file.c 46.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31 32 33 34

#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/spu.h>
35
#include <asm/spu_info.h>
36 37 38 39
#include <asm/uaccess.h>

#include "spufs.h"

40 41
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

42 43 44 45
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
46
	struct spu_context *ctx = i->i_ctx;
47 48

	spin_lock(&ctx->mapping_lock);
49
	file->private_data = ctx;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
	spin_unlock(&ctx->mapping_lock);
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	spin_lock(&ctx->mapping_lock);
	if (!--i->i_openers)
		ctx->local_store = NULL;
	spin_unlock(&ctx->mapping_lock);
66 67 68
	return 0;
}

69 70 71 72 73 74 75 76 77
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

78 79 80 81
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
82
	struct spu_context *ctx = file->private_data;
83
	ssize_t ret;
84

85
	spu_acquire(ctx);
86
	ret = __spufs_mem_read(ctx, buffer, size, pos);
87
	spu_release(ctx);
88 89 90 91 92
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
93
					size_t size, loff_t *ppos)
94 95
{
	struct spu_context *ctx = file->private_data;
96
	char *local_store;
97
	loff_t pos = *ppos;
98
	int ret;
99

100 101 102
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
103
		return -EFBIG;
104 105
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
106 107 108

	spu_acquire(ctx);
	local_store = ctx->ops->get_ls(ctx);
109
	ret = copy_from_user(local_store + pos, buffer, size);
110
	spu_release(ctx);
111 112 113 114 115

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
116 117
}

118 119
static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
120 121
{
	struct spu_context *ctx = vma->vm_file->private_data;
122 123
	unsigned long pfn, offset = address - vma->vm_start;

124 125
	offset += vma->vm_pgoff << PAGE_SHIFT;

126 127 128
	if (offset >= LS_SIZE)
		return NOPFN_SIGBUS;

129 130
	spu_acquire(ctx);

131 132
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
133
							& ~_PAGE_NO_CACHE);
134
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
135 136
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
137 138
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
139
	}
140
	vm_insert_pfn(vma, address, pfn);
141

142
	spu_release(ctx);
143

144
	return NOPFN_REFAULT;
145 146
}

147

148
static struct vm_operations_struct spufs_mem_mmap_vmops = {
149
	.nopfn = spufs_mem_mmap_nopfn,
150 151
};

152 153 154
static int
spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
{
155 156
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
157

158
	vma->vm_flags |= VM_IO | VM_PFNMAP;
159 160 161 162
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
163 164 165
	return 0;
}

166
static const struct file_operations spufs_mem_fops = {
167
	.open	 = spufs_mem_open,
168
	.release = spufs_mem_release,
169 170
	.read    = spufs_mem_read,
	.write   = spufs_mem_write,
171
	.llseek  = generic_file_llseek,
172
	.mmap    = spufs_mem_mmap,
173 174
};

175
static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
176
				    unsigned long address,
177
				    unsigned long ps_offs,
178
				    unsigned long ps_size)
179 180
{
	struct spu_context *ctx = vma->vm_file->private_data;
181
	unsigned long area, offset = address - vma->vm_start;
182 183 184
	int ret;

	offset += vma->vm_pgoff << PAGE_SHIFT;
185
	if (offset >= ps_size)
186
		return NOPFN_SIGBUS;
187

188 189 190
	/* error here usually means a signal.. we might want to test
	 * the error code more precisely though
	 */
191
	ret = spu_acquire_runnable(ctx, 0);
192
	if (ret)
193
		return NOPFN_REFAULT;
194 195

	area = ctx->spu->problem_phys + ps_offs;
196
	vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
197 198
	spu_release(ctx);

199
	return NOPFN_REFAULT;
200 201
}

202
#if SPUFS_MMAP_4K
203 204
static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
					   unsigned long address)
205
{
206
	return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
207 208 209
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
210
	.nopfn = spufs_cntl_mmap_nopfn,
211 212 213 214 215 216 217 218 219 220
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

221
	vma->vm_flags |= VM_IO | VM_PFNMAP;
222
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
223
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
224 225 226 227

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
228 229 230
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
231

232
static u64 spufs_cntl_get(void *data)
233
{
234 235
	struct spu_context *ctx = data;
	u64 val;
236

237 238 239 240 241
	spu_acquire(ctx);
	val = ctx->ops->status_read(ctx);
	spu_release(ctx);

	return val;
242 243
}

244
static void spufs_cntl_set(void *data, u64 val)
245
{
246 247 248 249 250
	struct spu_context *ctx = data;

	spu_acquire(ctx);
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
251 252
}

253
static int spufs_cntl_open(struct inode *inode, struct file *file)
254
{
255 256 257
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

258
	spin_lock(&ctx->mapping_lock);
259
	file->private_data = ctx;
260 261 262
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
	spin_unlock(&ctx->mapping_lock);
263 264
	return simple_attr_open(inode, file, spufs_cntl_get,
					spufs_cntl_set, "0x%08lx");
265 266
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	simple_attr_close(inode, file);

	spin_lock(&ctx->mapping_lock);
	if (!--i->i_openers)
		ctx->cntl = NULL;
	spin_unlock(&ctx->mapping_lock);
	return 0;
}

282
static const struct file_operations spufs_cntl_fops = {
283
	.open = spufs_cntl_open,
284
	.release = spufs_cntl_release,
285 286
	.read = simple_attr_read,
	.write = simple_attr_write,
287 288 289
	.mmap = spufs_cntl_mmap,
};

290 291 292 293 294 295 296 297
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

298 299 300 301 302 303 304 305 306
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

307 308 309 310 311
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
312
	struct spu_context *ctx = file->private_data;
313 314

	spu_acquire_saved(ctx);
315
	ret = __spufs_regs_read(ctx, buffer, size, pos);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

342
static const struct file_operations spufs_regs_fops = {
343 344 345
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
346 347 348
	.llseek  = generic_file_llseek,
};

349 350 351 352 353 354 355 356 357
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

358 359 360 361 362
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
363
	struct spu_context *ctx = file->private_data;
364 365

	spu_acquire_saved(ctx);
366
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

393
static const struct file_operations spufs_fpcr_fops = {
394 395 396 397 398 399
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

400 401 402 403 404 405 406 407 408
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

409 410 411 412 413 414 415 416
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
417 418 419
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
420
	struct spu_context *ctx = file->private_data;
421 422
	u32 mbox_data, __user *udata;
	ssize_t count;
423 424 425 426

	if (len < 4)
		return -EINVAL;

427 428 429 430 431
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

432
	spu_acquire(ctx);
433
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
451
	spu_release(ctx);
452

453 454
	if (!count)
		count = -EAGAIN;
455

456
	return count;
457 458
}

459
static const struct file_operations spufs_mbox_fops = {
460 461 462 463 464 465 466
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
467
	struct spu_context *ctx = file->private_data;
468 469 470 471 472
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

473 474 475 476 477
	spu_acquire(ctx);

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
478 479 480 481 482 483 484

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

485
static const struct file_operations spufs_mbox_stat_fops = {
486 487 488 489 490
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
491
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
492
{
493 494
	return ctx->ops->ibox_read(ctx, data);
}
495

496 497 498
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
499

500
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
501 502
}

503 504
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
505
{
506 507 508 509
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
510 511
}

512 513 514 515 516 517 518 519 520 521 522 523
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
524 525 526
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
527
	struct spu_context *ctx = file->private_data;
528 529
	u32 ibox_data, __user *udata;
	ssize_t count;
530 531 532 533

	if (len < 4)
		return -EINVAL;

534 535 536 537 538
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

539
	spu_acquire(ctx);
540

541 542
	/* wait only for the first element */
	count = 0;
543
	if (file->f_flags & O_NONBLOCK) {
544
		if (!spu_ibox_read(ctx, &ibox_data))
545
			count = -EAGAIN;
546
	} else {
547
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
548
	}
549 550
	if (count)
		goto out;
551

552 553 554 555
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
		goto out;
556

557 558 559 560 561 562 563 564 565 566 567 568 569 570
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
571

572 573
out:
	spu_release(ctx);
574

575
	return count;
576 577 578 579
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
580
	struct spu_context *ctx = file->private_data;
581 582
	unsigned int mask;

583
	poll_wait(file, &ctx->ibox_wq, wait);
584

585 586 587
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
588 589 590 591

	return mask;
}

592
static const struct file_operations spufs_ibox_fops = {
593 594 595 596 597 598 599 600 601
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
602
	struct spu_context *ctx = file->private_data;
603 604 605 606 607
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

608 609 610
	spu_acquire(ctx);
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
611 612 613 614 615 616 617

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

618
static const struct file_operations spufs_ibox_stat_fops = {
619 620 621 622 623
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
624
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
625
{
626 627
	return ctx->ops->wbox_write(ctx, data);
}
628

629 630 631 632
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
633

634
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
635 636 637 638

	return ret;
}

639 640
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
641
{
642 643 644 645
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
646 647
}

648 649 650 651 652 653 654 655 656 657 658 659
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
660 661 662
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
663
	struct spu_context *ctx = file->private_data;
664 665
	u32 wbox_data, __user *udata;
	ssize_t count;
666 667 668 669

	if (len < 4)
		return -EINVAL;

670 671 672 673 674
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
675 676
		return -EFAULT;

677 678
	spu_acquire(ctx);

679 680 681 682 683
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
684
	if (file->f_flags & O_NONBLOCK) {
685
		if (!spu_wbox_write(ctx, wbox_data))
686
			count = -EAGAIN;
687
	} else {
688
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
689 690
	}

691 692
	if (count)
		goto out;
693

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
	/* write aѕ much as possible */
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

out:
	spu_release(ctx);
	return count;
709 710 711 712
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
713
	struct spu_context *ctx = file->private_data;
714 715
	unsigned int mask;

716
	poll_wait(file, &ctx->wbox_wq, wait);
717

718 719 720
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
721 722 723 724

	return mask;
}

725
static const struct file_operations spufs_wbox_fops = {
726 727 728 729 730 731 732 733 734
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
735
	struct spu_context *ctx = file->private_data;
736 737 738 739 740
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

741 742 743
	spu_acquire(ctx);
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
744 745 746 747 748 749 750

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

751
static const struct file_operations spufs_wbox_stat_fops = {
752 753 754 755
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

756 757 758 759
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
760 761

	spin_lock(&ctx->mapping_lock);
762
	file->private_data = ctx;
763 764 765
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
	spin_unlock(&ctx->mapping_lock);
766 767 768
	return nonseekable_open(inode, file);
}

769 770 771 772 773 774 775 776 777 778 779 780 781
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	spin_lock(&ctx->mapping_lock);
	if (!--i->i_openers)
		ctx->signal1 = NULL;
	spin_unlock(&ctx->mapping_lock);
	return 0;
}

782
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
783 784
			size_t len, loff_t *pos)
{
785
	int ret = 0;
786 787 788 789 790
	u32 data;

	if (len < 4)
		return -EINVAL;

791 792 793 794
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
795

796 797 798
	if (!ret)
		goto out;

799 800 801
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

802 803
out:
	return ret;
804 805
}

806 807 808 809 810 811 812 813 814 815 816 817 818
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

	spu_acquire_saved(ctx);
	ret = __spufs_signal1_read(ctx, buf, len, pos);
	spu_release(ctx);

	return ret;
}

819 820 821 822 823 824 825 826 827 828 829 830 831 832
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

833 834 835
	spu_acquire(ctx);
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
836 837 838 839

	return 4;
}

840 841
static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
842
{
843
#if PAGE_SIZE == 0x1000
844
	return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
845 846 847 848
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
849
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
850 851 852
#else
#error unsupported page size
#endif
853 854 855
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
856
	.nopfn = spufs_signal1_mmap_nopfn,
857 858 859 860 861 862 863
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

864
	vma->vm_flags |= VM_IO | VM_PFNMAP;
865
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
866
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
867 868 869 870 871

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

872
static const struct file_operations spufs_signal1_fops = {
873
	.open = spufs_signal1_open,
874
	.release = spufs_signal1_release,
875 876
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
877
	.mmap = spufs_signal1_mmap,
878 879
};

880 881 882 883
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
884 885

	spin_lock(&ctx->mapping_lock);
886
	file->private_data = ctx;
887 888 889
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
	spin_unlock(&ctx->mapping_lock);
890 891 892
	return nonseekable_open(inode, file);
}

893 894 895 896 897 898 899 900 901 902 903 904 905
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	spin_lock(&ctx->mapping_lock);
	if (!--i->i_openers)
		ctx->signal2 = NULL;
	spin_unlock(&ctx->mapping_lock);
	return 0;
}

906
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
907 908
			size_t len, loff_t *pos)
{
909
	int ret = 0;
910 911 912 913 914
	u32 data;

	if (len < 4)
		return -EINVAL;

915 916 917 918
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
919

920 921 922
	if (!ret)
		goto out;

923 924 925
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

926
out:
927 928 929 930 931 932 933 934 935 936 937 938 939 940
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	ret = __spufs_signal2_read(ctx, buf, len, pos);
	spu_release(ctx);

	return ret;
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

957 958 959
	spu_acquire(ctx);
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
960 961 962 963

	return 4;
}

964
#if SPUFS_MMAP_4K
965 966
static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
967
{
968
#if PAGE_SIZE == 0x1000
969
	return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
970 971 972 973
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
974
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
975 976 977
#else
#error unsupported page size
#endif
978 979 980
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
981
	.nopfn = spufs_signal2_mmap_nopfn,
982 983 984 985 986 987 988
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

989
	vma->vm_flags |= VM_IO | VM_PFNMAP;
990
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
991
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
992 993 994 995

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
996 997 998
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
999

1000
static const struct file_operations spufs_signal2_fops = {
1001
	.open = spufs_signal2_open,
1002
	.release = spufs_signal2_release,
1003 1004
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1005
	.mmap = spufs_signal2_mmap,
1006 1007 1008 1009 1010 1011
};

static void spufs_signal1_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

1012 1013 1014
	spu_acquire(ctx);
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1015 1016
}

1017 1018 1019 1020 1021 1022
static u64 __spufs_signal1_type_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->ops->signal1_type_get(ctx);
}

1023 1024 1025
static u64 spufs_signal1_type_get(void *data)
{
	struct spu_context *ctx = data;
1026 1027 1028
	u64 ret;

	spu_acquire(ctx);
1029
	ret = __spufs_signal1_type_get(data);
1030 1031 1032
	spu_release(ctx);

	return ret;
1033 1034 1035 1036 1037 1038 1039 1040
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
					spufs_signal1_type_set, "%llu");

static void spufs_signal2_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

1041 1042 1043
	spu_acquire(ctx);
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1044 1045
}

1046 1047 1048 1049 1050 1051
static u64 __spufs_signal2_type_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->ops->signal2_type_get(ctx);
}

1052 1053 1054
static u64 spufs_signal2_type_get(void *data)
{
	struct spu_context *ctx = data;
1055 1056 1057
	u64 ret;

	spu_acquire(ctx);
1058
	ret = __spufs_signal2_type_get(data);
1059 1060 1061
	spu_release(ctx);

	return ret;
1062 1063 1064 1065
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
					spufs_signal2_type_set, "%llu");

1066
#if SPUFS_MMAP_4K
1067 1068
static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1069
{
1070
	return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1071 1072 1073
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
1074
	.nopfn = spufs_mss_mmap_nopfn,
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1085
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1086
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1087
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1088 1089 1090 1091

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1092 1093 1094
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1095 1096 1097 1098

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1099
	struct spu_context *ctx = i->i_ctx;
1100 1101

	file->private_data = i->i_ctx;
1102 1103 1104 1105 1106

	spin_lock(&ctx->mapping_lock);
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
	spin_unlock(&ctx->mapping_lock);
1107 1108 1109
	return nonseekable_open(inode, file);
}

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	spin_lock(&ctx->mapping_lock);
	if (!--i->i_openers)
		ctx->mss = NULL;
	spin_unlock(&ctx->mapping_lock);
	return 0;
}

1123
static const struct file_operations spufs_mss_fops = {
1124
	.open	 = spufs_mss_open,
1125
	.release = spufs_mss_release,
1126
	.mmap	 = spufs_mss_mmap,
1127 1128
};

1129 1130
static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
					    unsigned long address)
1131
{
1132
	return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1133 1134 1135
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1136
	.nopfn = spufs_psmap_mmap_nopfn,
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1147
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1158
	struct spu_context *ctx = i->i_ctx;
1159

1160
	spin_lock(&ctx->mapping_lock);
1161
	file->private_data = i->i_ctx;
1162 1163 1164
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
	spin_unlock(&ctx->mapping_lock);
1165 1166 1167
	return nonseekable_open(inode, file);
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	spin_lock(&ctx->mapping_lock);
	if (!--i->i_openers)
		ctx->psmap = NULL;
	spin_unlock(&ctx->mapping_lock);
	return 0;
}

1181
static const struct file_operations spufs_psmap_fops = {
1182
	.open	 = spufs_psmap_open,
1183
	.release = spufs_psmap_release,
1184
	.mmap	 = spufs_psmap_mmap,
1185 1186 1187
};


1188
#if SPUFS_MMAP_4K
1189 1190
static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1191
{
1192
	return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1193 1194 1195
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1196
	.nopfn = spufs_mfc_mmap_nopfn,
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1207
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1208
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1209
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1210 1211 1212 1213

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1214 1215 1216
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1230
	spin_lock(&ctx->mapping_lock);
1231
	file->private_data = ctx;
1232 1233 1234
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
	spin_unlock(&ctx->mapping_lock);
1235 1236 1237
	return nonseekable_open(inode, file);
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	spin_lock(&ctx->mapping_lock);
	if (!--i->i_openers)
		ctx->mfc = NULL;
	spin_unlock(&ctx->mapping_lock);
	return 0;
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->mfc_wq);

	pr_debug("%s %s\n", __FUNCTION__, spu->name);
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

	spu_acquire(ctx);
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1432 1433 1434 1435
	ret = spu_acquire_runnable(ctx, 0);
	if (ret)
		goto out;

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
		if (status)
			ret = status;
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ctx->tagwait |= 1 << cmd.tag;
1451
	ret = size;
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

	spu_acquire(ctx);
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	poll_wait(file, &ctx->mfc_wq, wait);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1483
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire(ctx);
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
out:
#else
	ret = 0;
#endif
	spu_release(ctx);

	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1509
	return spufs_mfc_flush(file, NULL);
1510 1511 1512 1513 1514 1515 1516 1517 1518
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1519
static const struct file_operations spufs_mfc_fops = {
1520
	.open	 = spufs_mfc_open,
1521
	.release = spufs_mfc_release,
1522 1523 1524 1525 1526 1527
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1528
	.mmap	 = spufs_mfc_mmap,
1529 1530
};

1531 1532 1533
static void spufs_npc_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
1534 1535 1536
	spu_acquire(ctx);
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1537 1538 1539 1540 1541 1542
}

static u64 spufs_npc_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret;
1543 1544 1545
	spu_acquire(ctx);
	ret = ctx->ops->npc_read(ctx);
	spu_release(ctx);
1546 1547
	return ret;
}
1548 1549
DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
			"0x%llx\n")
1550

1551 1552 1553 1554 1555 1556 1557 1558 1559
static void spufs_decr_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr.slot[0] = (u32) val;
	spu_release(ctx);
}

1560
static u64 __spufs_decr_get(void *data)
1561 1562 1563
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1564 1565 1566 1567 1568 1569
	return lscsa->decr.slot[0];
}

static u64 spufs_decr_get(void *data)
{
	struct spu_context *ctx = data;
1570 1571
	u64 ret;
	spu_acquire_saved(ctx);
1572
	ret = __spufs_decr_get(data);
1573 1574 1575 1576
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1577
			"0x%llx\n")
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

static void spufs_decr_status_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr_status.slot[0] = (u32) val;
	spu_release(ctx);
}

1588
static u64 __spufs_decr_status_get(void *data)
1589 1590 1591
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1592 1593 1594 1595 1596 1597
	return lscsa->decr_status.slot[0];
}

static u64 spufs_decr_status_get(void *data)
{
	struct spu_context *ctx = data;
1598 1599
	u64 ret;
	spu_acquire_saved(ctx);
1600
	ret = __spufs_decr_status_get(data);
1601 1602 1603 1604
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1605
			spufs_decr_status_set, "0x%llx\n")
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

static void spufs_event_mask_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->event_mask.slot[0] = (u32) val;
	spu_release(ctx);
}

1616
static u64 __spufs_event_mask_get(void *data)
1617 1618 1619
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1620 1621 1622 1623 1624 1625
	return lscsa->event_mask.slot[0];
}

static u64 spufs_event_mask_get(void *data)
{
	struct spu_context *ctx = data;
1626 1627
	u64 ret;
	spu_acquire_saved(ctx);
1628
	ret = __spufs_event_mask_get(data);
1629 1630 1631 1632
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1633
			spufs_event_mask_set, "0x%llx\n")
1634

1635
static u64 __spufs_event_status_get(void *data)
1636 1637 1638 1639 1640 1641
{
	struct spu_context *ctx = data;
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
		return state->spu_chnldata_RW[0];
	return 0;
}

static u64 spufs_event_status_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret = 0;

	spu_acquire_saved(ctx);
	ret = __spufs_event_status_get(data);
1653 1654 1655 1656 1657 1658
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
			NULL, "0x%llx\n")

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
static void spufs_srr0_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->srr0.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_srr0_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->srr0.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1679
			"0x%llx\n")
1680

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
static u64 spufs_id_get(void *data)
{
	struct spu_context *ctx = data;
	u64 num;

	spu_acquire(ctx);
	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;
	spu_release(ctx);

	return num;
}
A
Al Viro 已提交
1695
DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n")
1696

1697
static u64 __spufs_object_id_get(void *data)
1698 1699 1700 1701 1702
{
	struct spu_context *ctx = data;
	return ctx->object_id;
}

1703 1704 1705 1706 1707 1708
static u64 spufs_object_id_get(void *data)
{
	/* FIXME: Should there really be no locking here? */
	return __spufs_object_id_get(data);
}

1709 1710 1711 1712 1713 1714 1715 1716 1717
static void spufs_object_id_set(void *data, u64 id)
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
}

DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		spufs_object_id_set, "0x%llx\n");

1718 1719 1720 1721 1722 1723
static u64 __spufs_lslr_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->csa.priv2.spu_lslr_RW;
}

1724 1725 1726 1727 1728 1729
static u64 spufs_lslr_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret;

	spu_acquire_saved(ctx);
1730
	ret = __spufs_lslr_get(data);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	spu_release(ctx);

	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n")

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 mbox_stat;
	u32 data;

	mbox_stat = ctx->csa.prob.mb_stat_R;
	if (mbox_stat & 0x0000ff) {
		data = ctx->csa.prob.pu_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1759 1760 1761
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
1762
	int ret;
1763 1764 1765 1766 1767 1768 1769
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1770
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
1771 1772 1773
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

1774
	return ret;
1775 1776
}

1777
static const struct file_operations spufs_mbox_info_fops = {
1778 1779 1780 1781 1782
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 ibox_stat;
	u32 data;

	ibox_stat = ctx->csa.prob.mb_stat_R;
	if (ibox_stat & 0xff0000) {
		data = ctx->csa.priv2.puint_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1797 1798 1799 1800
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
1801
	int ret;
1802 1803 1804 1805 1806 1807

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1808
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
1809 1810 1811
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

1812
	return ret;
1813 1814
}

1815
static const struct file_operations spufs_ibox_info_fops = {
1816 1817 1818 1819 1820
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

1821 1822
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1823 1824 1825 1826 1827
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1844 1845 1846 1847 1848
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1849
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
1850 1851 1852
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

1853
	return ret;
1854 1855
}

1856
static const struct file_operations spufs_wbox_info_fops = {
1857 1858 1859 1860 1861
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

1862 1863
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return ret;
}

1906
static const struct file_operations spufs_dma_info_fops = {
1907 1908 1909 1910
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

1911 1912
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1913 1914 1915
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
1916
	int ret = sizeof info;
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
1951 1952 1953 1954 1955 1956
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return ret;
}

1957
static const struct file_operations spufs_proxydma_info_fops = {
1958 1959 1960 1961
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

1962 1963
struct tree_descr spufs_dir_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
1964
	{ "regs", &spufs_regs_fops,  0666, },
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
1975
	{ "cntl", &spufs_cntl_fops,  0666, },
1976
	{ "fpcr", &spufs_fpcr_fops, 0666, },
1977 1978 1979 1980 1981
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
1982 1983 1984
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
1985
	{ "event_status", &spufs_event_status_ops, 0444, },
1986
	{ "psmap", &spufs_psmap_fops, 0666, },
1987 1988
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
1989 1990 1991
	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
1992 1993
	{ "dma_info", &spufs_dma_info_fops, 0444, },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
1994 1995
	{},
};
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

struct tree_descr spufs_dir_nosched_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "psmap", &spufs_psmap_fops, 0666, },
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
	{},
};
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041

struct spufs_coredump_reader spufs_coredump_read[] = {
	{ "regs", __spufs_regs_read, NULL, 128 * 16 },
	{ "fpcr", __spufs_fpcr_read, NULL, 16 },
	{ "lslr", NULL, __spufs_lslr_get, 11 },
	{ "decr", NULL, __spufs_decr_get, 11 },
	{ "decr_status", NULL, __spufs_decr_status_get, 11 },
	{ "mem", __spufs_mem_read, NULL, 256 * 1024, },
	{ "signal1", __spufs_signal1_read, NULL, 4 },
	{ "signal1_type", NULL, __spufs_signal1_type_get, 2 },
	{ "signal2", __spufs_signal2_read, NULL, 4 },
	{ "signal2_type", NULL, __spufs_signal2_type_get, 2 },
	{ "event_mask", NULL, __spufs_event_mask_get, 8 },
	{ "event_status", NULL, __spufs_event_status_get, 8 },
	{ "mbox_info", __spufs_mbox_info_read, NULL, 4 },
	{ "ibox_info", __spufs_ibox_info_read, NULL, 4 },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 16 },
	{ "dma_info", __spufs_dma_info_read, NULL, 69 * 8 },
	{ "proxydma_info", __spufs_proxydma_info_read, NULL, 35 * 8 },
	{ "object-id", NULL, __spufs_object_id_get, 19 },
	{ },
};
int spufs_coredump_num_notes = ARRAY_SIZE(spufs_coredump_read) - 1;