w83627ehf.c 41.3 KB
Newer Older
1 2 3 4
/*
    w83627ehf - Driver for the hardware monitoring functionality of
                the Winbond W83627EHF Super-I/O chip
    Copyright (C) 2005  Jean Delvare <khali@linux-fr.org>
5 6
    Copyright (C) 2006  Yuan Mu <Ymu@Winbond.com.tw>,
                        Rudolf Marek <r.marek@sh.cvut.cz>
7 8 9 10 11 12 13

    Shamelessly ripped from the w83627hf driver
    Copyright (C) 2003  Mark Studebaker

    Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
    in testing and debugging this driver.

14 15 16
    This driver also supports the W83627EHG, which is the lead-free
    version of the W83627EHF.

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.


    Supports the following chips:

34 35
    Chip        #vin    #fan    #pwm    #temp   chip_id    man_id
    w83627ehf   10      5       4       3       0x88,0xa1  0x5ca3
36 37 38 39 40 41
*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/i2c.h>
42
#include <linux/i2c-isa.h>
43
#include <linux/hwmon.h>
44
#include <linux/hwmon-sysfs.h>
45
#include <linux/err.h>
46
#include <linux/mutex.h>
47 48 49
#include <asm/io.h>
#include "lm75.h"

50 51
/* The actual ISA address is read from Super-I/O configuration space */
static unsigned short address;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

/*
 * Super-I/O constants and functions
 */

static int REG;		/* The register to read/write */
static int VAL;		/* The value to read/write */

#define W83627EHF_LD_HWM	0x0b

#define SIO_REG_LDSEL		0x07	/* Logical device select */
#define SIO_REG_DEVID		0x20	/* Device ID (2 bytes) */
#define SIO_REG_ENABLE		0x30	/* Logical device enable */
#define SIO_REG_ADDR		0x60	/* Logical device address (2 bytes) */

#define SIO_W83627EHF_ID	0x8840
#define SIO_ID_MASK		0xFFC0

static inline void
superio_outb(int reg, int val)
{
	outb(reg, REG);
	outb(val, VAL);
}

static inline int
superio_inb(int reg)
{
	outb(reg, REG);
	return inb(VAL);
}

static inline void
superio_select(int ld)
{
	outb(SIO_REG_LDSEL, REG);
	outb(ld, VAL);
}

static inline void
superio_enter(void)
{
	outb(0x87, REG);
	outb(0x87, REG);
}

static inline void
superio_exit(void)
{
	outb(0x02, REG);
	outb(0x02, VAL);
}

/*
 * ISA constants
 */

109 110 111
#define REGION_ALIGNMENT	~7
#define REGION_OFFSET		5
#define REGION_LENGTH		2
112 113 114 115 116 117 118 119 120 121 122
#define ADDR_REG_OFFSET		5
#define DATA_REG_OFFSET		6

#define W83627EHF_REG_BANK		0x4E
#define W83627EHF_REG_CONFIG		0x40
#define W83627EHF_REG_CHIP_ID		0x49
#define W83627EHF_REG_MAN_ID		0x4F

static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };

123 124 125 126 127 128 129 130
/* The W83627EHF registers for nr=7,8,9 are in bank 5 */
#define W83627EHF_REG_IN_MAX(nr)	((nr < 7) ? (0x2b + (nr) * 2) : \
					 (0x554 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN_MIN(nr)	((nr < 7) ? (0x2c + (nr) * 2) : \
					 (0x555 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN(nr)		((nr < 7) ? (0x20 + (nr)) : \
					 (0x550 + (nr) - 7))

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
#define W83627EHF_REG_TEMP1		0x27
#define W83627EHF_REG_TEMP1_HYST	0x3a
#define W83627EHF_REG_TEMP1_OVER	0x39
static const u16 W83627EHF_REG_TEMP[] = { 0x150, 0x250 };
static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x153, 0x253 };
static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x155, 0x255 };
static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0x152, 0x252 };

/* Fan clock dividers are spread over the following five registers */
#define W83627EHF_REG_FANDIV1		0x47
#define W83627EHF_REG_FANDIV2		0x4B
#define W83627EHF_REG_VBAT		0x5D
#define W83627EHF_REG_DIODE		0x59
#define W83627EHF_REG_SMI_OVT		0x4C

146 147 148 149
#define W83627EHF_REG_ALARM1		0x459
#define W83627EHF_REG_ALARM2		0x45A
#define W83627EHF_REG_ALARM3		0x45B

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/* SmartFan registers */
/* DC or PWM output fan configuration */
static const u8 W83627EHF_REG_PWM_ENABLE[] = {
	0x04,			/* SYS FAN0 output mode and PWM mode */
	0x04,			/* CPU FAN0 output mode and PWM mode */
	0x12,			/* AUX FAN mode */
	0x62,			/* CPU fan1 mode */
};

static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };

/* FAN Duty Cycle, be used to control */
static const u8 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
static const u8 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };


/* Advanced Fan control, some values are common for all fans */
static const u8 W83627EHF_REG_FAN_MIN_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
static const u8 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0C, 0x0D, 0x17, 0x66 };

172 173 174 175
/*
 * Conversions
 */

176 177 178 179 180 181 182 183 184 185 186 187
/* 1 is PWM mode, output in ms */
static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
{
	return mode ? 100 * reg : 400 * reg;
}

static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
{
	return SENSORS_LIMIT((mode ? (msec + 50) / 100 :
						(msec + 200) / 400), 1, 255);
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
static inline unsigned int
fan_from_reg(u8 reg, unsigned int div)
{
	if (reg == 0 || reg == 255)
		return 0;
	return 1350000U / (reg * div);
}

static inline unsigned int
div_from_reg(u8 reg)
{
	return 1 << reg;
}

static inline int
temp1_from_reg(s8 reg)
{
	return reg * 1000;
}

static inline s8
209
temp1_to_reg(int temp, int min, int max)
210
{
211 212 213 214
	if (temp <= min)
		return min / 1000;
	if (temp >= max)
		return max / 1000;
215 216 217 218 219
	if (temp < 0)
		return (temp - 500) / 1000;
	return (temp + 500) / 1000;
}

220 221 222 223 224 225 226 227 228 229 230 231 232 233
/* Some of analog inputs have internal scaling (2x), 8mV is ADC LSB */

static u8 scale_in[10] = { 8, 8, 16, 16, 8, 8, 8, 16, 16, 8 };

static inline long in_from_reg(u8 reg, u8 nr)
{
	return reg * scale_in[nr];
}

static inline u8 in_to_reg(u32 val, u8 nr)
{
	return SENSORS_LIMIT(((val + (scale_in[nr] / 2)) / scale_in[nr]), 0, 255);
}

234 235 236 237 238 239
/*
 * Data structures and manipulation thereof
 */

struct w83627ehf_data {
	struct i2c_client client;
240
	struct class_device *class_dev;
241
	struct mutex lock;
242

243
	struct mutex update_lock;
244 245 246 247
	char valid;		/* !=0 if following fields are valid */
	unsigned long last_updated;	/* In jiffies */

	/* Register values */
248 249 250
	u8 in[10];		/* Register value */
	u8 in_max[10];		/* Register value */
	u8 in_min[10];		/* Register value */
251 252 253 254 255 256 257 258 259 260
	u8 fan[5];
	u8 fan_min[5];
	u8 fan_div[5];
	u8 has_fan;		/* some fan inputs can be disabled */
	s8 temp1;
	s8 temp1_max;
	s8 temp1_max_hyst;
	s16 temp[2];
	s16 temp_max[2];
	s16 temp_max_hyst[2];
261
	u32 alarms;
262 263 264 265 266 267 268 269 270 271

	u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
	u8 pwm_enable[4]; /* 1->manual
			     2->thermal cruise (also called SmartFan I) */
	u8 pwm[4];
	u8 target_temp[4];
	u8 tolerance[4];

	u8 fan_min_output[4]; /* minimum fan speed */
	u8 fan_stop_time[4];
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
};

static inline int is_word_sized(u16 reg)
{
	return (((reg & 0xff00) == 0x100
	      || (reg & 0xff00) == 0x200)
	     && ((reg & 0x00ff) == 0x50
	      || (reg & 0x00ff) == 0x53
	      || (reg & 0x00ff) == 0x55));
}

/* We assume that the default bank is 0, thus the following two functions do
   nothing for registers which live in bank 0. For others, they respectively
   set the bank register to the correct value (before the register is
   accessed), and back to 0 (afterwards). */
static inline void w83627ehf_set_bank(struct i2c_client *client, u16 reg)
{
	if (reg & 0xff00) {
		outb_p(W83627EHF_REG_BANK, client->addr + ADDR_REG_OFFSET);
		outb_p(reg >> 8, client->addr + DATA_REG_OFFSET);
	}
}

static inline void w83627ehf_reset_bank(struct i2c_client *client, u16 reg)
{
	if (reg & 0xff00) {
		outb_p(W83627EHF_REG_BANK, client->addr + ADDR_REG_OFFSET);
		outb_p(0, client->addr + DATA_REG_OFFSET);
	}
}

static u16 w83627ehf_read_value(struct i2c_client *client, u16 reg)
{
	struct w83627ehf_data *data = i2c_get_clientdata(client);
	int res, word_sized = is_word_sized(reg);

308
	mutex_lock(&data->lock);
309 310 311 312 313 314 315 316 317 318 319

	w83627ehf_set_bank(client, reg);
	outb_p(reg & 0xff, client->addr + ADDR_REG_OFFSET);
	res = inb_p(client->addr + DATA_REG_OFFSET);
	if (word_sized) {
		outb_p((reg & 0xff) + 1,
		       client->addr + ADDR_REG_OFFSET);
		res = (res << 8) + inb_p(client->addr + DATA_REG_OFFSET);
	}
	w83627ehf_reset_bank(client, reg);

320
	mutex_unlock(&data->lock);
321 322 323 324 325 326 327 328 329

	return res;
}

static int w83627ehf_write_value(struct i2c_client *client, u16 reg, u16 value)
{
	struct w83627ehf_data *data = i2c_get_clientdata(client);
	int word_sized = is_word_sized(reg);

330
	mutex_lock(&data->lock);
331 332 333 334 335 336 337 338 339 340 341

	w83627ehf_set_bank(client, reg);
	outb_p(reg & 0xff, client->addr + ADDR_REG_OFFSET);
	if (word_sized) {
		outb_p(value >> 8, client->addr + DATA_REG_OFFSET);
		outb_p((reg & 0xff) + 1,
		       client->addr + ADDR_REG_OFFSET);
	}
	outb_p(value & 0xff, client->addr + DATA_REG_OFFSET);
	w83627ehf_reset_bank(client, reg);

342
	mutex_unlock(&data->lock);
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	return 0;
}

/* This function assumes that the caller holds data->update_lock */
static void w83627ehf_write_fan_div(struct i2c_client *client, int nr)
{
	struct w83627ehf_data *data = i2c_get_clientdata(client);
	u8 reg;

	switch (nr) {
	case 0:
		reg = (w83627ehf_read_value(client, W83627EHF_REG_FANDIV1) & 0xcf)
		    | ((data->fan_div[0] & 0x03) << 4);
		w83627ehf_write_value(client, W83627EHF_REG_FANDIV1, reg);
		reg = (w83627ehf_read_value(client, W83627EHF_REG_VBAT) & 0xdf)
		    | ((data->fan_div[0] & 0x04) << 3);
		w83627ehf_write_value(client, W83627EHF_REG_VBAT, reg);
		break;
	case 1:
		reg = (w83627ehf_read_value(client, W83627EHF_REG_FANDIV1) & 0x3f)
		    | ((data->fan_div[1] & 0x03) << 6);
		w83627ehf_write_value(client, W83627EHF_REG_FANDIV1, reg);
		reg = (w83627ehf_read_value(client, W83627EHF_REG_VBAT) & 0xbf)
		    | ((data->fan_div[1] & 0x04) << 4);
		w83627ehf_write_value(client, W83627EHF_REG_VBAT, reg);
		break;
	case 2:
		reg = (w83627ehf_read_value(client, W83627EHF_REG_FANDIV2) & 0x3f)
		    | ((data->fan_div[2] & 0x03) << 6);
		w83627ehf_write_value(client, W83627EHF_REG_FANDIV2, reg);
		reg = (w83627ehf_read_value(client, W83627EHF_REG_VBAT) & 0x7f)
		    | ((data->fan_div[2] & 0x04) << 5);
		w83627ehf_write_value(client, W83627EHF_REG_VBAT, reg);
		break;
	case 3:
		reg = (w83627ehf_read_value(client, W83627EHF_REG_DIODE) & 0xfc)
		    | (data->fan_div[3] & 0x03);
		w83627ehf_write_value(client, W83627EHF_REG_DIODE, reg);
		reg = (w83627ehf_read_value(client, W83627EHF_REG_SMI_OVT) & 0x7f)
		    | ((data->fan_div[3] & 0x04) << 5);
		w83627ehf_write_value(client, W83627EHF_REG_SMI_OVT, reg);
		break;
	case 4:
		reg = (w83627ehf_read_value(client, W83627EHF_REG_DIODE) & 0x73)
		    | ((data->fan_div[4] & 0x03) << 3)
		    | ((data->fan_div[4] & 0x04) << 5);
		w83627ehf_write_value(client, W83627EHF_REG_DIODE, reg);
		break;
	}
}

static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct w83627ehf_data *data = i2c_get_clientdata(client);
398
	int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
399 400
	int i;

401
	mutex_lock(&data->update_lock);
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

	if (time_after(jiffies, data->last_updated + HZ)
	 || !data->valid) {
		/* Fan clock dividers */
		i = w83627ehf_read_value(client, W83627EHF_REG_FANDIV1);
		data->fan_div[0] = (i >> 4) & 0x03;
		data->fan_div[1] = (i >> 6) & 0x03;
		i = w83627ehf_read_value(client, W83627EHF_REG_FANDIV2);
		data->fan_div[2] = (i >> 6) & 0x03;
		i = w83627ehf_read_value(client, W83627EHF_REG_VBAT);
		data->fan_div[0] |= (i >> 3) & 0x04;
		data->fan_div[1] |= (i >> 4) & 0x04;
		data->fan_div[2] |= (i >> 5) & 0x04;
		if (data->has_fan & ((1 << 3) | (1 << 4))) {
			i = w83627ehf_read_value(client, W83627EHF_REG_DIODE);
			data->fan_div[3] = i & 0x03;
			data->fan_div[4] = ((i >> 2) & 0x03)
					 | ((i >> 5) & 0x04);
		}
		if (data->has_fan & (1 << 3)) {
			i = w83627ehf_read_value(client, W83627EHF_REG_SMI_OVT);
			data->fan_div[3] |= (i >> 5) & 0x04;
		}

426 427 428 429 430 431 432 433 434 435
		/* Measured voltages and limits */
		for (i = 0; i < 10; i++) {
			data->in[i] = w83627ehf_read_value(client,
				      W83627EHF_REG_IN(i));
			data->in_min[i] = w83627ehf_read_value(client,
					  W83627EHF_REG_IN_MIN(i));
			data->in_max[i] = w83627ehf_read_value(client,
					  W83627EHF_REG_IN_MAX(i));
		}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
		/* Measured fan speeds and limits */
		for (i = 0; i < 5; i++) {
			if (!(data->has_fan & (1 << i)))
				continue;

			data->fan[i] = w83627ehf_read_value(client,
				       W83627EHF_REG_FAN[i]);
			data->fan_min[i] = w83627ehf_read_value(client,
					   W83627EHF_REG_FAN_MIN[i]);

			/* If we failed to measure the fan speed and clock
			   divider can be increased, let's try that for next
			   time */
			if (data->fan[i] == 0xff
			 && data->fan_div[i] < 0x07) {
			 	dev_dbg(&client->dev, "Increasing fan %d "
					"clock divider from %u to %u\n",
					i, div_from_reg(data->fan_div[i]),
					div_from_reg(data->fan_div[i] + 1));
				data->fan_div[i]++;
				w83627ehf_write_fan_div(client, i);
				/* Preserve min limit if possible */
				if (data->fan_min[i] >= 2
				 && data->fan_min[i] != 255)
					w83627ehf_write_value(client,
						W83627EHF_REG_FAN_MIN[i],
						(data->fan_min[i] /= 2));
			}
		}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
		for (i = 0; i < 4; i++) {
			/* pwmcfg, tolarance mapped for i=0, i=1 to same reg */
			if (i != 1) {
				pwmcfg = w83627ehf_read_value(client,
						W83627EHF_REG_PWM_ENABLE[i]);
				tolerance = w83627ehf_read_value(client,
						W83627EHF_REG_TOLERANCE[i]);
			}
			data->pwm_mode[i] =
				((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1)
				? 0 : 1;
			data->pwm_enable[i] =
					((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
						& 3) + 1;
			data->pwm[i] = w83627ehf_read_value(client,
						W83627EHF_REG_PWM[i]);
			data->fan_min_output[i] = w83627ehf_read_value(client,
						W83627EHF_REG_FAN_MIN_OUTPUT[i]);
			data->fan_stop_time[i] = w83627ehf_read_value(client,
						W83627EHF_REG_FAN_STOP_TIME[i]);
			data->target_temp[i] =
				w83627ehf_read_value(client,
					W83627EHF_REG_TARGET[i]) &
					(data->pwm_mode[i] == 1 ? 0x7f : 0xff);
			data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0))
									& 0x0f;
		}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
		/* Measured temperatures and limits */
		data->temp1 = w83627ehf_read_value(client,
			      W83627EHF_REG_TEMP1);
		data->temp1_max = w83627ehf_read_value(client,
				  W83627EHF_REG_TEMP1_OVER);
		data->temp1_max_hyst = w83627ehf_read_value(client,
				       W83627EHF_REG_TEMP1_HYST);
		for (i = 0; i < 2; i++) {
			data->temp[i] = w83627ehf_read_value(client,
					W83627EHF_REG_TEMP[i]);
			data->temp_max[i] = w83627ehf_read_value(client,
					    W83627EHF_REG_TEMP_OVER[i]);
			data->temp_max_hyst[i] = w83627ehf_read_value(client,
						 W83627EHF_REG_TEMP_HYST[i]);
		}

510 511 512 513 514 515 516
		data->alarms = w83627ehf_read_value(client,
					W83627EHF_REG_ALARM1) |
			       (w83627ehf_read_value(client,
					W83627EHF_REG_ALARM2) << 8) |
			       (w83627ehf_read_value(client,
					W83627EHF_REG_ALARM3) << 16);

517 518 519 520
		data->last_updated = jiffies;
		data->valid = 1;
	}

521
	mutex_unlock(&data->update_lock);
522 523 524 525 526 527
	return data;
}

/*
 * Sysfs callback functions
 */
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
#define show_in_reg(reg) \
static ssize_t \
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%ld\n", in_from_reg(data->reg[nr], nr)); \
}
show_in_reg(in)
show_in_reg(in_min)
show_in_reg(in_max)

#define store_in_reg(REG, reg) \
static ssize_t \
store_in_##reg (struct device *dev, struct device_attribute *attr, \
			const char *buf, size_t count) \
{ \
	struct i2c_client *client = to_i2c_client(dev); \
	struct w83627ehf_data *data = i2c_get_clientdata(client); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u32 val = simple_strtoul(buf, NULL, 10); \
 \
	mutex_lock(&data->update_lock); \
	data->in_##reg[nr] = in_to_reg(val, nr); \
	w83627ehf_write_value(client, W83627EHF_REG_IN_##REG(nr), \
			      data->in_##reg[nr]); \
	mutex_unlock(&data->update_lock); \
	return count; \
}

store_in_reg(MIN, min)
store_in_reg(MAX, max)

564 565 566 567 568 569 570 571
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%u\n", (data->alarms >> nr) & 0x01);
}

572 573 574 575 576 577 578 579 580 581 582 583 584
static struct sensor_device_attribute sda_in_input[] = {
	SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
	SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
	SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
	SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
	SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
	SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
	SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
	SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
	SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
	SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
};

585 586 587 588 589 590 591 592 593 594 595 596 597
static struct sensor_device_attribute sda_in_alarm[] = {
	SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
	SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
	SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
	SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
	SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
	SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 21),
	SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 20),
	SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 16),
	SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 17),
	SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 19),
};

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
static struct sensor_device_attribute sda_in_min[] = {
       SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
       SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
       SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
       SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
       SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
       SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
       SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
       SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
       SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
       SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
};

static struct sensor_device_attribute sda_in_max[] = {
       SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
       SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
       SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
       SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
       SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
       SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
       SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
       SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
       SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
       SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
};

static void device_create_file_in(struct device *dev, int i)
{
	device_create_file(dev, &sda_in_input[i].dev_attr);
627
	device_create_file(dev, &sda_in_alarm[i].dev_attr);
628 629 630
	device_create_file(dev, &sda_in_min[i].dev_attr);
	device_create_file(dev, &sda_in_max[i].dev_attr);
}
631 632 633

#define show_fan_reg(reg) \
static ssize_t \
634 635
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
636 637
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
638 639
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
640 641 642 643 644 645 646 647
	return sprintf(buf, "%d\n", \
		       fan_from_reg(data->reg[nr], \
				    div_from_reg(data->fan_div[nr]))); \
}
show_fan_reg(fan);
show_fan_reg(fan_min);

static ssize_t
648 649
show_fan_div(struct device *dev, struct device_attribute *attr,
	     char *buf)
650 651
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
652 653 654
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%u\n", div_from_reg(data->fan_div[nr]));
655 656 657
}

static ssize_t
658 659
store_fan_min(struct device *dev, struct device_attribute *attr,
	      const char *buf, size_t count)
660 661 662
{
	struct i2c_client *client = to_i2c_client(dev);
	struct w83627ehf_data *data = i2c_get_clientdata(client);
663 664
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
665 666 667 668
	unsigned int val = simple_strtoul(buf, NULL, 10);
	unsigned int reg;
	u8 new_div;

669
	mutex_lock(&data->update_lock);
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	if (!val) {
		/* No min limit, alarm disabled */
		data->fan_min[nr] = 255;
		new_div = data->fan_div[nr]; /* No change */
		dev_info(dev, "fan%u low limit and alarm disabled\n", nr + 1);
	} else if ((reg = 1350000U / val) >= 128 * 255) {
		/* Speed below this value cannot possibly be represented,
		   even with the highest divider (128) */
		data->fan_min[nr] = 254;
		new_div = 7; /* 128 == (1 << 7) */
		dev_warn(dev, "fan%u low limit %u below minimum %u, set to "
			 "minimum\n", nr + 1, val, fan_from_reg(254, 128));
	} else if (!reg) {
		/* Speed above this value cannot possibly be represented,
		   even with the lowest divider (1) */
		data->fan_min[nr] = 1;
		new_div = 0; /* 1 == (1 << 0) */
		dev_warn(dev, "fan%u low limit %u above maximum %u, set to "
688
			 "maximum\n", nr + 1, val, fan_from_reg(1, 1));
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	} else {
		/* Automatically pick the best divider, i.e. the one such
		   that the min limit will correspond to a register value
		   in the 96..192 range */
		new_div = 0;
		while (reg > 192 && new_div < 7) {
			reg >>= 1;
			new_div++;
		}
		data->fan_min[nr] = reg;
	}

	/* Write both the fan clock divider (if it changed) and the new
	   fan min (unconditionally) */
	if (new_div != data->fan_div[nr]) {
		if (new_div > data->fan_div[nr])
			data->fan[nr] >>= (data->fan_div[nr] - new_div);
		else
			data->fan[nr] <<= (new_div - data->fan_div[nr]);

		dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
			nr + 1, div_from_reg(data->fan_div[nr]),
			div_from_reg(new_div));
		data->fan_div[nr] = new_div;
		w83627ehf_write_fan_div(client, nr);
	}
	w83627ehf_write_value(client, W83627EHF_REG_FAN_MIN[nr],
			      data->fan_min[nr]);
717
	mutex_unlock(&data->update_lock);
718 719 720 721

	return count;
}

722 723 724 725 726 727 728
static struct sensor_device_attribute sda_fan_input[] = {
	SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
	SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
	SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
	SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
	SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
};
729

730 731 732 733 734 735 736 737
static struct sensor_device_attribute sda_fan_alarm[] = {
	SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
	SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
	SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
	SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 10),
	SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 23),
};

738 739 740 741 742 743 744 745 746 747 748 749
static struct sensor_device_attribute sda_fan_min[] = {
	SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 0),
	SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 1),
	SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 2),
	SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 3),
	SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 4),
};
750

751 752 753 754 755 756 757 758 759 760 761
static struct sensor_device_attribute sda_fan_div[] = {
	SENSOR_ATTR(fan1_div, S_IRUGO, show_fan_div, NULL, 0),
	SENSOR_ATTR(fan2_div, S_IRUGO, show_fan_div, NULL, 1),
	SENSOR_ATTR(fan3_div, S_IRUGO, show_fan_div, NULL, 2),
	SENSOR_ATTR(fan4_div, S_IRUGO, show_fan_div, NULL, 3),
	SENSOR_ATTR(fan5_div, S_IRUGO, show_fan_div, NULL, 4),
};

static void device_create_file_fan(struct device *dev, int i)
{
	device_create_file(dev, &sda_fan_input[i].dev_attr);
762
	device_create_file(dev, &sda_fan_alarm[i].dev_attr);
763 764 765
	device_create_file(dev, &sda_fan_div[i].dev_attr);
	device_create_file(dev, &sda_fan_min[i].dev_attr);
}
766 767 768

#define show_temp1_reg(reg) \
static ssize_t \
769 770
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
771 772 773 774 775 776 777 778 779 780
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	return sprintf(buf, "%d\n", temp1_from_reg(data->reg)); \
}
show_temp1_reg(temp1);
show_temp1_reg(temp1_max);
show_temp1_reg(temp1_max_hyst);

#define store_temp1_reg(REG, reg) \
static ssize_t \
781 782
store_temp1_##reg(struct device *dev, struct device_attribute *attr, \
		  const char *buf, size_t count) \
783 784 785 786 787
{ \
	struct i2c_client *client = to_i2c_client(dev); \
	struct w83627ehf_data *data = i2c_get_clientdata(client); \
	u32 val = simple_strtoul(buf, NULL, 10); \
 \
788
	mutex_lock(&data->update_lock); \
789
	data->temp1_##reg = temp1_to_reg(val, -128000, 127000); \
790 791
	w83627ehf_write_value(client, W83627EHF_REG_TEMP1_##REG, \
			      data->temp1_##reg); \
792
	mutex_unlock(&data->update_lock); \
793 794 795 796 797 798 799
	return count; \
}
store_temp1_reg(OVER, max);
store_temp1_reg(HYST, max_hyst);

#define show_temp_reg(reg) \
static ssize_t \
800 801
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
802 803
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
804 805
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
806 807 808 809 810 811 812 813 814
	return sprintf(buf, "%d\n", \
		       LM75_TEMP_FROM_REG(data->reg[nr])); \
}
show_temp_reg(temp);
show_temp_reg(temp_max);
show_temp_reg(temp_max_hyst);

#define store_temp_reg(REG, reg) \
static ssize_t \
815 816
store_##reg(struct device *dev, struct device_attribute *attr, \
	    const char *buf, size_t count) \
817 818 819
{ \
	struct i2c_client *client = to_i2c_client(dev); \
	struct w83627ehf_data *data = i2c_get_clientdata(client); \
820 821
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
822 823
	u32 val = simple_strtoul(buf, NULL, 10); \
 \
824
	mutex_lock(&data->update_lock); \
825 826 827
	data->reg[nr] = LM75_TEMP_TO_REG(val); \
	w83627ehf_write_value(client, W83627EHF_REG_TEMP_##REG[nr], \
			      data->reg[nr]); \
828
	mutex_unlock(&data->update_lock); \
829 830 831 832 833
	return count; \
}
store_temp_reg(OVER, temp_max);
store_temp_reg(HYST, temp_max_hyst);

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
static struct sensor_device_attribute sda_temp[] = {
	SENSOR_ATTR(temp1_input, S_IRUGO, show_temp1, NULL, 0),
	SENSOR_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 0),
	SENSOR_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 1),
	SENSOR_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp1_max,
		    store_temp1_max, 0),
	SENSOR_ATTR(temp2_max, S_IRUGO | S_IWUSR, show_temp_max,
		    store_temp_max, 0),
	SENSOR_ATTR(temp3_max, S_IRUGO | S_IWUSR, show_temp_max,
		    store_temp_max, 1),
	SENSOR_ATTR(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp1_max_hyst,
		    store_temp1_max_hyst, 0),
	SENSOR_ATTR(temp2_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
		    store_temp_max_hyst, 0),
	SENSOR_ATTR(temp3_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
		    store_temp_max_hyst, 1),
850 851 852
	SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
	SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
	SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
853
};
854

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
#define show_pwm_reg(reg) \
static ssize_t show_##reg (struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", data->reg[nr]); \
}

show_pwm_reg(pwm_mode)
show_pwm_reg(pwm_enable)
show_pwm_reg(pwm)

static ssize_t
store_pwm_mode(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct w83627ehf_data *data = i2c_get_clientdata(client);
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = simple_strtoul(buf, NULL, 10);
	u16 reg;

	if (val > 1)
		return -EINVAL;
	mutex_lock(&data->update_lock);
	reg = w83627ehf_read_value(client, W83627EHF_REG_PWM_ENABLE[nr]);
	data->pwm_mode[nr] = val;
	reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[nr]);
	if (!val)
		reg |= 1 << W83627EHF_PWM_MODE_SHIFT[nr];
	w83627ehf_write_value(client, W83627EHF_REG_PWM_ENABLE[nr], reg);
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_pwm(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct w83627ehf_data *data = i2c_get_clientdata(client);
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = SENSORS_LIMIT(simple_strtoul(buf, NULL, 10), 0, 255);

	mutex_lock(&data->update_lock);
	data->pwm[nr] = val;
	w83627ehf_write_value(client, W83627EHF_REG_PWM[nr], val);
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_pwm_enable(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct w83627ehf_data *data = i2c_get_clientdata(client);
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = simple_strtoul(buf, NULL, 10);
	u16 reg;

	if (!val || (val > 2))	/* only modes 1 and 2 are supported */
		return -EINVAL;
	mutex_lock(&data->update_lock);
	reg = w83627ehf_read_value(client, W83627EHF_REG_PWM_ENABLE[nr]);
	data->pwm_enable[nr] = val;
	reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[nr]);
	reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[nr];
	w83627ehf_write_value(client, W83627EHF_REG_PWM_ENABLE[nr], reg);
	mutex_unlock(&data->update_lock);
	return count;
}


#define show_tol_temp(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", temp1_from_reg(data->reg[nr])); \
}

show_tol_temp(tolerance)
show_tol_temp(target_temp)

static ssize_t
store_target_temp(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct w83627ehf_data *data = i2c_get_clientdata(client);
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u8 val = temp1_to_reg(simple_strtoul(buf, NULL, 10), 0, 127000);

	mutex_lock(&data->update_lock);
	data->target_temp[nr] = val;
	w83627ehf_write_value(client, W83627EHF_REG_TARGET[nr], val);
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_tolerance(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct w83627ehf_data *data = i2c_get_clientdata(client);
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u16 reg;
	/* Limit the temp to 0C - 15C */
	u8 val = temp1_to_reg(simple_strtoul(buf, NULL, 10), 0, 15000);

	mutex_lock(&data->update_lock);
	reg = w83627ehf_read_value(client, W83627EHF_REG_TOLERANCE[nr]);
	data->tolerance[nr] = val;
	if (nr == 1)
		reg = (reg & 0x0f) | (val << 4);
	else
		reg = (reg & 0xf0) | val;
	w83627ehf_write_value(client, W83627EHF_REG_TOLERANCE[nr], reg);
	mutex_unlock(&data->update_lock);
	return count;
}

static struct sensor_device_attribute sda_pwm[] = {
	SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0),
	SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1),
	SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 2),
	SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 3),
};

static struct sensor_device_attribute sda_pwm_mode[] = {
	SENSOR_ATTR(pwm1_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 0),
	SENSOR_ATTR(pwm2_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 1),
	SENSOR_ATTR(pwm3_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 2),
	SENSOR_ATTR(pwm4_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 3),
};

static struct sensor_device_attribute sda_pwm_enable[] = {
	SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 0),
	SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 1),
	SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 2),
	SENSOR_ATTR(pwm4_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 3),
};

static struct sensor_device_attribute sda_target_temp[] = {
	SENSOR_ATTR(pwm1_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 0),
	SENSOR_ATTR(pwm2_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 1),
	SENSOR_ATTR(pwm3_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 2),
	SENSOR_ATTR(pwm4_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 3),
};

static struct sensor_device_attribute sda_tolerance[] = {
	SENSOR_ATTR(pwm1_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 0),
	SENSOR_ATTR(pwm2_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 1),
	SENSOR_ATTR(pwm3_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 2),
	SENSOR_ATTR(pwm4_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 3),
};

static void device_create_file_pwm(struct device *dev, int i)
{
	device_create_file(dev, &sda_pwm[i].dev_attr);
	device_create_file(dev, &sda_pwm_mode[i].dev_attr);
	device_create_file(dev, &sda_pwm_enable[i].dev_attr);
	device_create_file(dev, &sda_target_temp[i].dev_attr);
	device_create_file(dev, &sda_tolerance[i].dev_attr);
}

/* Smart Fan registers */

#define fan_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
		       char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", data->reg[nr]); \
}\
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
			    const char *buf, size_t count) \
{\
	struct i2c_client *client = to_i2c_client(dev); \
	struct w83627ehf_data *data = i2c_get_clientdata(client); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u32 val = SENSORS_LIMIT(simple_strtoul(buf, NULL, 10), 1, 255); \
	mutex_lock(&data->update_lock); \
	data->reg[nr] = val; \
	w83627ehf_write_value(client, W83627EHF_REG_##REG[nr],  val); \
	mutex_unlock(&data->update_lock); \
	return count; \
}

fan_functions(fan_min_output, FAN_MIN_OUTPUT)

#define fan_time_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", \
			step_time_from_reg(data->reg[nr], data->pwm_mode[nr])); \
} \
\
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
			const char *buf, size_t count) \
{ \
	struct i2c_client *client = to_i2c_client(dev); \
	struct w83627ehf_data *data = i2c_get_clientdata(client); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u8 val = step_time_to_reg(simple_strtoul(buf, NULL, 10), \
					data->pwm_mode[nr]); \
	mutex_lock(&data->update_lock); \
	data->reg[nr] = val; \
	w83627ehf_write_value(client, W83627EHF_REG_##REG[nr], val); \
	mutex_unlock(&data->update_lock); \
	return count; \
} \

fan_time_functions(fan_stop_time, FAN_STOP_TIME)


static struct sensor_device_attribute sda_sf3_arrays_fan4[] = {
	SENSOR_ATTR(pwm4_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 3),
	SENSOR_ATTR(pwm4_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 3),
};

static struct sensor_device_attribute sda_sf3_arrays[] = {
	SENSOR_ATTR(pwm1_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 0),
	SENSOR_ATTR(pwm2_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 1),
	SENSOR_ATTR(pwm3_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 2),
	SENSOR_ATTR(pwm1_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 0),
	SENSOR_ATTR(pwm2_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 1),
	SENSOR_ATTR(pwm3_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 2),
};

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
/*
 * Driver and client management
 */

static struct i2c_driver w83627ehf_driver;

static void w83627ehf_init_client(struct i2c_client *client)
{
	int i;
	u8 tmp;

	/* Start monitoring is needed */
	tmp = w83627ehf_read_value(client, W83627EHF_REG_CONFIG);
	if (!(tmp & 0x01))
		w83627ehf_write_value(client, W83627EHF_REG_CONFIG,
				      tmp | 0x01);

	/* Enable temp2 and temp3 if needed */
	for (i = 0; i < 2; i++) {
		tmp = w83627ehf_read_value(client,
					   W83627EHF_REG_TEMP_CONFIG[i]);
		if (tmp & 0x01)
			w83627ehf_write_value(client,
					      W83627EHF_REG_TEMP_CONFIG[i],
					      tmp & 0xfe);
	}
}

1158
static int w83627ehf_detect(struct i2c_adapter *adapter)
1159 1160 1161
{
	struct i2c_client *client;
	struct w83627ehf_data *data;
1162
	struct device *dev;
1163
	u8 fan4pin, fan5pin;
1164 1165
	int i, err = 0;

1166
	if (!request_region(address + REGION_OFFSET, REGION_LENGTH,
1167
	                    w83627ehf_driver.driver.name)) {
1168 1169 1170 1171
		err = -EBUSY;
		goto exit;
	}

D
Deepak Saxena 已提交
1172
	if (!(data = kzalloc(sizeof(struct w83627ehf_data), GFP_KERNEL))) {
1173 1174 1175 1176 1177 1178 1179
		err = -ENOMEM;
		goto exit_release;
	}

	client = &data->client;
	i2c_set_clientdata(client, data);
	client->addr = address;
1180
	mutex_init(&data->lock);
1181 1182 1183
	client->adapter = adapter;
	client->driver = &w83627ehf_driver;
	client->flags = 0;
1184
	dev = &client->dev;
1185 1186 1187

	strlcpy(client->name, "w83627ehf", I2C_NAME_SIZE);
	data->valid = 0;
1188
	mutex_init(&data->update_lock);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

	/* Tell the i2c layer a new client has arrived */
	if ((err = i2c_attach_client(client)))
		goto exit_free;

	/* Initialize the chip */
	w83627ehf_init_client(client);

	/* A few vars need to be filled upon startup */
	for (i = 0; i < 5; i++)
		data->fan_min[i] = w83627ehf_read_value(client,
				   W83627EHF_REG_FAN_MIN[i]);

1202 1203 1204 1205 1206 1207 1208
	/* fan4 and fan5 share some pins with the GPIO and serial flash */

	superio_enter();
	fan5pin = superio_inb(0x24) & 0x2;
	fan4pin = superio_inb(0x29) & 0x6;
	superio_exit();

1209 1210
	/* It looks like fan4 and fan5 pins can be alternatively used
	   as fan on/off switches */
1211

1212 1213
	data->has_fan = 0x07; /* fan1, fan2 and fan3 */
	i = w83627ehf_read_value(client, W83627EHF_REG_FANDIV1);
1214
	if ((i & (1 << 2)) && (!fan4pin))
1215
		data->has_fan |= (1 << 3);
1216
	if ((i & (1 << 0)) && (!fan5pin))
1217 1218 1219
		data->has_fan |= (1 << 4);

	/* Register sysfs hooks */
1220
	data->class_dev = hwmon_device_register(dev);
1221 1222 1223 1224 1225
	if (IS_ERR(data->class_dev)) {
		err = PTR_ERR(data->class_dev);
		goto exit_detach;
	}

1226 1227 1228 1229 1230 1231 1232 1233
  	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays); i++)
  		device_create_file(dev, &sda_sf3_arrays[i].dev_attr);

	/* if fan4 is enabled create the sf3 files for it */
	if (data->has_fan & (1 << 3))
		for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan4); i++)
			device_create_file(dev, &sda_sf3_arrays_fan4[i].dev_attr);

1234 1235 1236
	for (i = 0; i < 10; i++)
		device_create_file_in(dev, i);

1237
	for (i = 0; i < 5; i++) {
1238
		if (data->has_fan & (1 << i)) {
1239
			device_create_file_fan(dev, i);
1240 1241 1242
			if (i != 4) /* we have only 4 pwm */
				device_create_file_pwm(dev, i);
		}
1243
	}
1244

1245 1246
	for (i = 0; i < ARRAY_SIZE(sda_temp); i++)
		device_create_file(dev, &sda_temp[i].dev_attr);
1247 1248 1249

	return 0;

1250 1251
exit_detach:
	i2c_detach_client(client);
1252 1253 1254
exit_free:
	kfree(data);
exit_release:
1255
	release_region(address + REGION_OFFSET, REGION_LENGTH);
1256 1257 1258 1259 1260 1261
exit:
	return err;
}

static int w83627ehf_detach_client(struct i2c_client *client)
{
1262
	struct w83627ehf_data *data = i2c_get_clientdata(client);
1263 1264
	int err;

1265 1266
	hwmon_device_unregister(data->class_dev);

1267
	if ((err = i2c_detach_client(client)))
1268
		return err;
1269
	release_region(client->addr + REGION_OFFSET, REGION_LENGTH);
1270
	kfree(data);
1271 1272 1273 1274 1275

	return 0;
}

static struct i2c_driver w83627ehf_driver = {
1276
	.driver = {
J
Jean Delvare 已提交
1277
		.owner	= THIS_MODULE,
1278 1279
		.name	= "w83627ehf",
	},
1280
	.attach_adapter	= w83627ehf_detect,
1281 1282 1283
	.detach_client	= w83627ehf_detach_client,
};

1284
static int __init w83627ehf_find(int sioaddr, unsigned short *addr)
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
{
	u16 val;

	REG = sioaddr;
	VAL = sioaddr + 1;
	superio_enter();

	val = (superio_inb(SIO_REG_DEVID) << 8)
	    | superio_inb(SIO_REG_DEVID + 1);
	if ((val & SIO_ID_MASK) != SIO_W83627EHF_ID) {
		superio_exit();
		return -ENODEV;
	}

	superio_select(W83627EHF_LD_HWM);
	val = (superio_inb(SIO_REG_ADDR) << 8)
	    | superio_inb(SIO_REG_ADDR + 1);
1302
	*addr = val & REGION_ALIGNMENT;
1303
	if (*addr == 0) {
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		superio_exit();
		return -ENODEV;
	}

	/* Activate logical device if needed */
	val = superio_inb(SIO_REG_ENABLE);
	if (!(val & 0x01))
		superio_outb(SIO_REG_ENABLE, val | 0x01);

	superio_exit();
	return 0;
}

static int __init sensors_w83627ehf_init(void)
{
1319 1320
	if (w83627ehf_find(0x2e, &address)
	 && w83627ehf_find(0x4e, &address))
1321 1322
		return -ENODEV;

1323
	return i2c_isa_add_driver(&w83627ehf_driver);
1324 1325 1326 1327
}

static void __exit sensors_w83627ehf_exit(void)
{
1328
	i2c_isa_del_driver(&w83627ehf_driver);
1329 1330 1331 1332 1333 1334 1335 1336
}

MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
MODULE_DESCRIPTION("W83627EHF driver");
MODULE_LICENSE("GPL");

module_init(sensors_w83627ehf_init);
module_exit(sensors_w83627ehf_exit);