerras 已提交
275 276 277
/*
 * This hashes a virtual address
 */
278 279
static inline unsigned long hpt_hash(unsigned long vpn,
				     unsigned int shift, int ssize)
280
{
281
	int mask;
P
Paul Mackerras 已提交
282 283
	unsigned long hash, vsid;

284
	/* VPN_SHIFT can be atmost 12 */
P
Paul Mackerras 已提交
285
	if (ssize == MMU_SEGSIZE_256M) {
286 287 288
		mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
		hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
			((vpn & mask) >> (shift - VPN_SHIFT));
P
Paul Mackerras 已提交
289
	} else {
290 291 292 293
		mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
		vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
		hash = vsid ^ (vsid << 25) ^
			((vpn & mask) >> (shift - VPN_SHIFT)) ;
P
Paul Mackerras 已提交
294 295
	}
	return hash & 0x7fffffffffUL;
296 297 298 299
}

extern int __hash_page_4K(unsigned long ea, unsigned long access,
			  unsigned long vsid, pte_t *ptep, unsigned long trap,
300
			  unsigned int local, int ssize, int subpage_prot);
301 302
extern int __hash_page_64K(unsigned long ea, unsigned long access,
			   unsigned long vsid, pte_t *ptep, unsigned long trap,
P
Paul Mackerras 已提交
303
			   unsigned int local, int ssize);
304
struct mm_struct;
305
unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
306
extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
307 308 309
int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
		     pte_t *ptep, unsigned long trap, int local, int ssize,
		     unsigned int shift, unsigned int mmu_psize);
310 311 312
extern void hash_failure_debug(unsigned long ea, unsigned long access,
			       unsigned long vsid, unsigned long trap,
			       int ssize, int psize, unsigned long pte);
313
extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
314
			     unsigned long pstart, unsigned long prot,
P
Paul Mackerras 已提交
315
			     int psize, int ssize);
B
Becky Bruce 已提交
316
extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
317
extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
318 319 320 321

extern void hpte_init_native(void);
extern void hpte_init_lpar(void);
extern void hpte_init_beat(void);
322
extern void hpte_init_beat_v3(void);
323 324 325 326 327 328

extern void stabs_alloc(void);
extern void slb_initialize(void);
extern void slb_flush_and_rebolt(void);
extern void stab_initialize(unsigned long stab);

329
extern void slb_vmalloc_update(void);
330
extern void slb_set_size(u16 size);
331 332 333
#endif /* __ASSEMBLY__ */

/*
334
 * VSID allocation (256MB segment)
335
 *
336 337 338
 * We first generate a 38-bit "proto-VSID".  For kernel addresses this
 * is equal to the ESID | 1 << 37, for user addresses it is:
 *	(context << USER_ESID_BITS) | (esid & ((1U << USER_ESID_BITS) - 1)
339
 *
340 341 342 343 344 345 346
 * This splits the proto-VSID into the below range
 *  0 - (2^(CONTEXT_BITS + USER_ESID_BITS) - 1) : User proto-VSID range
 *  2^(CONTEXT_BITS + USER_ESID_BITS) - 2^(VSID_BITS) : Kernel proto-VSID range
 *
 * We also have CONTEXT_BITS + USER_ESID_BITS = VSID_BITS - 1
 * That is, we assign half of the space to user processes and half
 * to the kernel.
347 348 349 350 351 352
 *
 * The proto-VSIDs are then scrambled into real VSIDs with the
 * multiplicative hash:
 *
 *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
 *
353
 * VSID_MULTIPLIER is prime, so in particular it is
354 355 356 357 358 359
 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
 * Because the modulus is 2^n-1 we can compute it efficiently without
 * a divide or extra multiply (see below).
 *
 * This scheme has several advantages over older methods:
 *
360
 *	- We have VSIDs allocated for every kernel address
361 362 363
 * (i.e. everything above 0xC000000000000000), except the very top
 * segment, which simplifies several things.
 *
364 365 366
 *	- We allow for USER_ESID_BITS significant bits of ESID and
 * CONTEXT_BITS  bits of context for user addresses.
 *  i.e. 64T (46 bits) of address space for up to half a million contexts.
367
 *
368
 *	- The scramble function gives robust scattering in the hash
369 370 371 372 373
 * table (at least based on some initial results).  The previous
 * method was more susceptible to pathological cases giving excessive
 * hash collisions.
 */

A
Aneesh Kumar K.V 已提交
374 375 376 377 378 379
/*
 * This should be computed such that protovosid * vsid_mulitplier
 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
 */
#define VSID_MULTIPLIER_256M	ASM_CONST(12538073)	/* 24-bit prime */
#define VSID_BITS_256M		38
P
Paul Mackerras 已提交
380
#define VSID_MODULUS_256M	((1UL<<VSID_BITS_256M)-1)
381

P
Paul Mackerras 已提交
382
#define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
A
Aneesh Kumar K.V 已提交
383
#define VSID_BITS_1T		26
P
Paul Mackerras 已提交
384 385 386
#define VSID_MODULUS_1T		((1UL<<VSID_BITS_1T)-1)

#define CONTEXT_BITS		19
A
Aneesh Kumar K.V 已提交
387 388
#define USER_ESID_BITS		18
#define USER_ESID_BITS_1T	6
389 390 391 392 393 394 395 396 397 398 399 400 401

#define USER_VSID_RANGE	(1UL << (USER_ESID_BITS + SID_SHIFT))

/*
 * This macro generates asm code to compute the VSID scramble
 * function.  Used in slb_allocate() and do_stab_bolted.  The function
 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
 *
 *	rt = register continaing the proto-VSID and into which the
 *		VSID will be stored
 *	rx = scratch register (clobbered)
 *
 * 	- rt and rx must be different registers
P
Paul Mackerras 已提交
402
 * 	- The answer will end up in the low VSID_BITS bits of rt.  The higher
403 404 405
 * 	  bits may contain other garbage, so you may need to mask the
 * 	  result.
 */
P
Paul Mackerras 已提交
406 407 408
#define ASM_VSID_SCRAMBLE(rt, rx, size)					\
	lis	rx,VSID_MULTIPLIER_##size@h;				\
	ori	rx,rx,VSID_MULTIPLIER_##size@l;				\
409 410
	mulld	rt,rt,rx;		/* rt = rt * MULTIPLIER */	\
									\
P
Paul Mackerras 已提交
411 412
	srdi	rx,rt,VSID_BITS_##size;					\
	clrldi	rt,rt,(64-VSID_BITS_##size);				\
413 414 415 416 417 418 419 420
	add	rt,rt,rx;		/* add high and low bits */	\
	/* Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
	 * the bit clear, r3 already has the answer we want, if it	\
	 * doesn't, the answer is the low 36 bits of r3+1.  So in all	\
	 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
	addi	rx,rt,1;						\
P
Paul Mackerras 已提交
421
	srdi	rx,rx,VSID_BITS_##size;	/* extract 2^VSID_BITS bit */	\
422 423
	add	rt,rt,rx

424 425
/* 4 bits per slice and we have one slice per 1TB */
#define SLICE_ARRAY_SIZE  (PGTABLE_RANGE >> 41)
426 427 428

#ifndef __ASSEMBLY__

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
#ifdef CONFIG_PPC_SUBPAGE_PROT
/*
 * For the sub-page protection option, we extend the PGD with one of
 * these.  Basically we have a 3-level tree, with the top level being
 * the protptrs array.  To optimize speed and memory consumption when
 * only addresses < 4GB are being protected, pointers to the first
 * four pages of sub-page protection words are stored in the low_prot
 * array.
 * Each page of sub-page protection words protects 1GB (4 bytes
 * protects 64k).  For the 3-level tree, each page of pointers then
 * protects 8TB.
 */
struct subpage_prot_table {
	unsigned long maxaddr;	/* only addresses < this are protected */
	unsigned int **protptrs[2];
	unsigned int *low_prot[4];
};

#define SBP_L1_BITS		(PAGE_SHIFT - 2)
#define SBP_L2_BITS		(PAGE_SHIFT - 3)
#define SBP_L1_COUNT		(1 << SBP_L1_BITS)
#define SBP_L2_COUNT		(1 << SBP_L2_BITS)
#define SBP_L2_SHIFT		(PAGE_SHIFT + SBP_L1_BITS)
#define SBP_L3_SHIFT		(SBP_L2_SHIFT + SBP_L2_BITS)

extern void subpage_prot_free(struct mm_struct *mm);
extern void subpage_prot_init_new_context(struct mm_struct *mm);
#else
static inline void subpage_prot_free(struct mm_struct *mm) {}
static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
#endif /* CONFIG_PPC_SUBPAGE_PROT */

461
typedef unsigned long mm_context_id_t;
462
struct spinlock;
463 464 465

typedef struct {
	mm_context_id_t id;
466 467 468 469
	u16 user_psize;		/* page size index */

#ifdef CONFIG_PPC_MM_SLICES
	u64 low_slices_psize;	/* SLB page size encodings */
470
	unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
471 472
#else
	u16 sllp;		/* SLB page size encoding */
473 474
#endif
	unsigned long vdso_base;
475 476 477
#ifdef CONFIG_PPC_SUBPAGE_PROT
	struct subpage_prot_table spt;
#endif /* CONFIG_PPC_SUBPAGE_PROT */
478 479 480 481 482
#ifdef CONFIG_PPC_ICSWX
	struct spinlock *cop_lockp; /* guard acop and cop_pid */
	unsigned long acop;	/* mask of enabled coprocessor types */
	unsigned int cop_pid;	/* pid value used with coprocessors */
#endif /* CONFIG_PPC_ICSWX */
483 484 485 486
} mm_context_t;


#if 0
P
Paul Mackerras 已提交
487 488 489 490 491 492
/*
 * The code below is equivalent to this function for arguments
 * < 2^VSID_BITS, which is all this should ever be called
 * with.  However gcc is not clever enough to compute the
 * modulus (2^n-1) without a second multiply.
 */
493
#define vsid_scramble(protovsid, size) \
P
Paul Mackerras 已提交
494
	((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
495

P
Paul Mackerras 已提交
496 497 498 499 500 501 502 503
#else /* 1 */
#define vsid_scramble(protovsid, size) \
	({								 \
		unsigned long x;					 \
		x = (protovsid) * VSID_MULTIPLIER_##size;		 \
		x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
		(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
	})
504 505
#endif /* 1 */

A
Aneesh Kumar K.V 已提交
506 507 508 509 510 511 512 513 514 515 516
/*
 * This is only valid for addresses >= PAGE_OFFSET
 * The proto-VSID space is divided into two class
 * User:   0 to 2^(CONTEXT_BITS + USER_ESID_BITS) -1
 * kernel: 2^(CONTEXT_BITS + USER_ESID_BITS) to 2^(VSID_BITS) - 1
 *
 * With KERNEL_START at 0xc000000000000000, the proto vsid for
 * the kernel ends up with 0xc00000000 (36 bits). With 64TB
 * support we need to have kernel proto-VSID in the
 * [2^37 to 2^38 - 1] range due to the increased USER_ESID_BITS.
 */
P
Paul Mackerras 已提交
517
static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
518
{
A
Aneesh Kumar K.V 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531
	unsigned long proto_vsid;
	/*
	 * We need to make sure proto_vsid for the kernel is
	 * >= 2^(CONTEXT_BITS + USER_ESID_BITS[_1T])
	 */
	if (ssize == MMU_SEGSIZE_256M) {
		proto_vsid = ea >> SID_SHIFT;
		proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS));
		return vsid_scramble(proto_vsid, 256M);
	}
	proto_vsid = ea >> SID_SHIFT_1T;
	proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS_1T));
	return vsid_scramble(proto_vsid, 1T);
532 533
}

P
Paul Mackerras 已提交
534 535
/* Returns the segment size indicator for a user address */
static inline int user_segment_size(unsigned long addr)
536
{
P
Paul Mackerras 已提交
537 538 539 540
	/* Use 1T segments if possible for addresses >= 1T */
	if (addr >= (1UL << SID_SHIFT_1T))
		return mmu_highuser_ssize;
	return MMU_SEGSIZE_256M;
541 542
}

P
Paul Mackerras 已提交
543 544 545 546 547 548 549 550 551 552 553
/* This is only valid for user addresses (which are below 2^44) */
static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
				     int ssize)
{
	if (ssize == MMU_SEGSIZE_256M)
		return vsid_scramble((context << USER_ESID_BITS)
				     | (ea >> SID_SHIFT), 256M);
	return vsid_scramble((context << USER_ESID_BITS_1T)
			     | (ea >> SID_SHIFT_1T), 1T);
}

554 555 556
#endif /* __ASSEMBLY__ */

#endif /* _ASM_POWERPC_MMU_HASH64_H_ */