core.c 193.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
G
Glauber Costa 已提交
77 78 79
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
80

81
#include "sched.h"
82
#include "../workqueue_sched.h"
83

84
#define CREATE_TRACE_POINTS
85
#include <trace/events/sched.h>
86

87
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
88
{
89 90
	unsigned long delta;
	ktime_t soft, hard, now;
91

92 93 94 95 96 97
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
98

99 100 101 102 103 104 105 106
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

107 108
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
109

110
static void update_rq_clock_task(struct rq *rq, s64 delta);
111

112
void update_rq_clock(struct rq *rq)
113
{
114
	s64 delta;
115

116
	if (rq->skip_clock_update > 0)
117
		return;
118

119 120 121
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
122 123
}

I
Ingo Molnar 已提交
124 125 126
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
127 128 129 130

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
131
const_debug unsigned int sysctl_sched_features =
132
#include "features.h"
P
Peter Zijlstra 已提交
133 134 135 136 137 138 139 140
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

141
static __read_mostly char *sched_feat_names[] = {
142
#include "features.h"
P
Peter Zijlstra 已提交
143 144 145 146 147
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
148
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
149 150 151
{
	int i;

152
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
153 154 155
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
156
	}
L
Li Zefan 已提交
157
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
158

L
Li Zefan 已提交
159
	return 0;
P
Peter Zijlstra 已提交
160 161
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#ifdef HAVE_JUMP_LABEL

#define jump_label_key__true  jump_label_key_enabled
#define jump_label_key__false jump_label_key_disabled

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
	if (jump_label_enabled(&sched_feat_keys[i]))
		jump_label_dec(&sched_feat_keys[i]);
}

static void sched_feat_enable(int i)
{
	if (!jump_label_enabled(&sched_feat_keys[i]))
		jump_label_inc(&sched_feat_keys[i]);
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
192 193 194 195 196
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
197
	char *cmp;
P
Peter Zijlstra 已提交
198 199 200 201 202 203 204 205 206 207
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
208
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
209

H
Hillf Danton 已提交
210
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
211 212 213 214
		neg = 1;
		cmp += 3;
	}

215
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
216
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
217
			if (neg) {
P
Peter Zijlstra 已提交
218
				sysctl_sched_features &= ~(1UL << i);
219 220
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
221
				sysctl_sched_features |= (1UL << i);
222 223
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
224 225 226 227
			break;
		}
	}

228
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
229 230
		return -EINVAL;

231
	*ppos += cnt;
P
Peter Zijlstra 已提交
232 233 234 235

	return cnt;
}

L
Li Zefan 已提交
236 237 238 239 240
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

241
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
242 243 244 245 246
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
247 248 249 250 251 252 253 254 255 256
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
257
#endif /* CONFIG_SCHED_DEBUG */
P
Peter Zijlstra 已提交
258

259 260 261 262 263 264
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

265 266 267 268 269 270 271 272
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

273 274 275 276 277
/*
 * period over which we measure -rt task cpu usage in us.
 * default: 1s
 */
unsigned int sysctl_sched_rt_period = 1000000;
278

279 280 281 282 283 284 285
__read_mostly int scheduler_running;

/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
286 287


L
Linus Torvalds 已提交
288

289
/*
290
 * __task_rq_lock - lock the rq @p resides on.
291
 */
292
static inline struct rq *__task_rq_lock(struct task_struct *p)
293 294
	__acquires(rq->lock)
{
295 296
	struct rq *rq;

297 298
	lockdep_assert_held(&p->pi_lock);

299
	for (;;) {
300
		rq = task_rq(p);
301
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
302
		if (likely(rq == task_rq(p)))
303
			return rq;
304
		raw_spin_unlock(&rq->lock);
305 306 307
	}
}

L
Linus Torvalds 已提交
308
/*
309
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
310
 */
311
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
312
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
313 314
	__acquires(rq->lock)
{
315
	struct rq *rq;
L
Linus Torvalds 已提交
316

317
	for (;;) {
318
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
319
		rq = task_rq(p);
320
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
321
		if (likely(rq == task_rq(p)))
322
			return rq;
323 324
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
325 326 327
	}
}

A
Alexey Dobriyan 已提交
328
static void __task_rq_unlock(struct rq *rq)
329 330
	__releases(rq->lock)
{
331
	raw_spin_unlock(&rq->lock);
332 333
}

334 335
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
336
	__releases(rq->lock)
337
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
338
{
339 340
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
341 342 343
}

/*
344
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
345
 */
A
Alexey Dobriyan 已提交
346
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
347 348
	__acquires(rq->lock)
{
349
	struct rq *rq;
L
Linus Torvalds 已提交
350 351 352

	local_irq_disable();
	rq = this_rq();
353
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
354 355 356 357

	return rq;
}

P
Peter Zijlstra 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

386
	raw_spin_lock(&rq->lock);
387
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
388
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
389
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
390 391 392 393

	return HRTIMER_NORESTART;
}

394
#ifdef CONFIG_SMP
395 396 397 398
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
399
{
400
	struct rq *rq = arg;
401

402
	raw_spin_lock(&rq->lock);
403 404
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
405
	raw_spin_unlock(&rq->lock);
406 407
}

408 409 410 411 412
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
413
void hrtick_start(struct rq *rq, u64 delay)
414
{
415 416
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
417

418
	hrtimer_set_expires(timer, time);
419 420 421 422

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
423
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
424 425
		rq->hrtick_csd_pending = 1;
	}
426 427 428 429 430 431 432 433 434 435 436 437 438 439
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
440
		hrtick_clear(cpu_rq(cpu));
441 442 443 444 445 446
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

447
static __init void init_hrtick(void)
448 449 450
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
451 452 453 454 455 456
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
457
void hrtick_start(struct rq *rq, u64 delay)
458
{
459
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
460
			HRTIMER_MODE_REL_PINNED, 0);
461
}
462

A
Andrew Morton 已提交
463
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
464 465
{
}
466
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
467

468
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
469
{
470 471
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
472

473 474 475 476
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
477

478 479
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
480
}
A
Andrew Morton 已提交
481
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
482 483 484 485 486 487 488 489
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

490 491 492
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
493
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494

I
Ingo Molnar 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

508
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
509 510 511
{
	int cpu;

512
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
513

514
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
515 516
		return;

517
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
518 519 520 521 522 523 524 525 526 527 528

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

529
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
530 531 532 533
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

534
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
535 536
		return;
	resched_task(cpu_curr(cpu));
537
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
538
}
539 540

#ifdef CONFIG_NO_HZ
541 542 543 544 545 546 547 548 549 550 551 552 553 554
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

555
	rcu_read_lock();
556
	for_each_domain(cpu, sd) {
557 558 559 560 561 562
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
563
	}
564 565
unlock:
	rcu_read_unlock();
566 567
	return cpu;
}
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
600
	set_tsk_need_resched(rq->idle);
601 602 603 604 605 606

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
607

608 609
static inline bool got_nohz_idle_kick(void)
{
610 611
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
612 613 614 615 616 617 618 619 620
}

#else /* CONFIG_NO_HZ */

static inline bool got_nohz_idle_kick(void)
{
	return false;
}

621
#endif /* CONFIG_NO_HZ */
622

623
void sched_avg_update(struct rq *rq)
624 625 626 627
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
628 629 630 631 632 633
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
634 635 636 637 638
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

639
#else /* !CONFIG_SMP */
640
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
641
{
642
	assert_raw_spin_locked(&task_rq(p)->lock);
643
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
644
}
645
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
646

647 648
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
649
/*
650 651 652 653
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
654
 */
655
int walk_tg_tree_from(struct task_group *from,
656
			     tg_visitor down, tg_visitor up, void *data)
657 658
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
659
	int ret;
660

661 662
	parent = from;

663
down:
P
Peter Zijlstra 已提交
664 665
	ret = (*down)(parent, data);
	if (ret)
666
		goto out;
667 668 669 670 671
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
672 673 674 675 676
		continue;
	}
	ret = (*up)(parent, data);
	if (ret || parent == from)
		goto out;
677

678 679 680 681 682 683
	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
out:
	return ret;
684 685
}

686
int tg_nop(struct task_group *tg, void *data)
687
{
688
	return 0;
689
}
690 691 692
#endif

void update_cpu_load(struct rq *this_rq);
693

694 695
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
696 697 698
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
699 700 701 702
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
703
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
704
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
705 706
		return;
	}
707

708
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
709
	load->inv_weight = prio_to_wmult[prio];
710 711
}

712
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
713
{
714
	update_rq_clock(rq);
I
Ingo Molnar 已提交
715
	sched_info_queued(p);
716
	p->sched_class->enqueue_task(rq, p, flags);
717 718
}

719
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
720
{
721
	update_rq_clock(rq);
722
	sched_info_dequeued(p);
723
	p->sched_class->dequeue_task(rq, p, flags);
724 725
}

726 727 728
/*
 * activate_task - move a task to the runqueue.
 */
729
void activate_task(struct rq *rq, struct task_struct *p, int flags)
730 731 732 733
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

734
	enqueue_task(rq, p, flags);
735 736 737 738 739
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
740
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
741 742 743 744
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

745
	dequeue_task(rq, p, flags);
746 747
}

748 749
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

750 751 752 753 754 755 756
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
757 758 759
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
760
 */
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
815 816 817
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
818
#endif /* CONFIG_64BIT */
819

820 821 822 823
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
824 825 826
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
827
	s64 delta;
828 829 830 831 832 833 834 835
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
836 837 838
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

839
	irq_time_write_begin();
840 841 842 843 844 845 846
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
847
		__this_cpu_add(cpu_hardirq_time, delta);
848
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
849
		__this_cpu_add(cpu_softirq_time, delta);
850

851
	irq_time_write_end();
852 853
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
854
EXPORT_SYMBOL_GPL(account_system_vtime);
855

G
Glauber Costa 已提交
856 857 858 859
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_PARAVIRT
static inline u64 steal_ticks(u64 steal)
860
{
G
Glauber Costa 已提交
861 862
	if (unlikely(steal > NSEC_PER_SEC))
		return div_u64(steal, TICK_NSEC);
863

G
Glauber Costa 已提交
864 865 866 867
	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
}
#endif

868
static void update_rq_clock_task(struct rq *rq, s64 delta)
869
{
870 871 872 873 874 875 876 877
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
878
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_branch((&paravirt_steal_rq_enabled))) {
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

920 921
	rq->clock_task += delta;

922 923 924 925
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
926 927
}

928
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
929 930
static int irqtime_account_hi_update(void)
{
931
	u64 *cpustat = kcpustat_this_cpu->cpustat;
932 933 934 935 936 937
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
938
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat[CPUTIME_IRQ]))
939 940 941 942 943 944 945
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
946
	u64 *cpustat = kcpustat_this_cpu->cpustat;
947 948 949 950 951 952
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
953
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat[CPUTIME_SOFTIRQ]))
954 955 956 957 958
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

959
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
960

961 962
#define sched_clock_irqtime	(0)

963
#endif
964

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

995
/*
I
Ingo Molnar 已提交
996
 * __normal_prio - return the priority that is based on the static prio
997 998 999
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1000
	return p->static_prio;
1001 1002
}

1003 1004 1005 1006 1007 1008 1009
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1010
static inline int normal_prio(struct task_struct *p)
1011 1012 1013
{
	int prio;

1014
	if (task_has_rt_policy(p))
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1028
static int effective_prio(struct task_struct *p)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1041 1042 1043 1044
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1045
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1046 1047 1048 1049
{
	return cpu_curr(task_cpu(p)) == p;
}

1050 1051
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1052
				       int oldprio)
1053 1054 1055
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1056 1057 1058 1059
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
1060 1061
}

1062
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
1083
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1084 1085 1086
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1087
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1088
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1089
{
1090 1091 1092 1093 1094
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1095 1096
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1097 1098

#ifdef CONFIG_LOCKDEP
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
	 * see set_task_rq().
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1109 1110 1111
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1112 1113
#endif

1114
	trace_sched_migrate_task(p, new_cpu);
1115

1116 1117
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
1118
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1119
	}
I
Ingo Molnar 已提交
1120 1121

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1122 1123
}

1124
struct migration_arg {
1125
	struct task_struct *task;
L
Linus Torvalds 已提交
1126
	int dest_cpu;
1127
};
L
Linus Torvalds 已提交
1128

1129 1130
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1131 1132 1133
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1134 1135 1136 1137 1138 1139 1140
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1141 1142 1143 1144 1145 1146
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1147
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1148 1149
{
	unsigned long flags;
I
Ingo Molnar 已提交
1150
	int running, on_rq;
R
Roland McGrath 已提交
1151
	unsigned long ncsw;
1152
	struct rq *rq;
L
Linus Torvalds 已提交
1153

1154 1155 1156 1157 1158 1159 1160 1161
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1174 1175 1176
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1177
			cpu_relax();
R
Roland McGrath 已提交
1178
		}
1179

1180 1181 1182 1183 1184 1185
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1186
		trace_sched_wait_task(p);
1187
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1188
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1189
		ncsw = 0;
1190
		if (!match_state || p->state == match_state)
1191
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1192
		task_rq_unlock(rq, p, &flags);
1193

R
Roland McGrath 已提交
1194 1195 1196 1197 1198 1199
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1210

1211 1212 1213 1214 1215
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1216
		 * So if it was still runnable (but just not actively
1217 1218 1219 1220
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1221 1222 1223 1224
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1225 1226
			continue;
		}
1227

1228 1229 1230 1231 1232 1233 1234
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1235 1236

	return ncsw;
L
Linus Torvalds 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1246
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1247 1248 1249 1250 1251
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1252
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1262
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1263
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1264

1265
#ifdef CONFIG_SMP
1266
/*
1267
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1268
 */
1269 1270 1271 1272 1273 1274 1275
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1276
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277 1278 1279
			return dest_cpu;

	/* Any allowed, online CPU? */
1280
	dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1281 1282 1283 1284
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
1285 1286 1287 1288 1289 1290 1291 1292 1293
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
1294 1295 1296 1297 1298
	}

	return dest_cpu;
}

1299
/*
1300
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1301
 */
1302
static inline
1303
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1304
{
1305
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1317
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1318
		     !cpu_online(cpu)))
1319
		cpu = select_fallback_rq(task_cpu(p), p);
1320 1321

	return cpu;
1322
}
1323 1324 1325 1326 1327 1328

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1329 1330
#endif

P
Peter Zijlstra 已提交
1331
static void
1332
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1333
{
P
Peter Zijlstra 已提交
1334
#ifdef CONFIG_SCHEDSTATS
1335 1336
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1347
		rcu_read_lock();
P
Peter Zijlstra 已提交
1348 1349 1350 1351 1352 1353
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1354
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1355
	}
1356 1357 1358 1359

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1360 1361 1362
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1363
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1364 1365

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1366
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1367 1368 1369 1370 1371 1372

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1373
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1374
	p->on_rq = 1;
1375 1376 1377 1378

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1379 1380
}

1381 1382 1383
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1384
static void
1385
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1386
{
1387
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1388 1389 1390 1391 1392 1393 1394
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1395
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1441
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1442
static void sched_ttwu_pending(void)
1443 1444
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1445 1446
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1447 1448 1449

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1450 1451 1452
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1453 1454 1455 1456 1457 1458 1459 1460
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1461
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1478
	sched_ttwu_pending();
1479 1480 1481 1482

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1483 1484
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1485
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1486
	}
1487
	irq_exit();
1488 1489 1490 1491
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1492
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1493 1494
		smp_send_reschedule(cpu);
}
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
#endif /* CONFIG_SMP */
1515

1516 1517 1518 1519
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1520
#if defined(CONFIG_SMP)
1521
	if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
1522
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1523 1524 1525 1526 1527
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1528 1529 1530
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1531 1532 1533
}

/**
L
Linus Torvalds 已提交
1534
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1535
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1536
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1537
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1538 1539 1540 1541 1542 1543 1544
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1545 1546
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1547
 */
1548 1549
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1550 1551
{
	unsigned long flags;
1552
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1553

1554
	smp_wmb();
1555
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1556
	if (!(p->state & state))
L
Linus Torvalds 已提交
1557 1558
		goto out;

1559
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1560 1561
	cpu = task_cpu(p);

1562 1563
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1564 1565

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1566
	/*
1567 1568
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1569
	 */
1570 1571 1572
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
1573 1574 1575 1576 1577
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
1578
		 */
1579
		if (ttwu_activate_remote(p, wake_flags))
1580
			goto stat;
1581
#else
1582
		cpu_relax();
1583
#endif
1584
	}
1585
	/*
1586
	 * Pairs with the smp_wmb() in finish_lock_switch().
1587
	 */
1588
	smp_rmb();
L
Linus Torvalds 已提交
1589

1590
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1591
	p->state = TASK_WAKING;
1592

1593
	if (p->sched_class->task_waking)
1594
		p->sched_class->task_waking(p);
1595

1596
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1597 1598
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1599
		set_task_cpu(p, cpu);
1600
	}
L
Linus Torvalds 已提交
1601 1602
#endif /* CONFIG_SMP */

1603 1604
	ttwu_queue(p, cpu);
stat:
1605
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1606
out:
1607
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1608 1609 1610 1611

	return success;
}

T
Tejun Heo 已提交
1612 1613 1614 1615
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1616
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1617
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1618
 * the current task.
T
Tejun Heo 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1628 1629 1630 1631 1632 1633
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1634
	if (!(p->state & TASK_NORMAL))
1635
		goto out;
T
Tejun Heo 已提交
1636

P
Peter Zijlstra 已提交
1637
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1638 1639
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1640
	ttwu_do_wakeup(rq, p, 0);
1641
	ttwu_stat(p, smp_processor_id(), 0);
1642 1643
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1644 1645
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1657
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1658
{
1659
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1660 1661 1662
}
EXPORT_SYMBOL(wake_up_process);

1663
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1664 1665 1666 1667 1668 1669 1670
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1671 1672 1673 1674 1675
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1676 1677 1678
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1679 1680
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1681
	p->se.prev_sum_exec_runtime	= 0;
1682
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1683
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1684
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1685 1686

#ifdef CONFIG_SCHEDSTATS
1687
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1688
#endif
N
Nick Piggin 已提交
1689

P
Peter Zijlstra 已提交
1690
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1691

1692 1693 1694
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1695 1696 1697 1698 1699
}

/*
 * fork()/clone()-time setup:
 */
1700
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1701
{
1702
	unsigned long flags;
I
Ingo Molnar 已提交
1703 1704 1705
	int cpu = get_cpu();

	__sched_fork(p);
1706
	/*
1707
	 * We mark the process as running here. This guarantees that
1708 1709 1710
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1711
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1712

1713 1714 1715 1716 1717
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1718 1719 1720 1721
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1722
		if (task_has_rt_policy(p)) {
1723
			p->policy = SCHED_NORMAL;
1724
			p->static_prio = NICE_TO_PRIO(0);
1725 1726 1727 1728 1729 1730
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1731

1732 1733 1734 1735 1736 1737
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1738

H
Hiroshi Shimamoto 已提交
1739 1740
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1741

P
Peter Zijlstra 已提交
1742 1743 1744
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1745 1746 1747 1748 1749 1750 1751
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1752
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1753
	set_task_cpu(p, cpu);
1754
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1755

1756
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1757
	if (likely(sched_info_on()))
1758
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1759
#endif
P
Peter Zijlstra 已提交
1760 1761
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1762
#endif
1763
#ifdef CONFIG_PREEMPT_COUNT
1764
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1765
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1766
#endif
1767
#ifdef CONFIG_SMP
1768
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1769
#endif
1770

N
Nick Piggin 已提交
1771
	put_cpu();
L
Linus Torvalds 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1781
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1782 1783
{
	unsigned long flags;
I
Ingo Molnar 已提交
1784
	struct rq *rq;
1785

1786
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1787 1788 1789 1790 1791 1792
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1793
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1794 1795
#endif

1796
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1797
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1798
	p->on_rq = 1;
1799
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1800
	check_preempt_curr(rq, p, WF_FORK);
1801
#ifdef CONFIG_SMP
1802 1803
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1804
#endif
1805
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1806 1807
}

1808 1809 1810
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1811
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1812
 * @notifier: notifier struct to register
1813 1814 1815 1816 1817 1818 1819 1820 1821
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1822
 * @notifier: notifier struct to unregister
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1852
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1864
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1865

1866 1867 1868
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1869
 * @prev: the current task that is being switched out
1870 1871 1872 1873 1874 1875 1876 1877 1878
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1879 1880 1881
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1882
{
1883 1884
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1885
	fire_sched_out_preempt_notifiers(prev, next);
1886 1887
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
1888
	trace_sched_switch(prev, next);
1889 1890
}

L
Linus Torvalds 已提交
1891 1892
/**
 * finish_task_switch - clean up after a task-switch
1893
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1894 1895
 * @prev: the thread we just switched away from.
 *
1896 1897 1898 1899
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1900 1901
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1902
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1903 1904 1905
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1906
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1907 1908 1909
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1910
	long prev_state;
L
Linus Torvalds 已提交
1911 1912 1913 1914 1915

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1916
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1917 1918
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1919
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1925
	prev_state = prev->state;
1926
	finish_arch_switch(prev);
1927 1928 1929
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1930
	perf_event_task_sched_in(prev, current);
1931 1932 1933
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1934
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
1935

1936
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1937 1938
	if (mm)
		mmdrop(mm);
1939
	if (unlikely(prev_state == TASK_DEAD)) {
1940 1941 1942
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1943
		 */
1944
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1945
		put_task_struct(prev);
1946
	}
L
Linus Torvalds 已提交
1947 1948
}

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1964
		raw_spin_lock_irqsave(&rq->lock, flags);
1965 1966
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1967
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1968 1969 1970 1971 1972 1973

		rq->post_schedule = 0;
	}
}

#else
1974

1975 1976 1977 1978 1979 1980
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1981 1982
}

1983 1984
#endif

L
Linus Torvalds 已提交
1985 1986 1987 1988
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1989
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1990 1991
	__releases(rq->lock)
{
1992 1993
	struct rq *rq = this_rq();

1994
	finish_task_switch(rq, prev);
1995

1996 1997 1998 1999 2000
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2001

2002 2003 2004 2005
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2006
	if (current->set_child_tid)
2007
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2008 2009 2010 2011 2012 2013
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2014
static inline void
2015
context_switch(struct rq *rq, struct task_struct *prev,
2016
	       struct task_struct *next)
L
Linus Torvalds 已提交
2017
{
I
Ingo Molnar 已提交
2018
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2019

2020
	prepare_task_switch(rq, prev, next);
2021

I
Ingo Molnar 已提交
2022 2023
	mm = next->mm;
	oldmm = prev->active_mm;
2024 2025 2026 2027 2028
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2029
	arch_start_context_switch(prev);
2030

2031
	if (!mm) {
L
Linus Torvalds 已提交
2032 2033 2034 2035 2036 2037
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2038
	if (!prev->mm) {
L
Linus Torvalds 已提交
2039 2040 2041
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2042 2043 2044 2045 2046 2047 2048
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2049
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2050
#endif
L
Linus Torvalds 已提交
2051 2052 2053 2054

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2055 2056 2057 2058 2059 2060 2061
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2079
}
L
Linus Torvalds 已提交
2080 2081

unsigned long nr_uninterruptible(void)
2082
{
L
Linus Torvalds 已提交
2083
	unsigned long i, sum = 0;
2084

2085
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2086
		sum += cpu_rq(i)->nr_uninterruptible;
2087 2088

	/*
L
Linus Torvalds 已提交
2089 2090
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2091
	 */
L
Linus Torvalds 已提交
2092 2093
	if (unlikely((long)sum < 0))
		sum = 0;
2094

L
Linus Torvalds 已提交
2095
	return sum;
2096 2097
}

L
Linus Torvalds 已提交
2098
unsigned long long nr_context_switches(void)
2099
{
2100 2101
	int i;
	unsigned long long sum = 0;
2102

2103
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2104
		sum += cpu_rq(i)->nr_switches;
2105

L
Linus Torvalds 已提交
2106 2107
	return sum;
}
2108

L
Linus Torvalds 已提交
2109 2110 2111
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2112

2113
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2114
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2115

L
Linus Torvalds 已提交
2116 2117
	return sum;
}
2118

2119
unsigned long nr_iowait_cpu(int cpu)
2120
{
2121
	struct rq *this = cpu_rq(cpu);
2122 2123
	return atomic_read(&this->nr_iowait);
}
2124

2125 2126 2127 2128 2129
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2130

2131

2132 2133 2134 2135 2136
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2137

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2153 2154 2155 2156 2157 2158 2159 2160 2161
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2162 2163 2164 2165 2166 2167 2168 2169
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

2170
void calc_load_account_idle(struct rq *this_rq)
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
2313
#else
2314
void calc_load_account_idle(struct rq *this_rq)
2315 2316 2317 2318 2319 2320 2321
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
2322 2323 2324 2325

static void calc_global_nohz(unsigned long ticks)
{
}
2326 2327
#endif

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2341 2342 2343
}

/*
2344 2345
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2346
 */
2347
void calc_global_load(unsigned long ticks)
2348
{
2349
	long active;
L
Linus Torvalds 已提交
2350

2351 2352 2353
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
2354
		return;
L
Linus Torvalds 已提交
2355

2356 2357
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2358

2359 2360 2361
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2362

2363 2364
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
2365

2366
/*
2367 2368
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2369 2370 2371
 */
static void calc_load_account_active(struct rq *this_rq)
{
2372
	long delta;
2373

2374 2375
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2376

2377 2378 2379
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
2380
		atomic_long_add(delta, &calc_load_tasks);
2381 2382

	this_rq->calc_load_update += LOAD_FREQ;
2383 2384
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2452
/*
I
Ingo Molnar 已提交
2453
 * Update rq->cpu_load[] statistics. This function is usually called every
2454 2455
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2456
 */
2457
void update_cpu_load(struct rq *this_rq)
2458
{
2459
	unsigned long this_load = this_rq->load.weight;
2460 2461
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
2462
	int i, scale;
2463

I
Ingo Molnar 已提交
2464
	this_rq->nr_load_updates++;
2465

2466 2467 2468 2469 2470 2471 2472
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
2473
	/* Update our load: */
2474 2475
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2476
		unsigned long old_load, new_load;
2477

I
Ingo Molnar 已提交
2478
		/* scale is effectively 1 << i now, and >> i divides by scale */
2479

I
Ingo Molnar 已提交
2480
		old_load = this_rq->cpu_load[i];
2481
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2482
		new_load = this_load;
I
Ingo Molnar 已提交
2483 2484 2485 2486 2487 2488
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2489 2490 2491
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2492
	}
2493 2494

	sched_avg_update(this_rq);
2495 2496 2497 2498 2499
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
2500

2501
	calc_load_account_active(this_rq);
2502 2503
}

I
Ingo Molnar 已提交
2504
#ifdef CONFIG_SMP
2505

2506
/*
P
Peter Zijlstra 已提交
2507 2508
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2509
 */
P
Peter Zijlstra 已提交
2510
void sched_exec(void)
2511
{
P
Peter Zijlstra 已提交
2512
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2513
	unsigned long flags;
2514
	int dest_cpu;
2515

2516
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2517
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2518 2519
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2520

2521
	if (likely(cpu_active(dest_cpu))) {
2522
		struct migration_arg arg = { p, dest_cpu };
2523

2524 2525
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2526 2527
		return;
	}
2528
unlock:
2529
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2530
}
I
Ingo Molnar 已提交
2531

L
Linus Torvalds 已提交
2532 2533 2534
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2535
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2536 2537

EXPORT_PER_CPU_SYMBOL(kstat);
2538
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2539 2540

/*
2541
 * Return any ns on the sched_clock that have not yet been accounted in
2542
 * @p in case that task is currently running.
2543 2544
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2545
 */
2546 2547 2548 2549 2550 2551
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2552
		ns = rq->clock_task - p->se.exec_start;
2553 2554 2555 2556 2557 2558 2559
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2560
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2561 2562
{
	unsigned long flags;
2563
	struct rq *rq;
2564
	u64 ns = 0;
2565

2566
	rq = task_rq_lock(p, &flags);
2567
	ns = do_task_delta_exec(p, rq);
2568
	task_rq_unlock(rq, p, &flags);
2569

2570 2571
	return ns;
}
2572

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2586
	task_rq_unlock(rq, p, &flags);
2587 2588 2589

	return ns;
}
2590

2591 2592 2593 2594 2595
#ifdef CONFIG_CGROUP_CPUACCT
struct cgroup_subsys cpuacct_subsys;
struct cpuacct root_cpuacct;
#endif

2596 2597
static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
{
#ifdef CONFIG_CGROUP_CPUACCT
	struct kernel_cpustat *kcpustat;
	struct cpuacct *ca;
#endif
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;

#ifdef CONFIG_CGROUP_CPUACCT
	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(p);
	while (ca && (ca != &root_cpuacct)) {
		kcpustat = this_cpu_ptr(ca->cpustat);
		kcpustat->cpustat[index] += tmp;
		ca = parent_ca(ca);
	}
	rcu_read_unlock();
#endif
}


L
Linus Torvalds 已提交
2627 2628 2629 2630
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
2631
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2632
 */
2633 2634
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2635
{
2636
	int index;
L
Linus Torvalds 已提交
2637

2638
	/* Add user time to process. */
L
Linus Torvalds 已提交
2639
	p->utime = cputime_add(p->utime, cputime);
2640
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
2641
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
2642

2643
	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2644

2645
	/* Add user time to cpustat. */
2646
	task_group_account_field(p, index, cputime);
2647

2648 2649
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
2650 2651
}

2652 2653 2654 2655
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
2656
 * @cputime_scaled: cputime scaled by cpu frequency
2657
 */
2658 2659
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
2660
{
2661 2662
	u64 tmp;
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2663 2664 2665

	tmp = cputime_to_cputime64(cputime);

2666
	/* Add guest time to process. */
2667
	p->utime = cputime_add(p->utime, cputime);
2668
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
2669
	account_group_user_time(p, cputime);
2670 2671
	p->gtime = cputime_add(p->gtime, cputime);

2672
	/* Add guest time to cpustat. */
2673
	if (TASK_NICE(p) > 0) {
2674 2675
		cpustat[CPUTIME_NICE] += tmp;
		cpustat[CPUTIME_GUEST_NICE] += tmp;
2676
	} else {
2677 2678
		cpustat[CPUTIME_USER] += tmp;
		cpustat[CPUTIME_GUEST] += tmp;
2679
	}
2680 2681
}

2682 2683 2684 2685 2686 2687 2688 2689 2690
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
2691
			cputime_t cputime_scaled, int index)
2692 2693 2694 2695 2696 2697 2698
{
	/* Add system time to process. */
	p->stime = cputime_add(p->stime, cputime);
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
2699
	task_group_account_field(p, index, cputime);
2700 2701 2702 2703 2704

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
2705 2706 2707 2708 2709
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
2710
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2711 2712
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
2713
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2714
{
2715
	int index;
L
Linus Torvalds 已提交
2716

2717
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2718
		account_guest_time(p, cputime, cputime_scaled);
2719 2720
		return;
	}
2721

L
Linus Torvalds 已提交
2722
	if (hardirq_count() - hardirq_offset)
2723
		index = CPUTIME_IRQ;
2724
	else if (in_serving_softirq())
2725
		index = CPUTIME_SOFTIRQ;
L
Linus Torvalds 已提交
2726
	else
2727
		index = CPUTIME_SYSTEM;
2728

2729
	__account_system_time(p, cputime, cputime_scaled, index);
L
Linus Torvalds 已提交
2730 2731
}

2732
/*
L
Linus Torvalds 已提交
2733
 * Account for involuntary wait time.
2734
 * @cputime: the cpu time spent in involuntary wait
2735
 */
2736
void account_steal_time(cputime_t cputime)
2737
{
2738 2739
	u64 *cpustat = kcpustat_this_cpu->cpustat;
	u64 cputime64 = cputime_to_cputime64(cputime);
2740

2741
	cpustat[CPUTIME_STEAL] += cputime64;
2742 2743
}

L
Linus Torvalds 已提交
2744
/*
2745 2746
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
2747
 */
2748
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
2749
{
2750 2751
	u64 *cpustat = kcpustat_this_cpu->cpustat;
	u64 cputime64 = cputime_to_cputime64(cputime);
2752
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2753

2754
	if (atomic_read(&rq->nr_iowait) > 0)
2755
		cpustat[CPUTIME_IOWAIT] += cputime64;
2756
	else
2757
		cpustat[CPUTIME_IDLE] += cputime64;
L
Linus Torvalds 已提交
2758 2759
}

G
Glauber Costa 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
	if (static_branch(&paravirt_steal_enabled)) {
		u64 steal, st = 0;

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

		st = steal_ticks(steal);
		this_rq()->prev_steal_time += st * TICK_NSEC;

		account_steal_time(st);
		return st;
	}
#endif
	return false;
}

2779 2780
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2807 2808
	u64 tmp = cputime_to_cputime64(cputime_one_jiffy);
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2809

G
Glauber Costa 已提交
2810 2811 2812
	if (steal_account_process_tick())
		return;

2813
	if (irqtime_account_hi_update()) {
2814
		cpustat[CPUTIME_IRQ] += tmp;
2815
	} else if (irqtime_account_si_update()) {
2816
		cpustat[CPUTIME_SOFTIRQ] += tmp;
2817 2818 2819 2820 2821 2822 2823
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2824
					CPUTIME_SOFTIRQ);
2825 2826 2827 2828 2829 2830 2831 2832
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2833
					CPUTIME_SYSTEM);
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
2845
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2846 2847 2848
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
2849
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2850 2851 2852 2853 2854 2855 2856 2857

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
2858
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2859 2860
	struct rq *rq = this_rq();

2861 2862 2863 2864 2865
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

G
Glauber Costa 已提交
2866 2867 2868
	if (steal_account_process_tick())
		return;

2869
	if (user_tick)
2870
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2871
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2872
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2873 2874
				    one_jiffy_scaled);
	else
2875
		account_idle_time(cputime_one_jiffy);
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
2894 2895 2896 2897 2898 2899

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

2900
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
2901 2902
}

2903 2904
#endif

2905 2906 2907 2908
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2909
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2910
{
2911 2912
	*ut = p->utime;
	*st = p->stime;
2913 2914
}

2915
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2916
{
2917 2918 2919 2920 2921 2922
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
2923 2924
}
#else
2925 2926

#ifndef nsecs_to_cputime
2927
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2928 2929
#endif

2930
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2931
{
2932
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
2933 2934 2935 2936

	/*
	 * Use CFS's precise accounting:
	 */
2937
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2938 2939

	if (total) {
2940
		u64 temp = rtime;
2941

2942
		temp *= utime;
2943
		do_div(temp, total);
2944 2945 2946
		utime = (cputime_t)temp;
	} else
		utime = rtime;
2947

2948 2949 2950
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
2951
	p->prev_utime = max(p->prev_utime, utime);
2952
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
2953

2954 2955
	*ut = p->prev_utime;
	*st = p->prev_stime;
2956 2957
}

2958 2959 2960 2961
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2962
{
2963 2964 2965
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
2966

2967
	thread_group_cputime(p, &cputime);
2968

2969 2970
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2971

2972
	if (total) {
2973
		u64 temp = rtime;
2974

2975
		temp *= cputime.utime;
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
2987 2988 2989
}
#endif

2990 2991 2992 2993 2994 2995 2996 2997
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2998
	struct task_struct *curr = rq->curr;
2999 3000

	sched_clock_tick();
I
Ingo Molnar 已提交
3001

3002
	raw_spin_lock(&rq->lock);
3003
	update_rq_clock(rq);
3004
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3005
	curr->sched_class->task_tick(rq, curr, 0);
3006
	raw_spin_unlock(&rq->lock);
3007

3008
	perf_event_task_tick();
3009

3010
#ifdef CONFIG_SMP
3011
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
3012
	trigger_load_balance(rq, cpu);
3013
#endif
L
Linus Torvalds 已提交
3014 3015
}

3016
notrace unsigned long get_parent_ip(unsigned long addr)
3017 3018 3019 3020 3021 3022 3023 3024
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3025

3026 3027 3028
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3029
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3030
{
3031
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3032 3033 3034
	/*
	 * Underflow?
	 */
3035 3036
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3037
#endif
L
Linus Torvalds 已提交
3038
	preempt_count() += val;
3039
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3040 3041 3042
	/*
	 * Spinlock count overflowing soon?
	 */
3043 3044
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3045 3046 3047
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3048 3049 3050
}
EXPORT_SYMBOL(add_preempt_count);

3051
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3052
{
3053
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3054 3055 3056
	/*
	 * Underflow?
	 */
3057
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3058
		return;
L
Linus Torvalds 已提交
3059 3060 3061
	/*
	 * Is the spinlock portion underflowing?
	 */
3062 3063 3064
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3065
#endif
3066

3067 3068
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3069 3070 3071 3072 3073 3074 3075
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3076
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3077
 */
I
Ingo Molnar 已提交
3078
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3079
{
3080 3081
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3082 3083
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3084

I
Ingo Molnar 已提交
3085
	debug_show_held_locks(prev);
3086
	print_modules();
I
Ingo Molnar 已提交
3087 3088
	if (irqs_disabled())
		print_irqtrace_events(prev);
3089 3090 3091 3092 3093

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3094
}
L
Linus Torvalds 已提交
3095

I
Ingo Molnar 已提交
3096 3097 3098 3099 3100
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3101
	/*
I
Ingo Molnar 已提交
3102
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3103 3104 3105
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3106
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3107
		__schedule_bug(prev);
3108
	rcu_sleep_check();
I
Ingo Molnar 已提交
3109

L
Linus Torvalds 已提交
3110 3111
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3112
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3113 3114
}

P
Peter Zijlstra 已提交
3115
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3116
{
3117
	if (prev->on_rq || rq->skip_clock_update < 0)
3118
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
3119
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3120 3121
}

I
Ingo Molnar 已提交
3122 3123 3124 3125
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3126
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3127
{
3128
	const struct sched_class *class;
I
Ingo Molnar 已提交
3129
	struct task_struct *p;
L
Linus Torvalds 已提交
3130 3131

	/*
I
Ingo Molnar 已提交
3132 3133
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3134
	 */
3135
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3136
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3137 3138
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3139 3140
	}

3141
	for_each_class(class) {
3142
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3143 3144 3145
		if (p)
			return p;
	}
3146 3147

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3148
}
L
Linus Torvalds 已提交
3149

I
Ingo Molnar 已提交
3150
/*
3151
 * __schedule() is the main scheduler function.
I
Ingo Molnar 已提交
3152
 */
3153
static void __sched __schedule(void)
I
Ingo Molnar 已提交
3154 3155
{
	struct task_struct *prev, *next;
3156
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3157
	struct rq *rq;
3158
	int cpu;
I
Ingo Molnar 已提交
3159

3160 3161
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3162 3163
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3164
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3165 3166 3167
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3168

3169
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3170
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3171

3172
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
3173

3174
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3175
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3176
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3177
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3178
		} else {
3179 3180 3181
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3182
			/*
3183 3184 3185
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3186 3187 3188 3189 3190 3191 3192 3193 3194
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3195
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3196 3197
	}

3198
	pre_schedule(rq, prev);
3199

I
Ingo Molnar 已提交
3200
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3201 3202
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3203
	put_prev_task(rq, prev);
3204
	next = pick_next_task(rq);
3205 3206
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
3207 3208 3209 3210 3211 3212

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3213
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3214
		/*
3215 3216 3217 3218
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3219 3220 3221
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3222
	} else
3223
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3224

3225
	post_schedule(rq);
L
Linus Torvalds 已提交
3226 3227

	preempt_enable_no_resched();
3228
	if (need_resched())
L
Linus Torvalds 已提交
3229 3230
		goto need_resched;
}
3231

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
static inline void sched_submit_work(struct task_struct *tsk)
{
	if (!tsk->state)
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
3244
asmlinkage void __sched schedule(void)
3245
{
3246 3247 3248
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3249 3250
	__schedule();
}
L
Linus Torvalds 已提交
3251 3252
EXPORT_SYMBOL(schedule);

3253
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3254

3255 3256 3257
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3258
		return false;
3259 3260

	/*
3261 3262 3263 3264
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3265
	 */
3266
	barrier();
3267

3268
	return owner->on_cpu;
3269
}
3270

3271 3272 3273 3274 3275 3276 3277 3278
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3279

3280
	rcu_read_lock();
3281 3282
	while (owner_running(lock, owner)) {
		if (need_resched())
3283
			break;
3284

3285
		arch_mutex_cpu_relax();
3286
	}
3287
	rcu_read_unlock();
3288

3289
	/*
3290 3291 3292
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3293
	 */
3294
	return lock->owner == NULL;
3295 3296 3297
}
#endif

L
Linus Torvalds 已提交
3298 3299
#ifdef CONFIG_PREEMPT
/*
3300
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3301
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3302 3303
 * occur there and call schedule directly.
 */
3304
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3305 3306
{
	struct thread_info *ti = current_thread_info();
3307

L
Linus Torvalds 已提交
3308 3309
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3310
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3311
	 */
N
Nick Piggin 已提交
3312
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3313 3314
		return;

3315
	do {
3316
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3317
		__schedule();
3318
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3319

3320 3321 3322 3323 3324
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3325
	} while (need_resched());
L
Linus Torvalds 已提交
3326 3327 3328 3329
}
EXPORT_SYMBOL(preempt_schedule);

/*
3330
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3331 3332 3333 3334 3335 3336 3337
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3338

3339
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3340 3341
	BUG_ON(ti->preempt_count || !irqs_disabled());

3342 3343 3344
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3345
		__schedule();
3346 3347
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3348

3349 3350 3351 3352 3353
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3354
	} while (need_resched());
L
Linus Torvalds 已提交
3355 3356 3357 3358
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3359
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3360
			  void *key)
L
Linus Torvalds 已提交
3361
{
P
Peter Zijlstra 已提交
3362
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3363 3364 3365 3366
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3367 3368
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3369 3370 3371
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3372
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3373 3374
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3375
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3376
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3377
{
3378
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3379

3380
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3381 3382
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3383
		if (curr->func(curr, mode, wake_flags, key) &&
3384
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3385 3386 3387 3388 3389 3390 3391 3392 3393
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3394
 * @key: is directly passed to the wakeup function
3395 3396 3397
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3398
 */
3399
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3400
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3413
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3414 3415 3416
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
3417
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3418

3419 3420 3421 3422
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3423
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3424

L
Linus Torvalds 已提交
3425
/**
3426
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3427 3428 3429
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3430
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3431 3432 3433 3434 3435 3436 3437
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3438 3439 3440
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3441
 */
3442 3443
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3444 3445
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3446
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3447 3448 3449 3450 3451

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3452
		wake_flags = 0;
L
Linus Torvalds 已提交
3453 3454

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3455
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3456 3457
	spin_unlock_irqrestore(&q->lock, flags);
}
3458 3459 3460 3461 3462 3463 3464 3465 3466
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3467 3468
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3469 3470 3471 3472 3473 3474 3475 3476
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3477 3478 3479
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3480
 */
3481
void complete(struct completion *x)
L
Linus Torvalds 已提交
3482 3483 3484 3485 3486
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3487
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3488 3489 3490 3491
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3492 3493 3494 3495 3496
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3497 3498 3499
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3500
 */
3501
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3502 3503 3504 3505 3506
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3507
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3508 3509 3510 3511
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3512 3513
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3514 3515 3516 3517
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3518
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3519
		do {
3520
			if (signal_pending_state(state, current)) {
3521 3522
				timeout = -ERESTARTSYS;
				break;
3523 3524
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3525 3526 3527
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3528
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3529
		__remove_wait_queue(&x->wait, &wait);
3530 3531
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3532 3533
	}
	x->done--;
3534
	return timeout ?: 1;
L
Linus Torvalds 已提交
3535 3536
}

3537 3538
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3539 3540 3541 3542
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3543
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3544
	spin_unlock_irq(&x->wait.lock);
3545 3546
	return timeout;
}
L
Linus Torvalds 已提交
3547

3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3558
void __sched wait_for_completion(struct completion *x)
3559 3560
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3561
}
3562
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3563

3564 3565 3566 3567 3568 3569 3570 3571
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3572 3573 3574
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3575
 */
3576
unsigned long __sched
3577
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3578
{
3579
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3580
}
3581
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3582

3583 3584 3585 3586 3587 3588
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3589 3590
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3591
 */
3592
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3593
{
3594 3595 3596 3597
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3598
}
3599
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3600

3601 3602 3603 3604 3605 3606 3607
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3608 3609 3610
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3611
 */
3612
long __sched
3613 3614
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3615
{
3616
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3617
}
3618
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3619

3620 3621 3622 3623 3624 3625
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3626 3627
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3628
 */
M
Matthew Wilcox 已提交
3629 3630 3631 3632 3633 3634 3635 3636 3637
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3638 3639 3640 3641 3642 3643 3644 3645
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3646 3647 3648
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3649
 */
3650
long __sched
3651 3652 3653 3654 3655 3656 3657
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3672
	unsigned long flags;
3673 3674
	int ret = 1;

3675
	spin_lock_irqsave(&x->wait.lock, flags);
3676 3677 3678 3679
	if (!x->done)
		ret = 0;
	else
		x->done--;
3680
	spin_unlock_irqrestore(&x->wait.lock, flags);
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3695
	unsigned long flags;
3696 3697
	int ret = 1;

3698
	spin_lock_irqsave(&x->wait.lock, flags);
3699 3700
	if (!x->done)
		ret = 0;
3701
	spin_unlock_irqrestore(&x->wait.lock, flags);
3702 3703 3704 3705
	return ret;
}
EXPORT_SYMBOL(completion_done);

3706 3707
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3708
{
I
Ingo Molnar 已提交
3709 3710 3711 3712
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3713

3714
	__set_current_state(state);
L
Linus Torvalds 已提交
3715

3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3730 3731 3732
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3733
long __sched
I
Ingo Molnar 已提交
3734
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3735
{
3736
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3737 3738 3739
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3740
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3741
{
3742
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3743 3744 3745
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3746
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3747
{
3748
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3749 3750 3751
}
EXPORT_SYMBOL(sleep_on_timeout);

3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3764
void rt_mutex_setprio(struct task_struct *p, int prio)
3765
{
3766
	int oldprio, on_rq, running;
3767
	struct rq *rq;
3768
	const struct sched_class *prev_class;
3769 3770 3771

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3772
	rq = __task_rq_lock(p);
3773

3774
	trace_sched_pi_setprio(p, prio);
3775
	oldprio = p->prio;
3776
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3777
	on_rq = p->on_rq;
3778
	running = task_current(rq, p);
3779
	if (on_rq)
3780
		dequeue_task(rq, p, 0);
3781 3782
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3783 3784 3785 3786 3787 3788

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3789 3790
	p->prio = prio;

3791 3792
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3793
	if (on_rq)
3794
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3795

P
Peter Zijlstra 已提交
3796
	check_class_changed(rq, p, prev_class, oldprio);
3797
	__task_rq_unlock(rq);
3798 3799 3800 3801
}

#endif

3802
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3803
{
I
Ingo Molnar 已提交
3804
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3805
	unsigned long flags;
3806
	struct rq *rq;
L
Linus Torvalds 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3819
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3820
	 */
3821
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3822 3823 3824
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3825
	on_rq = p->on_rq;
3826
	if (on_rq)
3827
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3828 3829

	p->static_prio = NICE_TO_PRIO(nice);
3830
	set_load_weight(p);
3831 3832 3833
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3834

I
Ingo Molnar 已提交
3835
	if (on_rq) {
3836
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3837
		/*
3838 3839
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3840
		 */
3841
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3842 3843 3844
			resched_task(rq->curr);
	}
out_unlock:
3845
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3846 3847 3848
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3849 3850 3851 3852 3853
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3854
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3855
{
3856 3857
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3858

3859
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3860 3861 3862
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3863 3864 3865 3866 3867 3868 3869 3870 3871
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3872
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3873
{
3874
	long nice, retval;
L
Linus Torvalds 已提交
3875 3876 3877 3878 3879 3880

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3881 3882
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3883 3884 3885
	if (increment > 40)
		increment = 40;

3886
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3887 3888 3889 3890 3891
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3892 3893 3894
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3913
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3914 3915 3916 3917 3918 3919 3920 3921
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3922
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3923 3924 3925
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3926
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3927 3928 3929 3930 3931 3932 3933

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3948 3949 3950 3951 3952 3953
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3954
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3955 3956 3957 3958 3959 3960 3961 3962
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3963
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3964
{
3965
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3966 3967 3968
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3969 3970
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3971 3972 3973
{
	p->policy = policy;
	p->rt_priority = prio;
3974 3975 3976
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3977 3978 3979 3980
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3981
	set_load_weight(p);
L
Linus Torvalds 已提交
3982 3983
}

3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3994 3995 3996 3997 3998
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
3999 4000 4001 4002
	rcu_read_unlock();
	return match;
}

4003
static int __sched_setscheduler(struct task_struct *p, int policy,
4004
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4005
{
4006
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4007
	unsigned long flags;
4008
	const struct sched_class *prev_class;
4009
	struct rq *rq;
4010
	int reset_on_fork;
L
Linus Torvalds 已提交
4011

4012 4013
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4014 4015
recheck:
	/* double check policy once rq lock held */
4016 4017
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4018
		policy = oldpolicy = p->policy;
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4029 4030
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4031 4032
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4033 4034
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4035
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4036
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4037
		return -EINVAL;
4038
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4039 4040
		return -EINVAL;

4041 4042 4043
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4044
	if (user && !capable(CAP_SYS_NICE)) {
4045
		if (rt_policy(policy)) {
4046 4047
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4058

I
Ingo Molnar 已提交
4059
		/*
4060 4061
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4062
		 */
4063 4064 4065 4066
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
4067

4068
		/* can't change other user's priorities */
4069
		if (!check_same_owner(p))
4070
			return -EPERM;
4071 4072 4073 4074

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4075
	}
L
Linus Torvalds 已提交
4076

4077
	if (user) {
4078
		retval = security_task_setscheduler(p);
4079 4080 4081 4082
		if (retval)
			return retval;
	}

4083 4084 4085
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4086
	 *
L
Lucas De Marchi 已提交
4087
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4088 4089
	 * runqueue lock must be held.
	 */
4090
	rq = task_rq_lock(p, &flags);
4091

4092 4093 4094 4095
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4096
		task_rq_unlock(rq, p, &flags);
4097 4098 4099
		return -EINVAL;
	}

4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

4111 4112 4113 4114 4115 4116 4117
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4118 4119
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4120
			task_rq_unlock(rq, p, &flags);
4121 4122 4123 4124 4125
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4126 4127 4128
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4129
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4130 4131
		goto recheck;
	}
P
Peter Zijlstra 已提交
4132
	on_rq = p->on_rq;
4133
	running = task_current(rq, p);
4134
	if (on_rq)
4135
		deactivate_task(rq, p, 0);
4136 4137
	if (running)
		p->sched_class->put_prev_task(rq, p);
4138

4139 4140
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4141
	oldprio = p->prio;
4142
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4143
	__setscheduler(rq, p, policy, param->sched_priority);
4144

4145 4146
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4147
	if (on_rq)
I
Ingo Molnar 已提交
4148
		activate_task(rq, p, 0);
4149

P
Peter Zijlstra 已提交
4150
	check_class_changed(rq, p, prev_class, oldprio);
4151
	task_rq_unlock(rq, p, &flags);
4152

4153 4154
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4155 4156
	return 0;
}
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4167
		       const struct sched_param *param)
4168 4169 4170
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4171 4172
EXPORT_SYMBOL_GPL(sched_setscheduler);

4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4185
			       const struct sched_param *param)
4186 4187 4188 4189
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4190 4191
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4192 4193 4194
{
	struct sched_param lparam;
	struct task_struct *p;
4195
	int retval;
L
Linus Torvalds 已提交
4196 4197 4198 4199 4200

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4201 4202 4203

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4204
	p = find_process_by_pid(pid);
4205 4206 4207
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4208

L
Linus Torvalds 已提交
4209 4210 4211 4212 4213 4214 4215 4216 4217
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4218 4219
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4220
{
4221 4222 4223 4224
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4225 4226 4227 4228 4229 4230 4231 4232
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4233
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4234 4235 4236 4237 4238 4239 4240 4241
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4242
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4243
{
4244
	struct task_struct *p;
4245
	int retval;
L
Linus Torvalds 已提交
4246 4247

	if (pid < 0)
4248
		return -EINVAL;
L
Linus Torvalds 已提交
4249 4250

	retval = -ESRCH;
4251
	rcu_read_lock();
L
Linus Torvalds 已提交
4252 4253 4254 4255
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4256 4257
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4258
	}
4259
	rcu_read_unlock();
L
Linus Torvalds 已提交
4260 4261 4262 4263
	return retval;
}

/**
4264
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4265 4266 4267
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4268
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4269 4270
{
	struct sched_param lp;
4271
	struct task_struct *p;
4272
	int retval;
L
Linus Torvalds 已提交
4273 4274

	if (!param || pid < 0)
4275
		return -EINVAL;
L
Linus Torvalds 已提交
4276

4277
	rcu_read_lock();
L
Linus Torvalds 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4288
	rcu_read_unlock();
L
Linus Torvalds 已提交
4289 4290 4291 4292 4293 4294 4295 4296 4297

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4298
	rcu_read_unlock();
L
Linus Torvalds 已提交
4299 4300 4301
	return retval;
}

4302
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4303
{
4304
	cpumask_var_t cpus_allowed, new_mask;
4305 4306
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4307

4308
	get_online_cpus();
4309
	rcu_read_lock();
L
Linus Torvalds 已提交
4310 4311 4312

	p = find_process_by_pid(pid);
	if (!p) {
4313
		rcu_read_unlock();
4314
		put_online_cpus();
L
Linus Torvalds 已提交
4315 4316 4317
		return -ESRCH;
	}

4318
	/* Prevent p going away */
L
Linus Torvalds 已提交
4319
	get_task_struct(p);
4320
	rcu_read_unlock();
L
Linus Torvalds 已提交
4321

4322 4323 4324 4325 4326 4327 4328 4329
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4330
	retval = -EPERM;
4331
	if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
L
Linus Torvalds 已提交
4332 4333
		goto out_unlock;

4334
	retval = security_task_setscheduler(p);
4335 4336 4337
	if (retval)
		goto out_unlock;

4338 4339
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4340
again:
4341
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4342

P
Paul Menage 已提交
4343
	if (!retval) {
4344 4345
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4346 4347 4348 4349 4350
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4351
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4352 4353 4354
			goto again;
		}
	}
L
Linus Torvalds 已提交
4355
out_unlock:
4356 4357 4358 4359
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4360
	put_task_struct(p);
4361
	put_online_cpus();
L
Linus Torvalds 已提交
4362 4363 4364 4365
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4366
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4367
{
4368 4369 4370 4371 4372
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4373 4374 4375 4376 4377 4378 4379 4380 4381
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4382 4383
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4384
{
4385
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4386 4387
	int retval;

4388 4389
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4390

4391 4392 4393 4394 4395
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4396 4397
}

4398
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4399
{
4400
	struct task_struct *p;
4401
	unsigned long flags;
L
Linus Torvalds 已提交
4402 4403
	int retval;

4404
	get_online_cpus();
4405
	rcu_read_lock();
L
Linus Torvalds 已提交
4406 4407 4408 4409 4410 4411

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4412 4413 4414 4415
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4416
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4417
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4418
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4419 4420

out_unlock:
4421
	rcu_read_unlock();
4422
	put_online_cpus();
L
Linus Torvalds 已提交
4423

4424
	return retval;
L
Linus Torvalds 已提交
4425 4426 4427 4428 4429 4430 4431 4432
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4433 4434
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4435 4436
{
	int ret;
4437
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4438

A
Anton Blanchard 已提交
4439
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4440 4441
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4442 4443
		return -EINVAL;

4444 4445
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4446

4447 4448
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4449
		size_t retlen = min_t(size_t, len, cpumask_size());
4450 4451

		if (copy_to_user(user_mask_ptr, mask, retlen))
4452 4453
			ret = -EFAULT;
		else
4454
			ret = retlen;
4455 4456
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4457

4458
	return ret;
L
Linus Torvalds 已提交
4459 4460 4461 4462 4463
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4464 4465
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4466
 */
4467
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4468
{
4469
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4470

4471
	schedstat_inc(rq, yld_count);
4472
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4473 4474 4475 4476 4477 4478

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4479
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4480
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4481 4482 4483 4484 4485 4486 4487
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4488 4489 4490 4491 4492
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4493
static void __cond_resched(void)
L
Linus Torvalds 已提交
4494
{
4495
	add_preempt_count(PREEMPT_ACTIVE);
4496
	__schedule();
4497
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4498 4499
}

4500
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4501
{
P
Peter Zijlstra 已提交
4502
	if (should_resched()) {
L
Linus Torvalds 已提交
4503 4504 4505 4506 4507
		__cond_resched();
		return 1;
	}
	return 0;
}
4508
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4509 4510

/*
4511
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4512 4513
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4514
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4515 4516 4517
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4518
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4519
{
P
Peter Zijlstra 已提交
4520
	int resched = should_resched();
J
Jan Kara 已提交
4521 4522
	int ret = 0;

4523 4524
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4525
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4526
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4527
		if (resched)
N
Nick Piggin 已提交
4528 4529 4530
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4531
		ret = 1;
L
Linus Torvalds 已提交
4532 4533
		spin_lock(lock);
	}
J
Jan Kara 已提交
4534
	return ret;
L
Linus Torvalds 已提交
4535
}
4536
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4537

4538
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4539 4540 4541
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4542
	if (should_resched()) {
4543
		local_bh_enable();
L
Linus Torvalds 已提交
4544 4545 4546 4547 4548 4549
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4550
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4551 4552 4553 4554

/**
 * yield - yield the current processor to other threads.
 *
4555
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4556 4557 4558 4559 4560 4561 4562 4563 4564
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4565 4566 4567 4568
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4569 4570
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4605
	if (yielded) {
4606
		schedstat_inc(rq, yld_count);
4607 4608 4609 4610 4611 4612
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
4613 4614 4615 4616 4617 4618 4619
	} else {
		/*
		 * We might have set it in task_yield_fair(), but are
		 * not going to schedule(), so don't want to skip
		 * the next update.
		 */
		rq->skip_clock_update = 0;
4620
	}
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4633
/*
I
Ingo Molnar 已提交
4634
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4635 4636 4637 4638
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4639
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4640

4641
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4642
	atomic_inc(&rq->nr_iowait);
4643
	blk_flush_plug(current);
4644
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4645
	schedule();
4646
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4647
	atomic_dec(&rq->nr_iowait);
4648
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4649 4650 4651 4652 4653
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4654
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4655 4656
	long ret;

4657
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4658
	atomic_inc(&rq->nr_iowait);
4659
	blk_flush_plug(current);
4660
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4661
	ret = schedule_timeout(timeout);
4662
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4663
	atomic_dec(&rq->nr_iowait);
4664
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4675
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4676 4677 4678 4679 4680 4681 4682 4683 4684
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4685
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4686
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4700
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4701 4702 4703 4704 4705 4706 4707 4708 4709
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4710
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4711
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4725
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4726
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4727
{
4728
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4729
	unsigned int time_slice;
4730 4731
	unsigned long flags;
	struct rq *rq;
4732
	int retval;
L
Linus Torvalds 已提交
4733 4734 4735
	struct timespec t;

	if (pid < 0)
4736
		return -EINVAL;
L
Linus Torvalds 已提交
4737 4738

	retval = -ESRCH;
4739
	rcu_read_lock();
L
Linus Torvalds 已提交
4740 4741 4742 4743 4744 4745 4746 4747
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4748 4749
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4750
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4751

4752
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4753
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4754 4755
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4756

L
Linus Torvalds 已提交
4757
out_unlock:
4758
	rcu_read_unlock();
L
Linus Torvalds 已提交
4759 4760 4761
	return retval;
}

4762
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4763

4764
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4765 4766
{
	unsigned long free = 0;
4767
	unsigned state;
L
Linus Torvalds 已提交
4768 4769

	state = p->state ? __ffs(p->state) + 1 : 0;
4770
	printk(KERN_INFO "%-15.15s %c", p->comm,
4771
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4772
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4773
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4774
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4775
	else
P
Peter Zijlstra 已提交
4776
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4777 4778
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4779
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4780
	else
P
Peter Zijlstra 已提交
4781
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4782 4783
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4784
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4785
#endif
P
Peter Zijlstra 已提交
4786
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4787
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4788
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4789

4790
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4791 4792
}

I
Ingo Molnar 已提交
4793
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4794
{
4795
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4796

4797
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4798 4799
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4800
#else
P
Peter Zijlstra 已提交
4801 4802
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4803
#endif
4804
	rcu_read_lock();
L
Linus Torvalds 已提交
4805 4806 4807
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4808
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4809 4810
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4811
		if (!state_filter || (p->state & state_filter))
4812
			sched_show_task(p);
L
Linus Torvalds 已提交
4813 4814
	} while_each_thread(g, p);

4815 4816
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4817 4818 4819
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4820
	rcu_read_unlock();
I
Ingo Molnar 已提交
4821 4822 4823
	/*
	 * Only show locks if all tasks are dumped:
	 */
4824
	if (!state_filter)
I
Ingo Molnar 已提交
4825
		debug_show_all_locks();
L
Linus Torvalds 已提交
4826 4827
}

I
Ingo Molnar 已提交
4828 4829
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4830
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4831 4832
}

4833 4834 4835 4836 4837 4838 4839 4840
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4841
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4842
{
4843
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4844 4845
	unsigned long flags;

4846
	raw_spin_lock_irqsave(&rq->lock, flags);
4847

I
Ingo Molnar 已提交
4848
	__sched_fork(idle);
4849
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4850 4851
	idle->se.exec_start = sched_clock();

4852
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4864
	__set_task_cpu(idle, cpu);
4865
	rcu_read_unlock();
L
Linus Torvalds 已提交
4866 4867

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4868 4869
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4870
#endif
4871
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4872 4873

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4874
	task_thread_info(idle)->preempt_count = 0;
J
Jonathan Corbet 已提交
4875

I
Ingo Molnar 已提交
4876 4877 4878 4879
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4880
	ftrace_graph_init_idle_task(idle, cpu);
4881 4882 4883
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
L
Linus Torvalds 已提交
4884 4885 4886
}

#ifdef CONFIG_SMP
4887 4888 4889 4890
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4891 4892 4893

	cpumask_copy(&p->cpus_allowed, new_mask);
	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4894 4895
}

L
Linus Torvalds 已提交
4896 4897 4898
/*
 * This is how migration works:
 *
4899 4900 4901 4902 4903 4904
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4905
 *    it and puts it into the right queue.
4906 4907
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4908 4909 4910 4911 4912 4913 4914 4915
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4916
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4917 4918
 * call is not atomic; no spinlocks may be held.
 */
4919
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4920 4921
{
	unsigned long flags;
4922
	struct rq *rq;
4923
	unsigned int dest_cpu;
4924
	int ret = 0;
L
Linus Torvalds 已提交
4925 4926

	rq = task_rq_lock(p, &flags);
4927

4928 4929 4930
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4931
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4932 4933 4934 4935
		ret = -EINVAL;
		goto out;
	}

4936
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4937 4938 4939 4940
		ret = -EINVAL;
		goto out;
	}

4941
	do_set_cpus_allowed(p, new_mask);
4942

L
Linus Torvalds 已提交
4943
	/* Can the task run on the task's current CPU? If so, we're done */
4944
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4945 4946
		goto out;

4947
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4948
	if (p->on_rq) {
4949
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4950
		/* Need help from migration thread: drop lock and wait. */
4951
		task_rq_unlock(rq, p, &flags);
4952
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4953 4954 4955 4956
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4957
	task_rq_unlock(rq, p, &flags);
4958

L
Linus Torvalds 已提交
4959 4960
	return ret;
}
4961
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4962 4963

/*
I
Ingo Molnar 已提交
4964
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4965 4966 4967 4968 4969 4970
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4971 4972
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4973
 */
4974
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4975
{
4976
	struct rq *rq_dest, *rq_src;
4977
	int ret = 0;
L
Linus Torvalds 已提交
4978

4979
	if (unlikely(!cpu_active(dest_cpu)))
4980
		return ret;
L
Linus Torvalds 已提交
4981 4982 4983 4984

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4985
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4986 4987 4988
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4989
		goto done;
L
Linus Torvalds 已提交
4990
	/* Affinity changed (again). */
4991
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4992
		goto fail;
L
Linus Torvalds 已提交
4993

4994 4995 4996 4997
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4998
	if (p->on_rq) {
4999
		deactivate_task(rq_src, p, 0);
5000
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5001
		activate_task(rq_dest, p, 0);
5002
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5003
	}
L
Linus Torvalds 已提交
5004
done:
5005
	ret = 1;
L
Linus Torvalds 已提交
5006
fail:
L
Linus Torvalds 已提交
5007
	double_rq_unlock(rq_src, rq_dest);
5008
	raw_spin_unlock(&p->pi_lock);
5009
	return ret;
L
Linus Torvalds 已提交
5010 5011 5012
}

/*
5013 5014 5015
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5016
 */
5017
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5018
{
5019
	struct migration_arg *arg = data;
5020

5021 5022 5023 5024
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5025
	local_irq_disable();
5026
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5027
	local_irq_enable();
L
Linus Torvalds 已提交
5028
	return 0;
5029 5030
}

L
Linus Torvalds 已提交
5031
#ifdef CONFIG_HOTPLUG_CPU
5032

5033
/*
5034 5035
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5036
 */
5037
void idle_task_exit(void)
L
Linus Torvalds 已提交
5038
{
5039
	struct mm_struct *mm = current->active_mm;
5040

5041
	BUG_ON(cpu_online(smp_processor_id()));
5042

5043 5044 5045
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5055
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5056
{
5057
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5063
/*
5064
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5065
 */
5066
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5067
{
5068 5069
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5070 5071
}

5072
/*
5073 5074 5075 5076 5077 5078
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5079
 */
5080
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5081
{
5082
	struct rq *rq = cpu_rq(dead_cpu);
5083 5084
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5085 5086

	/*
5087 5088 5089 5090 5091 5092 5093
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5094
	 */
5095
	rq->stop = NULL;
5096

5097 5098 5099
	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);

I
Ingo Molnar 已提交
5100
	for ( ; ; ) {
5101 5102 5103 5104 5105
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5106
			break;
5107

5108
		next = pick_next_task(rq);
5109
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5110
		next->sched_class->put_prev_task(rq, next);
5111

5112 5113 5114 5115 5116 5117 5118
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5119
	}
5120

5121
	rq->stop = stop;
5122
}
5123

L
Linus Torvalds 已提交
5124 5125
#endif /* CONFIG_HOTPLUG_CPU */

5126 5127 5128
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5129 5130
	{
		.procname	= "sched_domain",
5131
		.mode		= 0555,
5132
	},
5133
	{}
5134 5135 5136
};

static struct ctl_table sd_ctl_root[] = {
5137 5138
	{
		.procname	= "kernel",
5139
		.mode		= 0555,
5140 5141
		.child		= sd_ctl_dir,
	},
5142
	{}
5143 5144 5145 5146 5147
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5148
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5149 5150 5151 5152

	return entry;
}

5153 5154
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5155
	struct ctl_table *entry;
5156

5157 5158 5159
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5160
	 * will always be set. In the lowest directory the names are
5161 5162 5163
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5164 5165
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5166 5167 5168
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5169 5170 5171 5172 5173

	kfree(*tablep);
	*tablep = NULL;
}

5174
static void
5175
set_table_entry(struct ctl_table *entry,
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5189
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5190

5191 5192 5193
	if (table == NULL)
		return NULL;

5194
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5195
		sizeof(long), 0644, proc_doulongvec_minmax);
5196
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5197
		sizeof(long), 0644, proc_doulongvec_minmax);
5198
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5199
		sizeof(int), 0644, proc_dointvec_minmax);
5200
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5201
		sizeof(int), 0644, proc_dointvec_minmax);
5202
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5203
		sizeof(int), 0644, proc_dointvec_minmax);
5204
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5205
		sizeof(int), 0644, proc_dointvec_minmax);
5206
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5207
		sizeof(int), 0644, proc_dointvec_minmax);
5208
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5209
		sizeof(int), 0644, proc_dointvec_minmax);
5210
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5211
		sizeof(int), 0644, proc_dointvec_minmax);
5212
	set_table_entry(&table[9], "cache_nice_tries",
5213 5214
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5215
	set_table_entry(&table[10], "flags", &sd->flags,
5216
		sizeof(int), 0644, proc_dointvec_minmax);
5217 5218 5219
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5220 5221 5222 5223

	return table;
}

5224
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5225 5226 5227 5228 5229 5230 5231 5232 5233
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5234 5235
	if (table == NULL)
		return NULL;
5236 5237 5238 5239 5240

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5241
		entry->mode = 0555;
5242 5243 5244 5245 5246 5247 5248 5249
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5250
static void register_sched_domain_sysctl(void)
5251
{
5252
	int i, cpu_num = num_possible_cpus();
5253 5254 5255
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5256 5257 5258
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5259 5260 5261
	if (entry == NULL)
		return;

5262
	for_each_possible_cpu(i) {
5263 5264
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5265
		entry->mode = 0555;
5266
		entry->child = sd_alloc_ctl_cpu_table(i);
5267
		entry++;
5268
	}
5269 5270

	WARN_ON(sd_sysctl_header);
5271 5272
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5273

5274
/* may be called multiple times per register */
5275 5276
static void unregister_sched_domain_sysctl(void)
{
5277 5278
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5279
	sd_sysctl_header = NULL;
5280 5281
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5282
}
5283
#else
5284 5285 5286 5287
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5288 5289 5290 5291
{
}
#endif

5292 5293 5294 5295 5296
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5297
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5317
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5318 5319 5320 5321
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5322 5323 5324 5325
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5326 5327
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5328
{
5329
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5330
	unsigned long flags;
5331
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5332

5333
	switch (action & ~CPU_TASKS_FROZEN) {
5334

L
Linus Torvalds 已提交
5335
	case CPU_UP_PREPARE:
5336
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5337
		break;
5338

L
Linus Torvalds 已提交
5339
	case CPU_ONLINE:
5340
		/* Update our root-domain */
5341
		raw_spin_lock_irqsave(&rq->lock, flags);
5342
		if (rq->rd) {
5343
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5344 5345

			set_rq_online(rq);
5346
		}
5347
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5348
		break;
5349

L
Linus Torvalds 已提交
5350
#ifdef CONFIG_HOTPLUG_CPU
5351
	case CPU_DYING:
5352
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5353
		/* Update our root-domain */
5354
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5355
		if (rq->rd) {
5356
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5357
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5358
		}
5359 5360
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5361
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5362 5363 5364

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
5365
		break;
L
Linus Torvalds 已提交
5366 5367
#endif
	}
5368 5369 5370

	update_max_interval();

L
Linus Torvalds 已提交
5371 5372 5373
	return NOTIFY_OK;
}

5374 5375 5376
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5377
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5378
 */
5379
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5380
	.notifier_call = migration_call,
5381
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5382 5383
};

5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5409
static int __init migration_init(void)
L
Linus Torvalds 已提交
5410 5411
{
	void *cpu = (void *)(long)smp_processor_id();
5412
	int err;
5413

5414
	/* Initialize migration for the boot CPU */
5415 5416
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5417 5418
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5419

5420 5421 5422 5423
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5424
	return 0;
L
Linus Torvalds 已提交
5425
}
5426
early_initcall(migration_init);
L
Linus Torvalds 已提交
5427 5428 5429
#endif

#ifdef CONFIG_SMP
5430

5431 5432
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5433
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5434

5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5445
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5446
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5447
{
I
Ingo Molnar 已提交
5448
	struct sched_group *group = sd->groups;
5449
	char str[256];
L
Linus Torvalds 已提交
5450

R
Rusty Russell 已提交
5451
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5452
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5453 5454 5455 5456

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5457
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5458
		if (sd->parent)
P
Peter Zijlstra 已提交
5459 5460
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5461
		return -1;
N
Nick Piggin 已提交
5462 5463
	}

P
Peter Zijlstra 已提交
5464
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5465

5466
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5467 5468
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5469
	}
5470
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5471 5472
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5473
	}
L
Linus Torvalds 已提交
5474

I
Ingo Molnar 已提交
5475
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5476
	do {
I
Ingo Molnar 已提交
5477
		if (!group) {
P
Peter Zijlstra 已提交
5478 5479
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5480 5481 5482
			break;
		}

5483
		if (!group->sgp->power) {
P
Peter Zijlstra 已提交
5484 5485 5486
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5487 5488
			break;
		}
L
Linus Torvalds 已提交
5489

5490
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5491 5492
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5493 5494
			break;
		}
L
Linus Torvalds 已提交
5495

5496
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5497 5498
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5499 5500
			break;
		}
L
Linus Torvalds 已提交
5501

5502
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5503

R
Rusty Russell 已提交
5504
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5505

P
Peter Zijlstra 已提交
5506
		printk(KERN_CONT " %s", str);
5507
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5508
			printk(KERN_CONT " (cpu_power = %d)",
5509
				group->sgp->power);
5510
		}
L
Linus Torvalds 已提交
5511

I
Ingo Molnar 已提交
5512 5513
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5514
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5515

5516
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5517
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5518

5519 5520
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5521 5522
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5523 5524
	return 0;
}
L
Linus Torvalds 已提交
5525

I
Ingo Molnar 已提交
5526 5527 5528
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5529

5530 5531 5532
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
5533 5534 5535 5536
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5537

I
Ingo Molnar 已提交
5538 5539 5540
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5541
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5542
			break;
L
Linus Torvalds 已提交
5543 5544
		level++;
		sd = sd->parent;
5545
		if (!sd)
I
Ingo Molnar 已提交
5546 5547
			break;
	}
L
Linus Torvalds 已提交
5548
}
5549
#else /* !CONFIG_SCHED_DEBUG */
5550
# define sched_domain_debug(sd, cpu) do { } while (0)
5551
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5552

5553
static int sd_degenerate(struct sched_domain *sd)
5554
{
5555
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5556 5557 5558 5559 5560 5561
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5562 5563 5564
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5565 5566 5567 5568 5569
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5570
	if (sd->flags & (SD_WAKE_AFFINE))
5571 5572 5573 5574 5575
		return 0;

	return 1;
}

5576 5577
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5578 5579 5580 5581 5582 5583
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5584
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5585 5586 5587 5588 5589 5590 5591
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5592 5593 5594
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5595 5596
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5597 5598 5599 5600 5601 5602 5603
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5604
static void free_rootdomain(struct rcu_head *rcu)
5605
{
5606
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5607

5608
	cpupri_cleanup(&rd->cpupri);
5609 5610 5611 5612 5613 5614
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5615 5616
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5617
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5618 5619
	unsigned long flags;

5620
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5621 5622

	if (rq->rd) {
I
Ingo Molnar 已提交
5623
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5624

5625
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5626
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5627

5628
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5629

I
Ingo Molnar 已提交
5630 5631 5632 5633 5634 5635 5636
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5637 5638 5639 5640 5641
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5642
	cpumask_set_cpu(rq->cpu, rd->span);
5643
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5644
		set_rq_online(rq);
G
Gregory Haskins 已提交
5645

5646
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5647 5648

	if (old_rd)
5649
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5650 5651
}

5652
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5653 5654 5655
{
	memset(rd, 0, sizeof(*rd));

5656
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5657
		goto out;
5658
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5659
		goto free_span;
5660
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5661
		goto free_online;
5662

5663
	if (cpupri_init(&rd->cpupri) != 0)
5664
		goto free_rto_mask;
5665
	return 0;
5666

5667 5668
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5669 5670 5671 5672
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5673
out:
5674
	return -ENOMEM;
G
Gregory Haskins 已提交
5675 5676
}

5677 5678 5679 5680 5681 5682
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5683 5684
static void init_defrootdomain(void)
{
5685
	init_rootdomain(&def_root_domain);
5686

G
Gregory Haskins 已提交
5687 5688 5689
	atomic_set(&def_root_domain.refcount, 1);
}

5690
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5691 5692 5693 5694 5695 5696 5697
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5698
	if (init_rootdomain(rd) != 0) {
5699 5700 5701
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5702 5703 5704 5705

	return rd;
}

5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5725 5726 5727
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5728 5729 5730 5731 5732 5733 5734 5735

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5736
		kfree(sd->groups->sgp);
5737
		kfree(sd->groups);
5738
	}
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

L
Linus Torvalds 已提交
5753
/*
I
Ingo Molnar 已提交
5754
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5755 5756
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5757 5758
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5759
{
5760
	struct rq *rq = cpu_rq(cpu);
5761 5762 5763
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5764
	for (tmp = sd; tmp; ) {
5765 5766 5767
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5768

5769
		if (sd_parent_degenerate(tmp, parent)) {
5770
			tmp->parent = parent->parent;
5771 5772
			if (parent->parent)
				parent->parent->child = tmp;
5773
			destroy_sched_domain(parent, cpu);
5774 5775
		} else
			tmp = tmp->parent;
5776 5777
	}

5778
	if (sd && sd_degenerate(sd)) {
5779
		tmp = sd;
5780
		sd = sd->parent;
5781
		destroy_sched_domain(tmp, cpu);
5782 5783 5784
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5785

5786
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5787

G
Gregory Haskins 已提交
5788
	rq_attach_root(rq, rd);
5789
	tmp = rq->sd;
N
Nick Piggin 已提交
5790
	rcu_assign_pointer(rq->sd, sd);
5791
	destroy_sched_domains(tmp, cpu);
L
Linus Torvalds 已提交
5792 5793 5794
}

/* cpus with isolated domains */
5795
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5796 5797 5798 5799

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5800
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5801
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5802 5803 5804
	return 1;
}

I
Ingo Molnar 已提交
5805
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5806

5807
#ifdef CONFIG_NUMA
5808

5809 5810 5811 5812 5813
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
5814
 * Find the next node to include in a given scheduling domain. Simply
5815 5816 5817 5818
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
5819
static int find_next_best_node(int node, nodemask_t *used_nodes)
5820
{
5821
	int i, n, val, min_val, best_node = -1;
5822 5823 5824

	min_val = INT_MAX;

5825
	for (i = 0; i < nr_node_ids; i++) {
5826
		/* Start at @node */
5827
		n = (node + i) % nr_node_ids;
5828 5829 5830 5831 5832

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
5833
		if (node_isset(n, *used_nodes))
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

5845 5846
	if (best_node != -1)
		node_set(best_node, *used_nodes);
5847 5848 5849 5850 5851 5852
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
5853
 * @span: resulting cpumask
5854
 *
I
Ingo Molnar 已提交
5855
 * Given a node, construct a good cpumask for its sched_domain to span. It
5856 5857 5858
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
5859
static void sched_domain_node_span(int node, struct cpumask *span)
5860
{
5861
	nodemask_t used_nodes;
5862
	int i;
5863

5864
	cpumask_clear(span);
5865
	nodes_clear(used_nodes);
5866

5867
	cpumask_or(span, span, cpumask_of_node(node));
5868
	node_set(node, used_nodes);
5869 5870

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5871
		int next_node = find_next_best_node(node, &used_nodes);
5872 5873
		if (next_node < 0)
			break;
5874
		cpumask_or(span, span, cpumask_of_node(next_node));
5875 5876
	}
}
5877 5878 5879 5880 5881 5882 5883 5884 5885

static const struct cpumask *cpu_node_mask(int cpu)
{
	lockdep_assert_held(&sched_domains_mutex);

	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);

	return sched_domains_tmpmask;
}
5886 5887 5888 5889 5890

static const struct cpumask *cpu_allnodes_mask(int cpu)
{
	return cpu_possible_mask;
}
5891
#endif /* CONFIG_NUMA */
5892

5893 5894 5895 5896 5897
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5898
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5899

5900 5901 5902
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5903
	struct sched_group_power **__percpu sgp;
5904 5905
};

5906
struct s_data {
5907
	struct sched_domain ** __percpu sd;
5908 5909 5910
	struct root_domain	*rd;
};

5911 5912
enum s_alloc {
	sa_rootdomain,
5913
	sa_sd,
5914
	sa_sd_storage,
5915 5916 5917
	sa_none,
};

5918 5919 5920
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5921 5922
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5923 5924
#define SDTL_OVERLAP	0x01

5925
struct sched_domain_topology_level {
5926 5927
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5928
	int		    flags;
5929
	struct sd_data      data;
5930 5931
};

5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5951
				GFP_KERNEL, cpu_to_node(cpu));
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);

		child = *per_cpu_ptr(sdd->sd, i);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
		atomic_inc(&sg->sgp->ref);

		if (cpumask_test_cpu(cpu, sg_span))
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5990
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5991
{
5992 5993
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5994

5995 5996
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5997

5998
	if (sg) {
5999
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6000
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6001
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6002
	}
6003 6004

	return cpu;
6005 6006
}

6007
/*
6008 6009 6010
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
6011 6012
 *
 * Assumes the sched_domain tree is fully constructed
6013
 */
6014 6015
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6016
{
6017 6018 6019
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6020
	struct cpumask *covered;
6021
	int i;
6022

6023 6024 6025 6026 6027 6028
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

6029 6030 6031
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6032
	cpumask_clear(covered);
6033

6034 6035 6036 6037
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
6038

6039 6040
		if (cpumask_test_cpu(i, covered))
			continue;
6041

6042
		cpumask_clear(sched_group_cpus(sg));
6043
		sg->sgp->power = 0;
6044

6045 6046 6047
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6048

6049 6050 6051
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6052

6053 6054 6055 6056 6057 6058 6059
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6060 6061

	return 0;
6062
}
6063

6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
6076
	struct sched_group *sg = sd->groups;
6077

6078 6079 6080 6081 6082 6083
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6084

6085 6086
	if (cpu != group_first_cpu(sg))
		return;
6087

6088
	update_group_power(sd, cpu);
6089
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6090 6091
}

6092 6093 6094 6095 6096
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
}

6097 6098 6099 6100 6101
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6102 6103 6104 6105 6106 6107
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6108 6109 6110 6111 6112 6113 6114 6115 6116
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6130 6131 6132
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6133

6134
static int default_relax_domain_level = -1;
6135
int sched_domain_level_max;
6136 6137 6138

static int __init setup_relax_domain_level(char *str)
{
6139 6140 6141
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
6142
	if (val < sched_domain_level_max)
6143 6144
		default_relax_domain_level = val;

6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6163
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6164 6165
	} else {
		/* turn on idle balance on this domain */
6166
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6167 6168 6169
	}
}

6170 6171 6172
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6173 6174 6175 6176 6177
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6178 6179
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6180 6181
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6182
	case sa_sd_storage:
6183
		__sdt_free(cpu_map); /* fall through */
6184 6185 6186 6187
	case sa_none:
		break;
	}
}
6188

6189 6190 6191
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6192 6193
	memset(d, 0, sizeof(*d));

6194 6195
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6196 6197 6198
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6199
	d->rd = alloc_rootdomain();
6200
	if (!d->rd)
6201
		return sa_sd;
6202 6203
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6204

6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6217
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6218
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6219 6220

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6221
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6222 6223
}

6224 6225
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6226
{
6227
	return topology_thread_cpumask(cpu);
6228
}
6229
#endif
6230

6231 6232 6233
/*
 * Topology list, bottom-up.
 */
6234
static struct sched_domain_topology_level default_topology[] = {
6235 6236
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6237
#endif
6238
#ifdef CONFIG_SCHED_MC
6239
	{ sd_init_MC, cpu_coregroup_mask, },
6240
#endif
6241 6242 6243 6244 6245
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
#ifdef CONFIG_NUMA
6246
	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6247
	{ sd_init_ALLNODES, cpu_allnodes_mask, },
L
Linus Torvalds 已提交
6248
#endif
6249 6250 6251 6252 6253
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6270 6271 6272 6273
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6274 6275 6276
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6277
			struct sched_group_power *sgp;
6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sg, j) = sg;
6292 6293 6294 6295 6296 6297 6298

			sgp = kzalloc_node(sizeof(struct sched_group_power),
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6314 6315 6316
			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
			if (sd && (sd->flags & SD_OVERLAP))
				free_sched_groups(sd->groups, 0);
6317
			kfree(*per_cpu_ptr(sdd->sd, j));
6318
			kfree(*per_cpu_ptr(sdd->sg, j));
6319
			kfree(*per_cpu_ptr(sdd->sgp, j));
6320 6321 6322
		}
		free_percpu(sdd->sd);
		free_percpu(sdd->sg);
6323
		free_percpu(sdd->sgp);
6324 6325 6326
	}
}

6327 6328
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6329
		struct sched_domain_attr *attr, struct sched_domain *child,
6330 6331
		int cpu)
{
6332
	struct sched_domain *sd = tl->init(tl, cpu);
6333
	if (!sd)
6334
		return child;
6335 6336 6337

	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6338 6339 6340
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6341
		child->parent = sd;
6342
	}
6343
	sd->child = child;
6344 6345 6346 6347

	return sd;
}

6348 6349 6350 6351
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6352 6353
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6354 6355
{
	enum s_alloc alloc_state = sa_none;
6356
	struct sched_domain *sd;
6357
	struct s_data d;
6358
	int i, ret = -ENOMEM;
6359

6360 6361 6362
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6363

6364
	/* Set up domains for cpus specified by the cpu_map. */
6365
	for_each_cpu(i, cpu_map) {
6366 6367
		struct sched_domain_topology_level *tl;

6368
		sd = NULL;
6369
		for (tl = sched_domain_topology; tl->init; tl++) {
6370
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6371 6372
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6373 6374
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6375
		}
6376

6377 6378 6379
		while (sd->child)
			sd = sd->child;

6380
		*per_cpu_ptr(d.sd, i) = sd;
6381 6382 6383 6384 6385 6386
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6387 6388 6389 6390 6391 6392 6393
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6394
		}
6395
	}
6396

L
Linus Torvalds 已提交
6397
	/* Calculate CPU power for physical packages and nodes */
6398 6399 6400
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6401

6402 6403
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6404
			init_sched_groups_power(i, sd);
6405
		}
6406
	}
6407

L
Linus Torvalds 已提交
6408
	/* Attach the domains */
6409
	rcu_read_lock();
6410
	for_each_cpu(i, cpu_map) {
6411
		sd = *per_cpu_ptr(d.sd, i);
6412
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6413
	}
6414
	rcu_read_unlock();
6415

6416
	ret = 0;
6417
error:
6418
	__free_domain_allocs(&d, alloc_state, cpu_map);
6419
	return ret;
L
Linus Torvalds 已提交
6420
}
P
Paul Jackson 已提交
6421

6422
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6423
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6424 6425
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6426 6427 6428

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6429 6430
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6431
 */
6432
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6433

6434 6435 6436 6437 6438 6439
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6440
{
6441
	return 0;
6442 6443
}

6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6469
/*
I
Ingo Molnar 已提交
6470
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6471 6472
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6473
 */
6474
static int init_sched_domains(const struct cpumask *cpu_map)
6475
{
6476 6477
	int err;

6478
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6479
	ndoms_cur = 1;
6480
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6481
	if (!doms_cur)
6482 6483
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6484
	dattr_cur = NULL;
6485
	err = build_sched_domains(doms_cur[0], NULL);
6486
	register_sched_domain_sysctl();
6487 6488

	return err;
6489 6490 6491 6492 6493 6494
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6495
static void detach_destroy_domains(const struct cpumask *cpu_map)
6496 6497 6498
{
	int i;

6499
	rcu_read_lock();
6500
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6501
		cpu_attach_domain(NULL, &def_root_domain, i);
6502
	rcu_read_unlock();
6503 6504
}

6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6521 6522
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6523
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6524 6525 6526
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6527
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6528 6529 6530
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6531 6532 6533
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6534 6535 6536 6537 6538 6539
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6540
 *
6541
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6542 6543
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6544
 *
P
Paul Jackson 已提交
6545 6546
 * Call with hotplug lock held
 */
6547
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6548
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6549
{
6550
	int i, j, n;
6551
	int new_topology;
P
Paul Jackson 已提交
6552

6553
	mutex_lock(&sched_domains_mutex);
6554

6555 6556 6557
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6558 6559 6560
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6561
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6562 6563 6564

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6565
		for (j = 0; j < n && !new_topology; j++) {
6566
			if (cpumask_equal(doms_cur[i], doms_new[j])
6567
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6568 6569 6570
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6571
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6572 6573 6574 6575
match1:
		;
	}

6576 6577
	if (doms_new == NULL) {
		ndoms_cur = 0;
6578
		doms_new = &fallback_doms;
6579
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6580
		WARN_ON_ONCE(dattr_new);
6581 6582
	}

P
Paul Jackson 已提交
6583 6584
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6585
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6586
			if (cpumask_equal(doms_new[i], doms_cur[j])
6587
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6588 6589 6590
				goto match2;
		}
		/* no match - add a new doms_new */
6591
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6592 6593 6594 6595 6596
match2:
		;
	}

	/* Remember the new sched domains */
6597 6598
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6599
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6600
	doms_cur = doms_new;
6601
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6602
	ndoms_cur = ndoms_new;
6603 6604

	register_sched_domain_sysctl();
6605

6606
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6607 6608
}

6609
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6610
static void reinit_sched_domains(void)
6611
{
6612
	get_online_cpus();
6613 6614 6615 6616

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

6617
	rebuild_sched_domains();
6618
	put_online_cpus();
6619 6620 6621 6622
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
6623
	unsigned int level = 0;
6624

6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6636 6637 6638
		return -EINVAL;

	if (smt)
6639
		sched_smt_power_savings = level;
6640
	else
6641
		sched_mc_power_savings = level;
6642

6643
	reinit_sched_domains();
6644

6645
	return count;
6646 6647 6648
}

#ifdef CONFIG_SCHED_MC
6649
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
6650
					   struct sysdev_class_attribute *attr,
6651
					   char *page)
6652 6653 6654
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6655
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
6656
					    struct sysdev_class_attribute *attr,
6657
					    const char *buf, size_t count)
6658 6659 6660
{
	return sched_power_savings_store(buf, count, 0);
}
6661 6662 6663
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
6664 6665 6666
#endif

#ifdef CONFIG_SCHED_SMT
6667
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
6668
					    struct sysdev_class_attribute *attr,
6669
					    char *page)
6670 6671 6672
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6673
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
6674
					     struct sysdev_class_attribute *attr,
6675
					     const char *buf, size_t count)
6676 6677 6678
{
	return sched_power_savings_store(buf, count, 1);
}
6679 6680
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
6681 6682 6683
		   sched_smt_power_savings_store);
#endif

6684
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6700
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6701

L
Linus Torvalds 已提交
6702
/*
6703 6704 6705
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
6706
 */
6707 6708
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6709
{
6710
	switch (action & ~CPU_TASKS_FROZEN) {
6711
	case CPU_ONLINE:
6712
	case CPU_DOWN_FAILED:
6713
		cpuset_update_active_cpus();
6714
		return NOTIFY_OK;
6715 6716 6717 6718
	default:
		return NOTIFY_DONE;
	}
}
6719

6720 6721
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6722 6723 6724 6725 6726
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
6727 6728 6729 6730 6731
	default:
		return NOTIFY_DONE;
	}
}

L
Linus Torvalds 已提交
6732 6733
void __init sched_init_smp(void)
{
6734 6735 6736
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6737
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6738

6739
	get_online_cpus();
6740
	mutex_lock(&sched_domains_mutex);
6741
	init_sched_domains(cpu_active_mask);
6742 6743 6744
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6745
	mutex_unlock(&sched_domains_mutex);
6746
	put_online_cpus();
6747

6748 6749
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6750 6751 6752 6753

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6754
	init_hrtick();
6755 6756

	/* Move init over to a non-isolated CPU */
6757
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6758
		BUG();
I
Ingo Molnar 已提交
6759
	sched_init_granularity();
6760
	free_cpumask_var(non_isolated_cpus);
6761

6762
	init_sched_rt_class();
L
Linus Torvalds 已提交
6763 6764 6765 6766
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6767
	sched_init_granularity();
L
Linus Torvalds 已提交
6768 6769 6770
}
#endif /* CONFIG_SMP */

6771 6772
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6773 6774 6775 6776 6777 6778 6779
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6780 6781
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6782
#endif
P
Peter Zijlstra 已提交
6783

6784
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6785

L
Linus Torvalds 已提交
6786 6787
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6788
	int i, j;
6789 6790 6791 6792 6793 6794 6795
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6796
#endif
6797
#ifdef CONFIG_CPUMASK_OFFSTACK
6798
	alloc_size += num_possible_cpus() * cpumask_size();
6799 6800
#endif
	if (alloc_size) {
6801
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6802 6803

#ifdef CONFIG_FAIR_GROUP_SCHED
6804
		root_task_group.se = (struct sched_entity **)ptr;
6805 6806
		ptr += nr_cpu_ids * sizeof(void **);

6807
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6808
		ptr += nr_cpu_ids * sizeof(void **);
6809

6810
#endif /* CONFIG_FAIR_GROUP_SCHED */
6811
#ifdef CONFIG_RT_GROUP_SCHED
6812
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6813 6814
		ptr += nr_cpu_ids * sizeof(void **);

6815
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6816 6817
		ptr += nr_cpu_ids * sizeof(void **);

6818
#endif /* CONFIG_RT_GROUP_SCHED */
6819 6820 6821 6822 6823 6824
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6825
	}
I
Ingo Molnar 已提交
6826

G
Gregory Haskins 已提交
6827 6828 6829 6830
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6831 6832 6833 6834
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6835
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6836
			global_rt_period(), global_rt_runtime());
6837
#endif /* CONFIG_RT_GROUP_SCHED */
6838

D
Dhaval Giani 已提交
6839
#ifdef CONFIG_CGROUP_SCHED
6840 6841
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6842
	INIT_LIST_HEAD(&root_task_group.siblings);
6843
	autogroup_init(&init_task);
6844

D
Dhaval Giani 已提交
6845
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6846

6847 6848 6849 6850 6851 6852
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6853
	for_each_possible_cpu(i) {
6854
		struct rq *rq;
L
Linus Torvalds 已提交
6855 6856

		rq = cpu_rq(i);
6857
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6858
		rq->nr_running = 0;
6859 6860
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6861
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6862
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6863
#ifdef CONFIG_FAIR_GROUP_SCHED
6864
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6865
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6866
		/*
6867
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6868 6869 6870 6871
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6872
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6873 6874 6875
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6876
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6877 6878 6879
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6880
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6881
		 *
6882 6883
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6884
		 */
6885
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6886
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6887 6888 6889
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6890
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6891
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6892
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6893
#endif
L
Linus Torvalds 已提交
6894

I
Ingo Molnar 已提交
6895 6896
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6897 6898 6899

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6900
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6901
		rq->sd = NULL;
G
Gregory Haskins 已提交
6902
		rq->rd = NULL;
6903
		rq->cpu_power = SCHED_POWER_SCALE;
6904
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6905
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6906
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6907
		rq->push_cpu = 0;
6908
		rq->cpu = i;
6909
		rq->online = 0;
6910 6911
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6912
		rq_attach_root(rq, &def_root_domain);
6913
#ifdef CONFIG_NO_HZ
6914
		rq->nohz_flags = 0;
6915
#endif
L
Linus Torvalds 已提交
6916
#endif
P
Peter Zijlstra 已提交
6917
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6918 6919 6920
		atomic_set(&rq->nr_iowait, 0);
	}

6921
	set_load_weight(&init_task);
6922

6923 6924 6925 6926
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6927
#ifdef CONFIG_RT_MUTEXES
6928
	plist_head_init(&init_task.pi_waiters);
6929 6930
#endif

L
Linus Torvalds 已提交
6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6944 6945 6946

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6947 6948 6949 6950
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6951

6952
#ifdef CONFIG_SMP
6953
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6954 6955 6956
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6957 6958
#endif
	init_sched_fair_class();
6959

6960
	scheduler_running = 1;
L
Linus Torvalds 已提交
6961 6962
}

6963
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6964 6965
static inline int preempt_count_equals(int preempt_offset)
{
6966
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6967

A
Arnd Bergmann 已提交
6968
	return (nested == preempt_offset);
6969 6970
}

6971
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6972 6973 6974
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6975
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6976 6977
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6978 6979 6980 6981 6982
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6983 6984 6985 6986 6987 6988 6989
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6990 6991 6992 6993 6994

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6995 6996 6997 6998 6999
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7000 7001
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7002 7003
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7004
	int on_rq;
7005

P
Peter Zijlstra 已提交
7006
	on_rq = p->on_rq;
7007 7008 7009 7010 7011 7012 7013
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7014 7015

	check_class_changed(rq, p, prev_class, old_prio);
7016 7017
}

L
Linus Torvalds 已提交
7018 7019
void normalize_rt_tasks(void)
{
7020
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7021
	unsigned long flags;
7022
	struct rq *rq;
L
Linus Torvalds 已提交
7023

7024
	read_lock_irqsave(&tasklist_lock, flags);
7025
	do_each_thread(g, p) {
7026 7027 7028 7029 7030 7031
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7032 7033
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7034 7035 7036
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7037
#endif
I
Ingo Molnar 已提交
7038 7039 7040 7041 7042 7043 7044 7045

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7046
			continue;
I
Ingo Molnar 已提交
7047
		}
L
Linus Torvalds 已提交
7048

7049
		raw_spin_lock(&p->pi_lock);
7050
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7051

7052
		normalize_task(rq, p);
7053

7054
		__task_rq_unlock(rq);
7055
		raw_spin_unlock(&p->pi_lock);
7056 7057
	} while_each_thread(g, p);

7058
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7059 7060 7061
}

#endif /* CONFIG_MAGIC_SYSRQ */
7062

7063
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7064
/*
7065
 * These functions are only useful for the IA64 MCA handling, or kdb.
7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7080
struct task_struct *curr_task(int cpu)
7081 7082 7083 7084
{
	return cpu_curr(cpu);
}

7085 7086 7087
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7088 7089 7090 7091 7092 7093
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7094 7095
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7096 7097 7098 7099 7100 7101 7102
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7103
void set_curr_task(int cpu, struct task_struct *p)
7104 7105 7106 7107 7108
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7109

7110
#ifdef CONFIG_RT_GROUP_SCHED
7111 7112
#else /* !CONFIG_RT_GROUP_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7113

D
Dhaval Giani 已提交
7114
#ifdef CONFIG_CGROUP_SCHED
7115 7116 7117
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7118 7119 7120 7121
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7122
	autogroup_free(tg);
7123 7124 7125 7126
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7127
struct task_group *sched_create_group(struct task_group *parent)
7128 7129 7130 7131 7132 7133 7134 7135
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7136
	if (!alloc_fair_sched_group(tg, parent))
7137 7138
		goto err;

7139
	if (!alloc_rt_sched_group(tg, parent))
7140 7141
		goto err;

7142
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7143
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7144 7145 7146 7147 7148

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7149
	list_add_rcu(&tg->siblings, &parent->children);
7150
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7151

7152
	return tg;
S
Srivatsa Vaddagiri 已提交
7153 7154

err:
P
Peter Zijlstra 已提交
7155
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7156 7157 7158
	return ERR_PTR(-ENOMEM);
}

7159
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7160
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7161 7162
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7163
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7164 7165
}

7166
/* Destroy runqueue etc associated with a task group */
7167
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7168
{
7169
	unsigned long flags;
7170
	int i;
S
Srivatsa Vaddagiri 已提交
7171

7172 7173
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7174
		unregister_fair_sched_group(tg, i);
7175 7176

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7177
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7178
	list_del_rcu(&tg->siblings);
7179
	spin_unlock_irqrestore(&task_group_lock, flags);
7180 7181

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7182
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7183 7184
}

7185
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7186 7187 7188
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7189 7190
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7191 7192 7193 7194 7195 7196 7197
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7198
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7199
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7200

7201
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7202
		dequeue_task(rq, tsk, 0);
7203 7204
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7205

P
Peter Zijlstra 已提交
7206
#ifdef CONFIG_FAIR_GROUP_SCHED
7207 7208 7209
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7210
#endif
7211
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7212

7213 7214 7215
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7216
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7217

7218
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7219
}
D
Dhaval Giani 已提交
7220
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7221

7222 7223
#ifdef CONFIG_FAIR_GROUP_SCHED
#endif
7224

7225
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7226 7227 7228
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7229
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7230

P
Peter Zijlstra 已提交
7231
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7232
}
7233 7234 7235 7236 7237 7238 7239
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7240

P
Peter Zijlstra 已提交
7241 7242
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7243
{
P
Peter Zijlstra 已提交
7244
	struct task_struct *g, *p;
7245

P
Peter Zijlstra 已提交
7246
	do_each_thread(g, p) {
7247
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7248 7249
			return 1;
	} while_each_thread(g, p);
7250

P
Peter Zijlstra 已提交
7251 7252
	return 0;
}
7253

P
Peter Zijlstra 已提交
7254 7255 7256 7257 7258
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7259

7260
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7261 7262 7263 7264 7265
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7266

P
Peter Zijlstra 已提交
7267 7268
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7269

P
Peter Zijlstra 已提交
7270 7271 7272
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7273 7274
	}

7275 7276 7277 7278 7279
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7280

7281 7282 7283
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7284 7285
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7286

P
Peter Zijlstra 已提交
7287
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7288

7289 7290 7291 7292 7293
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7294

7295 7296 7297
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7298 7299 7300
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7301

P
Peter Zijlstra 已提交
7302 7303 7304 7305
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7306

P
Peter Zijlstra 已提交
7307
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7308
	}
P
Peter Zijlstra 已提交
7309

P
Peter Zijlstra 已提交
7310 7311 7312 7313
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7314 7315
}

P
Peter Zijlstra 已提交
7316
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7317
{
7318 7319
	int ret;

P
Peter Zijlstra 已提交
7320 7321 7322 7323 7324 7325
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7326 7327 7328 7329 7330
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7331 7332
}

7333
static int tg_set_rt_bandwidth(struct task_group *tg,
7334
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7335
{
P
Peter Zijlstra 已提交
7336
	int i, err = 0;
P
Peter Zijlstra 已提交
7337 7338

	mutex_lock(&rt_constraints_mutex);
7339
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7340 7341
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7342
		goto unlock;
P
Peter Zijlstra 已提交
7343

7344
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7345 7346
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7347 7348 7349 7350

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7351
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7352
		rt_rq->rt_runtime = rt_runtime;
7353
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7354
	}
7355
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7356
unlock:
7357
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7358 7359 7360
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7361 7362
}

7363 7364 7365 7366 7367 7368 7369 7370 7371
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7372
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7373 7374
}

P
Peter Zijlstra 已提交
7375 7376 7377 7378
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7379
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7380 7381
		return -1;

7382
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7383 7384 7385
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7386 7387 7388 7389 7390 7391 7392 7393

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7394 7395 7396
	if (rt_period == 0)
		return -EINVAL;

7397
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7411
	u64 runtime, period;
7412 7413
	int ret = 0;

7414 7415 7416
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7417 7418 7419 7420 7421 7422 7423 7424
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7425

7426
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7427
	read_lock(&tasklist_lock);
7428
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7429
	read_unlock(&tasklist_lock);
7430 7431 7432 7433
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7434 7435 7436 7437 7438 7439 7440 7441 7442 7443

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7444
#else /* !CONFIG_RT_GROUP_SCHED */
7445 7446
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7447 7448 7449
	unsigned long flags;
	int i;

7450 7451 7452
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7453 7454 7455 7456 7457 7458 7459
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7460
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7461 7462 7463
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7464
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7465
		rt_rq->rt_runtime = global_rt_runtime();
7466
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7467
	}
7468
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7469

7470 7471
	return 0;
}
7472
#endif /* CONFIG_RT_GROUP_SCHED */
7473 7474

int sched_rt_handler(struct ctl_table *table, int write,
7475
		void __user *buffer, size_t *lenp,
7476 7477 7478 7479 7480 7481 7482 7483 7484 7485
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7486
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7503

7504
#ifdef CONFIG_CGROUP_SCHED
7505 7506

/* return corresponding task_group object of a cgroup */
7507
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7508
{
7509 7510
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7511 7512 7513
}

static struct cgroup_subsys_state *
7514
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7515
{
7516
	struct task_group *tg, *parent;
7517

7518
	if (!cgrp->parent) {
7519
		/* This is early initialization for the top cgroup */
7520
		return &root_task_group.css;
7521 7522
	}

7523 7524
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7525 7526 7527 7528 7529 7530
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
7531 7532
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7533
{
7534
	struct task_group *tg = cgroup_tg(cgrp);
7535 7536 7537 7538

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7539
static int
7540
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
7541
{
7542
#ifdef CONFIG_RT_GROUP_SCHED
7543
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
7544 7545
		return -EINVAL;
#else
7546 7547 7548
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
7549
#endif
7550 7551
	return 0;
}
7552 7553

static void
7554
cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
7555 7556 7557 7558
{
	sched_move_task(tsk);
}

7559
static void
7560 7561
cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7574
#ifdef CONFIG_FAIR_GROUP_SCHED
7575
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7576
				u64 shareval)
7577
{
7578
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7579 7580
}

7581
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7582
{
7583
	struct task_group *tg = cgroup_tg(cgrp);
7584

7585
	return (u64) scale_load_down(tg->shares);
7586
}
7587 7588

#ifdef CONFIG_CFS_BANDWIDTH
7589 7590
static DEFINE_MUTEX(cfs_constraints_mutex);

7591 7592 7593
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7594 7595
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7596 7597
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7598
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7599
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7620 7621 7622 7623 7624
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7625
	runtime_enabled = quota != RUNTIME_INF;
7626 7627
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7628 7629 7630
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7631

P
Paul Turner 已提交
7632
	__refill_cfs_bandwidth_runtime(cfs_b);
7633 7634 7635 7636 7637 7638
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7639 7640 7641 7642
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7643
		struct rq *rq = cfs_rq->rq;
7644 7645

		raw_spin_lock_irq(&rq->lock);
7646
		cfs_rq->runtime_enabled = runtime_enabled;
7647
		cfs_rq->runtime_remaining = 0;
7648

7649
		if (cfs_rq->throttled)
7650
			unthrottle_cfs_rq(cfs_rq);
7651 7652
		raw_spin_unlock_irq(&rq->lock);
	}
7653 7654
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7655

7656
	return ret;
7657 7658 7659 7660 7661 7662
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7663
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7676
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7677 7678
		return -1;

7679
	quota_us = tg->cfs_bandwidth.quota;
7680 7681 7682 7683 7684 7685 7686 7687 7688 7689
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7690
	quota = tg->cfs_bandwidth.quota;
7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701

	if (period <= 0)
		return -EINVAL;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7702
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7762
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7763 7764 7765 7766 7767
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7768
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7789
	int ret;
7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7801 7802 7803 7804 7805
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7806
}
7807 7808 7809 7810 7811

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7812
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7813 7814 7815 7816 7817 7818 7819

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7820
#endif /* CONFIG_CFS_BANDWIDTH */
7821
#endif /* CONFIG_FAIR_GROUP_SCHED */
7822

7823
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7824
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7825
				s64 val)
P
Peter Zijlstra 已提交
7826
{
7827
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7828 7829
}

7830
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7831
{
7832
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7833
}
7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7845
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7846

7847
static struct cftype cpu_files[] = {
7848
#ifdef CONFIG_FAIR_GROUP_SCHED
7849 7850
	{
		.name = "shares",
7851 7852
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7853
	},
7854
#endif
7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7866 7867 7868 7869
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7870
#endif
7871
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7872
	{
P
Peter Zijlstra 已提交
7873
		.name = "rt_runtime_us",
7874 7875
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7876
	},
7877 7878
	{
		.name = "rt_period_us",
7879 7880
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7881
	},
7882
#endif
7883 7884 7885 7886
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7887
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7888 7889 7890
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7891 7892 7893
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
7894 7895
	.can_attach_task = cpu_cgroup_can_attach_task,
	.attach_task	= cpu_cgroup_attach_task,
7896
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7897 7898
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7899 7900 7901
	.early_init	= 1,
};

7902
#endif	/* CONFIG_CGROUP_SCHED */
7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
7915
	struct cgroup_subsys *ss, struct cgroup *cgrp)
7916
{
7917
	struct cpuacct *ca;
7918

7919 7920 7921 7922
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7923
	if (!ca)
7924
		goto out;
7925 7926

	ca->cpuusage = alloc_percpu(u64);
7927 7928 7929
	if (!ca->cpuusage)
		goto out_free_ca;

7930 7931 7932
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7933 7934

	return &ca->css;
7935

7936
out_free_cpuusage:
7937 7938 7939 7940 7941
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7942 7943 7944
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7945
static void
7946
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7947
{
7948
	struct cpuacct *ca = cgroup_ca(cgrp);
7949

7950
	free_percpu(ca->cpustat);
7951 7952 7953 7954
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7955 7956
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7957
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7958 7959 7960 7961 7962 7963
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7964
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7965
	data = *cpuusage;
7966
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7967 7968 7969 7970 7971 7972 7973 7974 7975
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
7976
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7977 7978 7979 7980 7981

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
7982
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7983
	*cpuusage = val;
7984
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7985 7986 7987 7988 7989
#else
	*cpuusage = val;
#endif
}

7990
/* return total cpu usage (in nanoseconds) of a group */
7991
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7992
{
7993
	struct cpuacct *ca = cgroup_ca(cgrp);
7994 7995 7996
	u64 totalcpuusage = 0;
	int i;

7997 7998
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7999 8000 8001 8002

	return totalcpuusage;
}

8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8015 8016
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8017 8018 8019 8020 8021

out:
	return err;
}

8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8037 8038 8039 8040 8041 8042
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8043
			      struct cgroup_map_cb *cb)
8044 8045
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8046 8047
	int cpu;
	s64 val = 0;
8048

8049 8050 8051 8052
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8053
	}
8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);

	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
	}

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8068 8069 8070
	return 0;
}

8071 8072 8073
static struct cftype files[] = {
	{
		.name = "usage",
8074 8075
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8076
	},
8077 8078 8079 8080
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8081 8082 8083 8084
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8085 8086
};

8087
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8088
{
8089
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8090 8091 8092 8093 8094 8095 8096
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8097
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8098 8099
{
	struct cpuacct *ca;
8100
	int cpu;
8101

L
Li Zefan 已提交
8102
	if (unlikely(!cpuacct_subsys.active))
8103 8104
		return;

8105
	cpu = task_cpu(tsk);
8106 8107 8108

	rcu_read_lock();

8109 8110
	ca = task_ca(tsk);

8111
	for (; ca; ca = parent_ca(ca)) {
8112
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8113 8114
		*cpuusage += cputime;
	}
8115 8116

	rcu_read_unlock();
8117 8118 8119 8120 8121 8122 8123 8124 8125 8126
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */