tda18271-fe.c 18.9 KB
Newer Older
1
/*
2
    tda18271-fe.c - driver for the Philips / NXP TDA18271 silicon tuner
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

    Copyright (C) 2007 Michael Krufky (mkrufky@linuxtv.org)

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include <linux/delay.h>
#include <linux/videodev2.h>
23
#include "tuner-driver.h"
24 25

#include "tda18271.h"
26
#include "tda18271-priv.h"
27

28 29
static int tda18271_debug;
module_param_named(debug, tda18271_debug, int, 0644);
30 31
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");

32
#define dprintk(level, fmt, arg...) do {\
33
	if (tda18271_debug >= level) \
34
		printk(KERN_DEBUG "%s: " fmt, __FUNCTION__, ##arg); } while (0)
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

/*---------------------------------------------------------------------*/

#define TDA18271_ANALOG  0
#define TDA18271_DIGITAL 1

struct tda18271_priv {
	u8 i2c_addr;
	struct i2c_adapter *i2c_adap;
	unsigned char tda18271_regs[TDA18271_NUM_REGS];
	int mode;

	u32 frequency;
	u32 bandwidth;
};

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
static int tda18271_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
	struct tda18271_priv *priv = fe->tuner_priv;
	struct analog_tuner_ops *ops = fe->ops.analog_demod_ops;
	int ret = 0;

	switch (priv->mode) {
	case TDA18271_ANALOG:
		if (ops && ops->i2c_gate_ctrl)
			ret = ops->i2c_gate_ctrl(fe, enable);
		break;
	case TDA18271_DIGITAL:
		if (fe->ops.i2c_gate_ctrl)
			ret = fe->ops.i2c_gate_ctrl(fe, enable);
		break;
	}

	return ret;
};

71 72 73 74 75 76 77
/*---------------------------------------------------------------------*/

static void tda18271_dump_regs(struct dvb_frontend *fe)
{
	struct tda18271_priv *priv = fe->tuner_priv;
	unsigned char *regs = priv->tda18271_regs;

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
	dprintk(1, "=== TDA18271 REG DUMP ===\n");
	dprintk(1, "ID_BYTE            = 0x%x\n", 0xff & regs[R_ID]);
	dprintk(1, "THERMO_BYTE        = 0x%x\n", 0xff & regs[R_TM]);
	dprintk(1, "POWER_LEVEL_BYTE   = 0x%x\n", 0xff & regs[R_PL]);
	dprintk(1, "EASY_PROG_BYTE_1   = 0x%x\n", 0xff & regs[R_EP1]);
	dprintk(1, "EASY_PROG_BYTE_2   = 0x%x\n", 0xff & regs[R_EP2]);
	dprintk(1, "EASY_PROG_BYTE_3   = 0x%x\n", 0xff & regs[R_EP3]);
	dprintk(1, "EASY_PROG_BYTE_4   = 0x%x\n", 0xff & regs[R_EP4]);
	dprintk(1, "EASY_PROG_BYTE_5   = 0x%x\n", 0xff & regs[R_EP5]);
	dprintk(1, "CAL_POST_DIV_BYTE  = 0x%x\n", 0xff & regs[R_CPD]);
	dprintk(1, "CAL_DIV_BYTE_1     = 0x%x\n", 0xff & regs[R_CD1]);
	dprintk(1, "CAL_DIV_BYTE_2     = 0x%x\n", 0xff & regs[R_CD2]);
	dprintk(1, "CAL_DIV_BYTE_3     = 0x%x\n", 0xff & regs[R_CD3]);
	dprintk(1, "MAIN_POST_DIV_BYTE = 0x%x\n", 0xff & regs[R_MPD]);
	dprintk(1, "MAIN_DIV_BYTE_1    = 0x%x\n", 0xff & regs[R_MD1]);
	dprintk(1, "MAIN_DIV_BYTE_2    = 0x%x\n", 0xff & regs[R_MD2]);
	dprintk(1, "MAIN_DIV_BYTE_3    = 0x%x\n", 0xff & regs[R_MD3]);
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
}

static void tda18271_read_regs(struct dvb_frontend *fe)
{
	struct tda18271_priv *priv = fe->tuner_priv;
	unsigned char *regs = priv->tda18271_regs;
	unsigned char buf = 0x00;
	int ret;
	struct i2c_msg msg[] = {
		{ .addr = priv->i2c_addr, .flags = 0,
		  .buf = &buf, .len = 1 },
		{ .addr = priv->i2c_addr, .flags = I2C_M_RD,
		  .buf = regs, .len = 16 }
	};

110
	tda18271_i2c_gate_ctrl(fe, 1);
111 112 113 114

	/* read all registers */
	ret = i2c_transfer(priv->i2c_adap, msg, 2);

115
	tda18271_i2c_gate_ctrl(fe, 0);
116 117 118 119 120

	if (ret != 2)
		printk("ERROR: %s: i2c_transfer returned: %d\n",
		       __FUNCTION__, ret);

121
	if (tda18271_debug > 2)
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
		tda18271_dump_regs(fe);
}

static void tda18271_write_regs(struct dvb_frontend *fe, int idx, int len)
{
	struct tda18271_priv *priv = fe->tuner_priv;
	unsigned char *regs = priv->tda18271_regs;
	unsigned char buf[TDA18271_NUM_REGS+1];
	struct i2c_msg msg = { .addr = priv->i2c_addr, .flags = 0,
			       .buf = buf, .len = len+1 };
	int i, ret;

	BUG_ON((len == 0) || (idx+len > sizeof(buf)));

	buf[0] = idx;
	for (i = 1; i <= len; i++) {
		buf[i] = regs[idx-1+i];
	}

141
	tda18271_i2c_gate_ctrl(fe, 1);
142 143 144 145

	/* write registers */
	ret = i2c_transfer(priv->i2c_adap, &msg, 1);

146
	tda18271_i2c_gate_ctrl(fe, 0);
147 148 149 150 151 152 153 154

	if (ret != 1)
		printk(KERN_WARNING "ERROR: %s: i2c_transfer returned: %d\n",
		       __FUNCTION__, ret);
}

/*---------------------------------------------------------------------*/

155
static int tda18271_init_regs(struct dvb_frontend *fe)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
{
	struct tda18271_priv *priv = fe->tuner_priv;
	unsigned char *regs = priv->tda18271_regs;

	printk(KERN_INFO "tda18271: initializing registers\n");

	/* initialize registers */
	regs[R_ID]   = 0x83;
	regs[R_TM]   = 0x08;
	regs[R_PL]   = 0x80;
	regs[R_EP1]  = 0xc6;
	regs[R_EP2]  = 0xdf;
	regs[R_EP3]  = 0x16;
	regs[R_EP4]  = 0x60;
	regs[R_EP5]  = 0x80;
	regs[R_CPD]  = 0x80;
	regs[R_CD1]  = 0x00;
	regs[R_CD2]  = 0x00;
	regs[R_CD3]  = 0x00;
	regs[R_MPD]  = 0x00;
	regs[R_MD1]  = 0x00;
	regs[R_MD2]  = 0x00;
	regs[R_MD3]  = 0x00;
	regs[R_EB1]  = 0xff;
	regs[R_EB2]  = 0x01;
	regs[R_EB3]  = 0x84;
	regs[R_EB4]  = 0x41;
	regs[R_EB5]  = 0x01;
	regs[R_EB6]  = 0x84;
	regs[R_EB7]  = 0x40;
	regs[R_EB8]  = 0x07;
	regs[R_EB9]  = 0x00;
	regs[R_EB10] = 0x00;
	regs[R_EB11] = 0x96;
	regs[R_EB12] = 0x0f;
	regs[R_EB13] = 0xc1;
	regs[R_EB14] = 0x00;
	regs[R_EB15] = 0x8f;
	regs[R_EB16] = 0x00;
	regs[R_EB17] = 0x00;
	regs[R_EB18] = 0x00;
	regs[R_EB19] = 0x00;
	regs[R_EB20] = 0x20;
	regs[R_EB21] = 0x33;
	regs[R_EB22] = 0x48;
	regs[R_EB23] = 0xb0;

	tda18271_write_regs(fe, 0x00, TDA18271_NUM_REGS);
	/* setup AGC1 & AGC2 */
	regs[R_EB17] = 0x00;
	tda18271_write_regs(fe, R_EB17, 1);
	regs[R_EB17] = 0x03;
	tda18271_write_regs(fe, R_EB17, 1);
	regs[R_EB17] = 0x43;
	tda18271_write_regs(fe, R_EB17, 1);
	regs[R_EB17] = 0x4c;
	tda18271_write_regs(fe, R_EB17, 1);

	regs[R_EB20] = 0xa0;
	tda18271_write_regs(fe, R_EB20, 1);
	regs[R_EB20] = 0xa7;
	tda18271_write_regs(fe, R_EB20, 1);
	regs[R_EB20] = 0xe7;
	tda18271_write_regs(fe, R_EB20, 1);
	regs[R_EB20] = 0xec;
	tda18271_write_regs(fe, R_EB20, 1);

	/* image rejection calibration */

	/* low-band */
	regs[R_EP3] = 0x1f;
	regs[R_EP4] = 0x66;
	regs[R_EP5] = 0x81;
	regs[R_CPD] = 0xcc;
	regs[R_CD1] = 0x6c;
	regs[R_CD2] = 0x00;
	regs[R_CD3] = 0x00;
	regs[R_MPD] = 0xcd;
	regs[R_MD1] = 0x77;
	regs[R_MD2] = 0x08;
	regs[R_MD3] = 0x00;

	tda18271_write_regs(fe, R_EP3, 11);
	msleep(5); /* pll locking */

	regs[R_EP1] = 0xc6;
	tda18271_write_regs(fe, R_EP1, 1);
	msleep(5); /* wanted low measurement */

	regs[R_EP3] = 0x1f;
	regs[R_EP4] = 0x66;
	regs[R_EP5] = 0x85;
	regs[R_CPD] = 0xcb;
	regs[R_CD1] = 0x66;
	regs[R_CD2] = 0x70;
	regs[R_CD3] = 0x00;

	tda18271_write_regs(fe, R_EP3, 7);
	msleep(5); /* pll locking */

	regs[R_EP2] = 0xdf;
	tda18271_write_regs(fe, R_EP2, 1);
	msleep(30); /* image low optimization completion */

	/* mid-band */
	regs[R_EP3] = 0x1f;
	regs[R_EP4] = 0x66;
	regs[R_EP5] = 0x82;
	regs[R_CPD] = 0xa8;
	regs[R_CD1] = 0x66;
	regs[R_CD2] = 0x00;
	regs[R_CD3] = 0x00;
	regs[R_MPD] = 0xa9;
	regs[R_MD1] = 0x73;
	regs[R_MD2] = 0x1a;
	regs[R_MD3] = 0x00;

	tda18271_write_regs(fe, R_EP3, 11);
	msleep(5); /* pll locking */

	regs[R_EP1] = 0xc6;
	tda18271_write_regs(fe, R_EP1, 1);
	msleep(5); /* wanted mid measurement */

	regs[R_EP3] = 0x1f;
	regs[R_EP4] = 0x66;
	regs[R_EP5] = 0x86;
	regs[R_CPD] = 0xa8;
	regs[R_CD1] = 0x66;
	regs[R_CD2] = 0xa0;
	regs[R_CD3] = 0x00;

	tda18271_write_regs(fe, R_EP3, 7);
	msleep(5); /* pll locking */

	regs[R_EP2] = 0xdf;
	tda18271_write_regs(fe, R_EP2, 1);
	msleep(30); /* image mid optimization completion */

	/* high-band */
	regs[R_EP3] = 0x1f;
	regs[R_EP4] = 0x66;
	regs[R_EP5] = 0x83;
	regs[R_CPD] = 0x98;
	regs[R_CD1] = 0x65;
	regs[R_CD2] = 0x00;
	regs[R_CD3] = 0x00;
	regs[R_MPD] = 0x99;
	regs[R_MD1] = 0x71;
	regs[R_MD2] = 0xcd;
	regs[R_MD3] = 0x00;

	tda18271_write_regs(fe, R_EP3, 11);
	msleep(5); /* pll locking */

	regs[R_EP1] = 0xc6;
	tda18271_write_regs(fe, R_EP1, 1);
	msleep(5); /* wanted high measurement */

	regs[R_EP3] = 0x1f;
	regs[R_EP4] = 0x66;
	regs[R_EP5] = 0x87;
	regs[R_CPD] = 0x98;
	regs[R_CD1] = 0x65;
	regs[R_CD2] = 0x50;
	regs[R_CD3] = 0x00;

	tda18271_write_regs(fe, R_EP3, 7);
	msleep(5); /* pll locking */

	regs[R_EP2] = 0xdf;

	tda18271_write_regs(fe, R_EP2, 1);
	msleep(30); /* image high optimization completion */

	regs[R_EP4] = 0x64;
	tda18271_write_regs(fe, R_EP4, 1);

	regs[R_EP1] = 0xc6;
	tda18271_write_regs(fe, R_EP1, 1);
336 337

	return 0;
338 339
}

340 341 342 343 344 345 346 347 348 349 350 351 352 353
static int tda18271_init(struct dvb_frontend *fe)
{
	struct tda18271_priv *priv = fe->tuner_priv;
	unsigned char *regs = priv->tda18271_regs;

	tda18271_read_regs(fe);

	/* test IR_CAL_OK to see if we need init */
	if ((regs[R_EP1] & 0x08) == 0)
		tda18271_init_regs(fe);

	return 0;
}

354 355 356 357 358 359 360 361
static int tda18271_tune(struct dvb_frontend *fe,
			 u32 ifc, u32 freq, u32 bw, u8 std)
{
	struct tda18271_priv *priv = fe->tuner_priv;
	unsigned char *regs = priv->tda18271_regs;
	u32 div, N = 0;
	int i;

362
	tda18271_init(fe);
363

364
	dprintk(1, "freq = %d, ifc = %d\n", freq, ifc);
365 366 367 368 369 370 371 372 373 374

	/* RF tracking filter calibration */

	/* calculate BP_Filter */
	i = 0;
	while ((tda18271_bp_filter[i].rfmax * 1000) < freq) {
		if (tda18271_bp_filter[i + 1].rfmax == 0)
			break;
		i++;
	}
375
	dprintk(2, "bp filter = 0x%x, i = %d\n", tda18271_bp_filter[i].val, i);
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

	regs[R_EP1]  &= ~0x07; /* clear bp filter bits */
	regs[R_EP1]  |= tda18271_bp_filter[i].val;
	tda18271_write_regs(fe, R_EP1, 1);

	regs[R_EB4]  &= 0x07;
	regs[R_EB4]  |= 0x60;
	tda18271_write_regs(fe, R_EB4, 1);

	regs[R_EB7]   = 0x60;
	tda18271_write_regs(fe, R_EB7, 1);

	regs[R_EB14]  = 0x00;
	tda18271_write_regs(fe, R_EB14, 1);

	regs[R_EB20]  = 0xcc;
	tda18271_write_regs(fe, R_EB20, 1);

	/* set CAL mode to RF tracking filter calibration */
	regs[R_EB4]  |= 0x03;

	/* calculate CAL PLL */

	switch (priv->mode) {
	case TDA18271_ANALOG:
		N = freq - 1250000;
		break;
	case TDA18271_DIGITAL:
		N = freq + bw / 2;
		break;
	}

	i = 0;
	while ((tda18271_cal_pll[i].lomax * 1000) < N) {
		if (tda18271_cal_pll[i + 1].lomax == 0)
			break;
		i++;
	}
414 415
	dprintk(2, "cal pll, pd = 0x%x, d = 0x%x, i = %d\n",
		tda18271_cal_pll[i].pd, tda18271_cal_pll[i].d, i);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

	regs[R_CPD]   = tda18271_cal_pll[i].pd;

	div =  ((tda18271_cal_pll[i].d * (N / 1000)) << 7) / 125;
	regs[R_CD1]   = 0xff & (div >> 16);
	regs[R_CD2]   = 0xff & (div >> 8);
	regs[R_CD3]   = 0xff & div;

	/* calculate MAIN PLL */

	switch (priv->mode) {
	case TDA18271_ANALOG:
		N = freq - 250000;
		break;
	case TDA18271_DIGITAL:
		N = freq + bw / 2 + 1000000;
		break;
	}

	i = 0;
	while ((tda18271_main_pll[i].lomax * 1000) < N) {
		if (tda18271_main_pll[i + 1].lomax == 0)
			break;
		i++;
	}
441 442
	dprintk(2, "main pll, pd = 0x%x, d = 0x%x, i = %d\n",
		tda18271_main_pll[i].pd, tda18271_main_pll[i].d, i);
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

	regs[R_MPD]   = (0x7f & tda18271_main_pll[i].pd);

	switch (priv->mode) {
	case TDA18271_ANALOG:
		regs[R_MPD]  &= ~0x08;
		break;
	case TDA18271_DIGITAL:
		regs[R_MPD]  |=  0x08;
		break;
	}

	div =  ((tda18271_main_pll[i].d * (N / 1000)) << 7) / 125;
	regs[R_MD1]   = 0xff & (div >> 16);
	regs[R_MD2]   = 0xff & (div >> 8);
	regs[R_MD3]   = 0xff & div;

	tda18271_write_regs(fe, R_EP3, 11);
	msleep(5); /* RF tracking filter calibration initialization */

	/* search for K,M,CO for RF Calibration */
	i = 0;
	while ((tda18271_km[i].rfmax * 1000) < freq) {
		if (tda18271_km[i + 1].rfmax == 0)
			break;
		i++;
	}
470
	dprintk(2, "km = 0x%x, i = %d\n", tda18271_km[i].val, i);
471 472 473 474 475 476 477 478 479 480 481 482

	regs[R_EB13] &= 0x83;
	regs[R_EB13] |= tda18271_km[i].val;
	tda18271_write_regs(fe, R_EB13, 1);

	/* search for RF_BAND */
	i = 0;
	while ((tda18271_rf_band[i].rfmax * 1000) < freq) {
		if (tda18271_rf_band[i + 1].rfmax == 0)
			break;
		i++;
	}
483
	dprintk(2, "rf band = 0x%x, i = %d\n", tda18271_rf_band[i].val, i);
484 485 486 487 488 489 490 491 492 493 494

	regs[R_EP2]  &= ~0xe0; /* clear rf band bits */
	regs[R_EP2]  |= (tda18271_rf_band[i].val << 5);

	/* search for Gain_Taper */
	i = 0;
	while ((tda18271_gain_taper[i].rfmax * 1000) < freq) {
		if (tda18271_gain_taper[i + 1].rfmax == 0)
			break;
		i++;
	}
495 496
	dprintk(2, "gain taper = 0x%x, i = %d\n",
		tda18271_gain_taper[i].val, i);
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529

	regs[R_EP2]  &= ~0x1f; /* clear gain taper bits */
	regs[R_EP2]  |= tda18271_gain_taper[i].val;

	tda18271_write_regs(fe, R_EP2, 1);
	tda18271_write_regs(fe, R_EP1, 1);
	tda18271_write_regs(fe, R_EP2, 1);
	tda18271_write_regs(fe, R_EP1, 1);

	regs[R_EB4]  &= 0x07;
	regs[R_EB4]  |= 0x40;
	tda18271_write_regs(fe, R_EB4, 1);

	regs[R_EB7]   = 0x40;
	tda18271_write_regs(fe, R_EB7, 1);
	msleep(10);

	regs[R_EB20]  = 0xec;
	tda18271_write_regs(fe, R_EB20, 1);
	msleep(60); /* RF tracking filter calibration completion */

	regs[R_EP4]  &= ~0x03; /* set cal mode to normal */
	tda18271_write_regs(fe, R_EP4, 1);

	tda18271_write_regs(fe, R_EP1, 1);

	/* RF tracking filer correction for VHF_Low band */
	i = 0;
	while ((tda18271_rf_cal[i].rfmax * 1000) < freq) {
		if (tda18271_rf_cal[i].rfmax == 0)
			break;
		i++;
	}
530
	dprintk(2, "rf cal = 0x%x, i = %d\n", tda18271_rf_cal[i].val, i);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583

	/* VHF_Low band only */
	if (tda18271_rf_cal[i].rfmax != 0) {
		regs[R_EB14]   = tda18271_rf_cal[i].val;
		tda18271_write_regs(fe, R_EB14, 1);
	}

	/* Channel Configuration */

	switch (priv->mode) {
	case TDA18271_ANALOG:
		regs[R_EB22]  = 0x2c;
		break;
	case TDA18271_DIGITAL:
		regs[R_EB22]  = 0x37;
		break;
	}
	tda18271_write_regs(fe, R_EB22, 1);

	regs[R_EP1]  |= 0x40; /* set dis power level on */

	/* set standard */
	regs[R_EP3]  &= ~0x1f; /* clear std bits */

	/* see table 22 */
	regs[R_EP3]  |= std;

	regs[R_EP4]  &= ~0x03; /* set cal mode to normal */

	regs[R_EP4]  &= ~0x1c; /* clear if level bits */
	switch (priv->mode) {
	case TDA18271_ANALOG:
		regs[R_MPD]  &= ~0x80; /* IF notch = 0 */
		break;
	case TDA18271_DIGITAL:
		regs[R_EP4]  |= 0x04;
		regs[R_MPD]  |= 0x80;
		break;
	}

	regs[R_EP4]  &= ~0x80; /* turn this bit on only for fm */

	/* FIXME: image rejection validity EP5[2:0] */

	/* calculate MAIN PLL */
	N = freq + ifc;

	i = 0;
	while ((tda18271_main_pll[i].lomax * 1000) < N) {
		if (tda18271_main_pll[i + 1].lomax == 0)
			break;
		i++;
	}
584 585
	dprintk(2, "main pll, pd = 0x%x, d = 0x%x, i = %d\n",
		tda18271_main_pll[i].pd, tda18271_main_pll[i].d, i);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

	regs[R_MPD]   = (0x7f & tda18271_main_pll[i].pd);
	switch (priv->mode) {
	case TDA18271_ANALOG:
		regs[R_MPD]  &= ~0x08;
		break;
	case TDA18271_DIGITAL:
		regs[R_MPD]  |= 0x08;
		break;
	}

	div =  ((tda18271_main_pll[i].d * (N / 1000)) << 7) / 125;
	regs[R_MD1]   = 0xff & (div >> 16);
	regs[R_MD2]   = 0xff & (div >> 8);
	regs[R_MD3]   = 0xff & div;

	tda18271_write_regs(fe, R_TM, 15);
	msleep(5);
604

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	return 0;
}

/* ------------------------------------------------------------------ */

static int tda18271_set_params(struct dvb_frontend *fe,
			       struct dvb_frontend_parameters *params)
{
	struct tda18271_priv *priv = fe->tuner_priv;
	u8 std;
	u32 bw, sgIF = 0;

	u32 freq = params->frequency;

	priv->mode = TDA18271_DIGITAL;

	/* see table 22 */
	if (fe->ops.info.type == FE_ATSC) {
		switch (params->u.vsb.modulation) {
		case VSB_8:
		case VSB_16:
			std = 0x1b; /* device-specific (spec says 0x1c) */
			sgIF = 5380000;
			break;
		case QAM_64:
		case QAM_256:
			std = 0x18; /* device-specific (spec says 0x1d) */
			sgIF = 4000000;
			break;
		default:
			printk(KERN_WARNING "%s: modulation not set!\n",
			       __FUNCTION__);
			return -EINVAL;
		}
		freq += 1750000; /* Adjust to center (+1.75MHZ) */
		bw = 6000000;
	} else if (fe->ops.info.type == FE_OFDM) {
		switch (params->u.ofdm.bandwidth) {
		case BANDWIDTH_6_MHZ:
644
			std = 0x1b; /* device-specific (spec says 0x1c) */
645
			bw = 6000000;
646
			sgIF = 3300000;
647 648
			break;
		case BANDWIDTH_7_MHZ:
649
			std = 0x19; /* device-specific (spec says 0x1d) */
650
			bw = 7000000;
651
			sgIF = 3800000;
652 653
			break;
		case BANDWIDTH_8_MHZ:
654
			std = 0x1a; /* device-specific (spec says 0x1e) */
655
			bw = 8000000;
656
			sgIF = 4300000;
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
			break;
		default:
			printk(KERN_WARNING "%s: bandwidth not set!\n",
			       __FUNCTION__);
			return -EINVAL;
		}
	} else {
		printk(KERN_WARNING "%s: modulation type not supported!\n",
		       __FUNCTION__);
		return -EINVAL;
	}

	return tda18271_tune(fe, sgIF, freq, bw, std);
}

static int tda18271_set_analog_params(struct dvb_frontend *fe,
				      struct analog_parameters *params)
{
	struct tda18271_priv *priv = fe->tuner_priv;
	u8 std;
	unsigned int sgIF;
	char *mode;

	priv->mode = TDA18271_ANALOG;

	/* see table 22 */
	if (params->std & V4L2_STD_MN) {
		std = 0x0d;
		sgIF =  92;
		mode = "MN";
	} else if (params->std & V4L2_STD_B) {
		std = 0x0e;
		sgIF =  108;
		mode = "B";
	} else if (params->std & V4L2_STD_GH) {
		std = 0x0f;
		sgIF =  124;
		mode = "GH";
	} else if (params->std & V4L2_STD_PAL_I) {
		std = 0x0f;
		sgIF =  124;
		mode = "I";
	} else if (params->std & V4L2_STD_DK) {
		std = 0x0f;
		sgIF =  124;
		mode = "DK";
	} else if (params->std & V4L2_STD_SECAM_L) {
		std = 0x0f;
		sgIF =  124;
		mode = "L";
	} else if (params->std & V4L2_STD_SECAM_LC) {
		std = 0x0f;
		sgIF =  20;
		mode = "LC";
	} else {
		std = 0x0f;
		sgIF =  124;
		mode = "xx";
	}

	if (params->mode == V4L2_TUNER_RADIO)
		sgIF =  88; /* if frequency is 5.5 MHz */

720
	dprintk(1, "setting tda18271 to system %s\n", mode);
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753

	return tda18271_tune(fe, sgIF * 62500, params->frequency * 62500,
			     0, std);
}

static int tda18271_release(struct dvb_frontend *fe)
{
	kfree(fe->tuner_priv);
	fe->tuner_priv = NULL;
	return 0;
}

static int tda18271_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
	struct tda18271_priv *priv = fe->tuner_priv;
	*frequency = priv->frequency;
	return 0;
}

static int tda18271_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
	struct tda18271_priv *priv = fe->tuner_priv;
	*bandwidth = priv->bandwidth;
	return 0;
}

static struct dvb_tuner_ops tda18271_tuner_ops = {
	.info = {
		.name = "NXP TDA18271HD",
		.frequency_min  =  45000000,
		.frequency_max  = 864000000,
		.frequency_step =     62500
	},
754
	.init              = tda18271_init,
755 756 757 758 759 760 761 762 763 764 765 766
	.set_params        = tda18271_set_params,
	.set_analog_params = tda18271_set_analog_params,
	.release           = tda18271_release,
	.get_frequency     = tda18271_get_frequency,
	.get_bandwidth     = tda18271_get_bandwidth,
};

struct dvb_frontend *tda18271_attach(struct dvb_frontend *fe, u8 addr,
				     struct i2c_adapter *i2c)
{
	struct tda18271_priv *priv = NULL;

767
	dprintk(1, "@ %d-%04x\n", i2c_adapter_id(i2c), addr);
768 769 770 771 772 773 774 775 776 777 778 779
	priv = kzalloc(sizeof(struct tda18271_priv), GFP_KERNEL);
	if (priv == NULL)
		return NULL;

	priv->i2c_addr = addr;
	priv->i2c_adap = i2c;

	memcpy(&fe->ops.tuner_ops, &tda18271_tuner_ops,
	       sizeof(struct dvb_tuner_ops));

	fe->tuner_priv = priv;

780 781
	tda18271_init_regs(fe);

782 783 784 785 786 787 788 789 790 791 792 793 794 795
	return fe;
}
EXPORT_SYMBOL_GPL(tda18271_attach);
MODULE_DESCRIPTION("NXP TDA18271HD analog / digital tuner driver");
MODULE_AUTHOR("Michael Krufky <mkrufky@linuxtv.org>");
MODULE_LICENSE("GPL");

/*
 * Overrides for Emacs so that we follow Linus's tabbing style.
 * ---------------------------------------------------------------------------
 * Local variables:
 * c-basic-offset: 8
 * End:
 */