page-io.c 10.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * linux/fs/ext4/page-io.c
 *
 * This contains the new page_io functions for ext4
 *
 * Written by Theodore Ts'o, 2010.
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
#include <linux/jbd2.h>
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
#include <linux/mpage.h>
#include <linux/namei.h>
#include <linux/uio.h>
#include <linux/bio.h>
#include <linux/workqueue.h>
#include <linux/kernel.h>
#include <linux/slab.h>

#include "ext4_jbd2.h"
#include "xattr.h"
#include "acl.h"
#include "ext4_extents.h"

static struct kmem_cache *io_page_cachep, *io_end_cachep;

35
int __init ext4_init_pageio(void)
36 37 38 39 40
{
	io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT);
	if (io_page_cachep == NULL)
		return -ENOMEM;
	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
41
	if (io_end_cachep == NULL) {
42 43 44 45 46 47
		kmem_cache_destroy(io_page_cachep);
		return -ENOMEM;
	}
	return 0;
}

48
void ext4_exit_pageio(void)
49 50 51 52 53
{
	kmem_cache_destroy(io_end_cachep);
	kmem_cache_destroy(io_page_cachep);
}

54 55
void ext4_ioend_wait(struct inode *inode)
{
56
	wait_queue_head_t *wq = ext4_ioend_wq(inode);
57 58 59 60

	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
}

61 62 63 64 65 66 67 68 69
static void put_io_page(struct ext4_io_page *io_page)
{
	if (atomic_dec_and_test(&io_page->p_count)) {
		end_page_writeback(io_page->p_page);
		put_page(io_page->p_page);
		kmem_cache_free(io_page_cachep, io_page);
	}
}

70 71 72
void ext4_free_io_end(ext4_io_end_t *io)
{
	int i;
73
	wait_queue_head_t *wq;
74 75 76 77

	BUG_ON(!io);
	if (io->page)
		put_page(io->page);
78 79
	for (i = 0; i < io->num_io_pages; i++)
		put_io_page(io->pages[i]);
80
	io->num_io_pages = 0;
81
	wq = ext4_ioend_wq(io->inode);
82 83 84
	if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count) &&
	    waitqueue_active(wq))
		wake_up_all(wq);
85 86 87 88 89 90 91 92 93 94 95
	kmem_cache_free(io_end_cachep, io);
}

/*
 * check a range of space and convert unwritten extents to written.
 */
int ext4_end_io_nolock(ext4_io_end_t *io)
{
	struct inode *inode = io->inode;
	loff_t offset = io->offset;
	ssize_t size = io->size;
96
	wait_queue_head_t *wq;
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
	int ret = 0;

	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
		   "list->prev 0x%p\n",
		   io, inode->i_ino, io->list.next, io->list.prev);

	if (list_empty(&io->list))
		return ret;

	if (!(io->flag & EXT4_IO_END_UNWRITTEN))
		return ret;

	ret = ext4_convert_unwritten_extents(inode, offset, size);
	if (ret < 0) {
		printk(KERN_EMERG "%s: failed to convert unwritten "
			"extents to written extents, error is %d "
			"io is still on inode %lu aio dio list\n",
		       __func__, ret, inode->i_ino);
		return ret;
	}

	if (io->iocb)
		aio_complete(io->iocb, io->result, 0);
	/* clear the DIO AIO unwritten flag */
121 122 123 124 125 126 127 128 129 130
	if (io->flag & EXT4_IO_END_UNWRITTEN) {
		io->flag &= ~EXT4_IO_END_UNWRITTEN;
		/* Wake up anyone waiting on unwritten extent conversion */
		wq = ext4_ioend_wq(io->inode);
		if (atomic_dec_and_test(&EXT4_I(inode)->i_aiodio_unwritten) &&
		    waitqueue_active(wq)) {
			wake_up_all(wq);
		}
	}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	return ret;
}

/*
 * work on completed aio dio IO, to convert unwritten extents to extents
 */
static void ext4_end_io_work(struct work_struct *work)
{
	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
	struct inode		*inode = io->inode;
	struct ext4_inode_info	*ei = EXT4_I(inode);
	unsigned long		flags;
	int			ret;

	mutex_lock(&inode->i_mutex);
	ret = ext4_end_io_nolock(io);
	if (ret < 0) {
		mutex_unlock(&inode->i_mutex);
		return;
	}

	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	if (!list_empty(&io->list))
		list_del_init(&io->list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
	mutex_unlock(&inode->i_mutex);
	ext4_free_io_end(io);
}

ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
{
162
	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
163
	if (io) {
164 165
		atomic_inc(&EXT4_I(inode)->i_ioend_count);
		io->inode = inode;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
		INIT_WORK(&io->work, ext4_end_io_work);
		INIT_LIST_HEAD(&io->list);
	}
	return io;
}

/*
 * Print an buffer I/O error compatible with the fs/buffer.c.  This
 * provides compatibility with dmesg scrapers that look for a specific
 * buffer I/O error message.  We really need a unified error reporting
 * structure to userspace ala Digital Unix's uerf system, but it's
 * probably not going to happen in my lifetime, due to LKML politics...
 */
static void buffer_io_error(struct buffer_head *bh)
{
	char b[BDEVNAME_SIZE];
	printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
			bdevname(bh->b_bdev, b),
			(unsigned long long)bh->b_blocknr);
}

static void ext4_end_bio(struct bio *bio, int error)
{
	ext4_io_end_t *io_end = bio->bi_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;
	int i;
194
	sector_t bi_sector = bio->bi_sector;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

	BUG_ON(!io_end);
	bio->bi_private = NULL;
	bio->bi_end_io = NULL;
	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
		error = 0;
	bio_put(bio);

	for (i = 0; i < io_end->num_io_pages; i++) {
		struct page *page = io_end->pages[i]->p_page;
		struct buffer_head *bh, *head;
		int partial_write = 0;

		head = page_buffers(page);
		if (error)
			SetPageError(page);
		BUG_ON(!head);
212
		if (head->b_size != PAGE_CACHE_SIZE) {
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
			loff_t offset;
			loff_t io_end_offset = io_end->offset + io_end->size;

			offset = (sector_t) page->index << PAGE_CACHE_SHIFT;
			bh = head;
			do {
				if ((offset >= io_end->offset) &&
				    (offset+bh->b_size <= io_end_offset)) {
					if (error)
						buffer_io_error(bh);

				}
				if (buffer_delay(bh))
					partial_write = 1;
				else if (!buffer_mapped(bh))
					clear_buffer_dirty(bh);
				else if (buffer_dirty(bh))
					partial_write = 1;
				offset += bh->b_size;
				bh = bh->b_this_page;
			} while (bh != head);
		}

		/*
		 * If this is a partial write which happened to make
		 * all buffers uptodate then we can optimize away a
		 * bogus readpage() for the next read(). Here we
		 * 'discover' whether the page went uptodate as a
		 * result of this (potentially partial) write.
		 */
		if (!partial_write)
			SetPageUptodate(page);
245 246

		put_io_page(io_end->pages[i]);
247 248
	}
	io_end->num_io_pages = 0;
249 250 251 252 253 254 255 256 257 258
	inode = io_end->inode;

	if (error) {
		io_end->flag |= EXT4_IO_END_ERROR;
		ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
			     "(offset %llu size %ld starting block %llu)",
			     inode->i_ino,
			     (unsigned long long) io_end->offset,
			     (long) io_end->size,
			     (unsigned long long)
259
			     bi_sector >> (inode->i_blkbits - 9));
260
	}
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
}

void ext4_io_submit(struct ext4_io_submit *io)
{
	struct bio *bio = io->io_bio;

	if (bio) {
		bio_get(io->io_bio);
		submit_bio(io->io_op, io->io_bio);
		BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
		bio_put(io->io_bio);
	}
282
	io->io_bio = NULL;
283
	io->io_op = 0;
284
	io->io_end = NULL;
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
}

static int io_submit_init(struct ext4_io_submit *io,
			  struct inode *inode,
			  struct writeback_control *wbc,
			  struct buffer_head *bh)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	int nvecs = bio_get_nr_vecs(bh->b_bdev);
	struct bio *bio;

	io_end = ext4_init_io_end(inode, GFP_NOFS);
	if (!io_end)
		return -ENOMEM;
	do {
		bio = bio_alloc(GFP_NOIO, nvecs);
		nvecs >>= 1;
	} while (bio == NULL);

	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
	bio->bi_bdev = bh->b_bdev;
	bio->bi_private = io->io_end = io_end;
	bio->bi_end_io = ext4_end_bio;

	io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh);

	io->io_bio = bio;
	io->io_op = (wbc->sync_mode == WB_SYNC_ALL ?
			WRITE_SYNC_PLUG : WRITE);
	io->io_next_block = bh->b_blocknr;
	return 0;
}

static int io_submit_add_bh(struct ext4_io_submit *io,
			    struct ext4_io_page *io_page,
			    struct inode *inode,
			    struct writeback_control *wbc,
			    struct buffer_head *bh)
{
	ext4_io_end_t *io_end;
	int ret;

	if (buffer_new(bh)) {
		clear_buffer_new(bh);
		unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
	}

	if (!buffer_mapped(bh) || buffer_delay(bh)) {
		if (!buffer_mapped(bh))
			clear_buffer_dirty(bh);
		if (io->io_bio)
			ext4_io_submit(io);
		return 0;
	}

	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
submit_and_retry:
		ext4_io_submit(io);
	}
	if (io->io_bio == NULL) {
		ret = io_submit_init(io, inode, wbc, bh);
		if (ret)
			return ret;
	}
	io_end = io->io_end;
	if ((io_end->num_io_pages >= MAX_IO_PAGES) &&
	    (io_end->pages[io_end->num_io_pages-1] != io_page))
		goto submit_and_retry;
	if (buffer_uninit(bh))
		io->io_end->flag |= EXT4_IO_END_UNWRITTEN;
	io->io_end->size += bh->b_size;
	io->io_next_block++;
	ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
	if (ret != bh->b_size)
		goto submit_and_retry;
	if ((io_end->num_io_pages == 0) ||
	    (io_end->pages[io_end->num_io_pages-1] != io_page)) {
		io_end->pages[io_end->num_io_pages++] = io_page;
364
		atomic_inc(&io_page->p_count);
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	}
	return 0;
}

int ext4_bio_write_page(struct ext4_io_submit *io,
			struct page *page,
			int len,
			struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	unsigned block_start, block_end, blocksize;
	struct ext4_io_page *io_page;
	struct buffer_head *bh, *head;
	int ret = 0;

	blocksize = 1 << inode->i_blkbits;

382
	BUG_ON(!PageLocked(page));
383 384 385 386 387 388 389 390 391 392 393
	BUG_ON(PageWriteback(page));
	set_page_writeback(page);
	ClearPageError(page);

	io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS);
	if (!io_page) {
		set_page_dirty(page);
		unlock_page(page);
		return -ENOMEM;
	}
	io_page->p_page = page;
394
	atomic_set(&io_page->p_count, 1);
395 396 397 398 399
	get_page(page);

	for (bh = head = page_buffers(page), block_start = 0;
	     bh != head || !block_start;
	     block_start = block_end, bh = bh->b_this_page) {
400

401 402 403 404 405 406
		block_end = block_start + blocksize;
		if (block_start >= len) {
			clear_buffer_dirty(bh);
			set_buffer_uptodate(bh);
			continue;
		}
407
		clear_buffer_dirty(bh);
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
		ret = io_submit_add_bh(io, io_page, inode, wbc, bh);
		if (ret) {
			/*
			 * We only get here on ENOMEM.  Not much else
			 * we can do but mark the page as dirty, and
			 * better luck next time.
			 */
			set_page_dirty(page);
			break;
		}
	}
	unlock_page(page);
	/*
	 * If the page was truncated before we could do the writeback,
	 * or we had a memory allocation error while trying to write
	 * the first buffer head, we won't have submitted any pages for
	 * I/O.  In that case we need to make sure we've cleared the
	 * PageWriteback bit from the page to prevent the system from
	 * wedging later on.
	 */
428
	put_io_page(io_page);
429 430
	return ret;
}