numa.c 28.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
20
#include <linux/lmb.h>
21
#include <linux/of.h>
22
#include <linux/pfn.h>
23
#include <asm/sparsemem.h>
24
#include <asm/prom.h>
25
#include <asm/system.h>
P
Paul Mackerras 已提交
26
#include <asm/smp.h>
L
Linus Torvalds 已提交
27 28 29

static int numa_enabled = 1;

30 31
static char *cmdline __initdata;

L
Linus Torvalds 已提交
32 33 34
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

35
int numa_cpu_lookup_table[NR_CPUS];
L
Linus Torvalds 已提交
36 37
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
struct pglist_data *node_data[MAX_NUMNODES];
38 39 40 41 42

EXPORT_SYMBOL(numa_cpu_lookup_table);
EXPORT_SYMBOL(numa_cpumask_lookup_table);
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
43
static int min_common_depth;
44
static int n_mem_addr_cells, n_mem_size_cells;
L
Linus Torvalds 已提交
45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
/*
 * get_active_region_work_fn - A helper function for get_node_active_region
 *	Returns datax set to the start_pfn and end_pfn if they contain
 *	the initial value of datax->start_pfn between them
 * @start_pfn: start page(inclusive) of region to check
 * @end_pfn: end page(exclusive) of region to check
 * @datax: comes in with ->start_pfn set to value to search for and
 *	goes out with active range if it contains it
 * Returns 1 if search value is in range else 0
 */
static int __init get_active_region_work_fn(unsigned long start_pfn,
					unsigned long end_pfn, void *datax)
{
	struct node_active_region *data;
	data = (struct node_active_region *)datax;

	if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
		data->start_pfn = start_pfn;
		data->end_pfn = end_pfn;
		return 1;
	}
	return 0;

}

/*
 * get_node_active_region - Return active region containing start_pfn
120
 * Active range returned is empty if none found.
121 122 123 124 125 126 127 128 129 130
 * @start_pfn: The page to return the region for.
 * @node_ar: Returned set to the active region containing start_pfn
 */
static void __init get_node_active_region(unsigned long start_pfn,
		       struct node_active_region *node_ar)
{
	int nid = early_pfn_to_nid(start_pfn);

	node_ar->nid = nid;
	node_ar->start_pfn = start_pfn;
131
	node_ar->end_pfn = start_pfn;
132 133 134
	work_with_active_regions(nid, get_active_region_work_fn, node_ar);
}

135
static void __cpuinit map_cpu_to_node(int cpu, int node)
L
Linus Torvalds 已提交
136 137
{
	numa_cpu_lookup_table[cpu] = node;
138

139 140
	dbg("adding cpu %d to node %d\n", cpu, node);

141
	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
L
Linus Torvalds 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
		cpu_set(cpu, numa_cpumask_lookup_table[node]);
}

#ifdef CONFIG_HOTPLUG_CPU
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
		cpu_clear(cpu, numa_cpumask_lookup_table[node]);
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

161
static struct device_node * __cpuinit find_cpu_node(unsigned int cpu)
L
Linus Torvalds 已提交
162 163 164
{
	unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
	struct device_node *cpu_node = NULL;
165
	const unsigned int *interrupt_server, *reg;
L
Linus Torvalds 已提交
166 167 168 169
	int len;

	while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
		/* Try interrupt server first */
170
		interrupt_server = of_get_property(cpu_node,
L
Linus Torvalds 已提交
171 172 173 174 175 176 177 178 179 180
					"ibm,ppc-interrupt-server#s", &len);

		len = len / sizeof(u32);

		if (interrupt_server && (len > 0)) {
			while (len--) {
				if (interrupt_server[len] == hw_cpuid)
					return cpu_node;
			}
		} else {
181
			reg = of_get_property(cpu_node, "reg", &len);
L
Linus Torvalds 已提交
182 183 184 185 186 187 188 189 190
			if (reg && (len > 0) && (reg[0] == hw_cpuid))
				return cpu_node;
		}
	}

	return NULL;
}

/* must hold reference to node during call */
191
static const int *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
192
{
193
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
194 195
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/*
 * Returns the property linux,drconf-usable-memory if
 * it exists (the property exists only in kexec/kdump kernels,
 * added by kexec-tools)
 */
static const u32 *of_get_usable_memory(struct device_node *memory)
{
	const u32 *prop;
	u32 len;
	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;
	return prop;
}

211 212 213
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
214
static int of_node_to_nid_single(struct device_node *device)
L
Linus Torvalds 已提交
215
{
216
	int nid = -1;
217
	const unsigned int *tmp;
L
Linus Torvalds 已提交
218 219

	if (min_common_depth == -1)
220
		goto out;
L
Linus Torvalds 已提交
221 222

	tmp = of_get_associativity(device);
223 224 225 226
	if (!tmp)
		goto out;

	if (tmp[0] >= min_common_depth)
227
		nid = tmp[min_common_depth];
228 229

	/* POWER4 LPAR uses 0xffff as invalid node */
230 231 232
	if (nid == 0xffff || nid >= MAX_NUMNODES)
		nid = -1;
out:
233
	return nid;
L
Linus Torvalds 已提交
234 235
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	struct device_node *tmp;
	int nid = -1;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

	        tmp = device;
		device = of_get_parent(tmp);
		of_node_put(tmp);
	}
	of_node_put(device);

	return nid;
}
EXPORT_SYMBOL_GPL(of_node_to_nid);

L
Linus Torvalds 已提交
258 259 260 261 262 263 264
/*
 * In theory, the "ibm,associativity" property may contain multiple
 * associativity lists because a resource may be multiply connected
 * into the machine.  This resource then has different associativity
 * characteristics relative to its multiple connections.  We ignore
 * this for now.  We also assume that all cpu and memory sets have
 * their distances represented at a common level.  This won't be
265
 * true for hierarchical NUMA.
L
Linus Torvalds 已提交
266 267 268 269 270 271 272 273 274
 *
 * In any case the ibm,associativity-reference-points should give
 * the correct depth for a normal NUMA system.
 *
 * - Dave Hansen <haveblue@us.ibm.com>
 */
static int __init find_min_common_depth(void)
{
	int depth;
275
	const unsigned int *ref_points;
L
Linus Torvalds 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289
	struct device_node *rtas_root;
	unsigned int len;

	rtas_root = of_find_node_by_path("/rtas");

	if (!rtas_root)
		return -1;

	/*
	 * this property is 2 32-bit integers, each representing a level of
	 * depth in the associativity nodes.  The first is for an SMP
	 * configuration (should be all 0's) and the second is for a normal
	 * NUMA configuration.
	 */
290
	ref_points = of_get_property(rtas_root,
L
Linus Torvalds 已提交
291 292 293 294 295
			"ibm,associativity-reference-points", &len);

	if ((len >= 1) && ref_points) {
		depth = ref_points[1];
	} else {
296
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
L
Linus Torvalds 已提交
297 298 299 300 301 302 303
		depth = -1;
	}
	of_node_put(rtas_root);

	return depth;
}

304
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
305 306 307 308
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
309
	if (!memory)
310
		panic("numa.c: No memory nodes found!");
311

312
	*n_addr_cells = of_n_addr_cells(memory);
313
	*n_size_cells = of_n_size_cells(memory);
314
	of_node_put(memory);
L
Linus Torvalds 已提交
315 316
}

317
static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
L
Linus Torvalds 已提交
318 319 320 321 322 323 324 325 326 327
{
	unsigned long result = 0;

	while (n--) {
		result = (result << 32) | **buf;
		(*buf)++;
	}
	return result;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
struct of_drconf_cell {
	u64	base_addr;
	u32	drc_index;
	u32	reserved;
	u32	aa_index;
	u32	flags;
};

#define DRCONF_MEM_ASSIGNED	0x00000008
#define DRCONF_MEM_AI_INVALID	0x00000040
#define DRCONF_MEM_RESERVED	0x00000080

/*
 * Read the next lmb list entry from the ibm,dynamic-memory property
 * and return the information in the provided of_drconf_cell structure.
 */
static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
{
	const u32 *cp;

	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);

	cp = *cellp;
	drmem->drc_index = cp[0];
	drmem->reserved = cp[1];
	drmem->aa_index = cp[2];
	drmem->flags = cp[3];

	*cellp = cp + 4;
}

/*
 * Retreive and validate the ibm,dynamic-memory property of the device tree.
 *
 * The layout of the ibm,dynamic-memory property is a number N of lmb
 * list entries followed by N lmb list entries.  Each lmb list entry
 * contains information as layed out in the of_drconf_cell struct above.
 */
static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
{
	const u32 *prop;
	u32 len, entries;

	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

	entries = *prop++;

	/* Now that we know the number of entries, revalidate the size
	 * of the property read in to ensure we have everything
	 */
	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
		return 0;

	*dm = prop;
	return entries;
}

/*
 * Retreive and validate the ibm,lmb-size property for drconf memory
 * from the device tree.
 */
static u64 of_get_lmb_size(struct device_node *memory)
{
	const u32 *prop;
	u32 len;

	prop = of_get_property(memory, "ibm,lmb-size", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

	return read_n_cells(n_mem_size_cells, &prop);
}

struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
	const u32 *arrays;
};

/*
 * Retreive and validate the list of associativity arrays for drconf
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
static int of_get_assoc_arrays(struct device_node *memory,
			       struct assoc_arrays *aa)
{
	const u32 *prop;
	u32 len;

	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
	if (!prop || len < 2 * sizeof(unsigned int))
		return -1;

	aa->n_arrays = *prop++;
	aa->array_sz = *prop++;

	/* Now that we know the number of arrrays and size of each array,
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
				   struct assoc_arrays *aa)
{
	int default_nid = 0;
	int nid = default_nid;
	int index;

	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
	    drmem->aa_index < aa->n_arrays) {
		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
		nid = aa->arrays[index];

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
	}

	return nid;
}

L
Linus Torvalds 已提交
466 467 468 469
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
470
static int __cpuinit numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
471
{
472
	int nid = 0;
L
Linus Torvalds 已提交
473 474 475 476 477 478 479
	struct device_node *cpu = find_cpu_node(lcpu);

	if (!cpu) {
		WARN_ON(1);
		goto out;
	}

480
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
481

482 483
	if (nid < 0 || !node_online(nid))
		nid = any_online_node(NODE_MASK_ALL);
L
Linus Torvalds 已提交
484
out:
485
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
486 487 488

	of_node_put(cpu);

489
	return nid;
L
Linus Torvalds 已提交
490 491
}

492
static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
L
Linus Torvalds 已提交
493 494 495 496 497 498 499 500
			     unsigned long action,
			     void *hcpu)
{
	unsigned long lcpu = (unsigned long)hcpu;
	int ret = NOTIFY_DONE;

	switch (action) {
	case CPU_UP_PREPARE:
501
	case CPU_UP_PREPARE_FROZEN:
502
		numa_setup_cpu(lcpu);
L
Linus Torvalds 已提交
503 504 505 506
		ret = NOTIFY_OK;
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
507
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
508
	case CPU_UP_CANCELED:
509
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
		unmap_cpu_from_node(lcpu);
		break;
		ret = NOTIFY_OK;
#endif
	}
	return ret;
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
 * discarded as it lies wholy above the memory limit.
 */
526 527
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
528 529 530 531
{
	/*
	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
	 * we've already adjusted it for the limit and it takes care of
532 533
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
534 535 536 537 538 539 540 541 542 543 544
	 */

	if (start + size <= lmb_end_of_DRAM())
		return size;

	if (start >= lmb_end_of_DRAM())
		return 0;

	return lmb_end_of_DRAM() - start;
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
static inline int __init read_usm_ranges(const u32 **usm)
{
	/*
	 * For each lmb in ibm,dynamic-memory a corresponding
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

560 561 562 563 564 565
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
static void __init parse_drconf_memory(struct device_node *memory)
{
566 567 568
	const u32 *dm, *usm;
	unsigned int n, rc, ranges, is_kexec_kdump = 0;
	unsigned long lmb_size, base, size, sz;
569 570 571 572 573
	int nid;
	struct assoc_arrays aa;

	n = of_get_drconf_memory(memory, &dm);
	if (!n)
574 575
		return;

576 577 578 579 580 581
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
		return;

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
582 583
		return;

584 585 586 587 588
	/* check if this is a kexec/kdump kernel */
	usm = of_get_usable_memory(memory);
	if (usm != NULL)
		is_kexec_kdump = 1;

589
	for (; n != 0; --n) {
590 591 592 593 594 595 596 597
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
598
			continue;
599

600 601 602
		base = drmem.base_addr;
		size = lmb_size;
		ranges = 1;
603

604 605 606 607 608 609 610 611 612 613 614 615 616
		if (is_kexec_kdump) {
			ranges = read_usm_ranges(&usm);
			if (!ranges) /* there are no (base, size) duple */
				continue;
		}
		do {
			if (is_kexec_kdump) {
				base = read_n_cells(n_mem_addr_cells, &usm);
				size = read_n_cells(n_mem_size_cells, &usm);
			}
			nid = of_drconf_to_nid_single(&drmem, &aa);
			fake_numa_create_new_node(
				((base + size) >> PAGE_SHIFT),
617
					   &nid);
618 619 620 621 622 623 624
			node_set_online(nid);
			sz = numa_enforce_memory_limit(base, size);
			if (sz)
				add_active_range(nid, base >> PAGE_SHIFT,
						 (base >> PAGE_SHIFT)
						 + (sz >> PAGE_SHIFT));
		} while (--ranges);
625 626 627
	}
}

L
Linus Torvalds 已提交
628 629 630 631
static int __init parse_numa_properties(void)
{
	struct device_node *cpu = NULL;
	struct device_node *memory = NULL;
632
	int default_nid = 0;
L
Linus Torvalds 已提交
633 634 635 636 637 638 639 640 641 642 643 644
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

645 646
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
647
	/*
648 649 650
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
651
	 */
652
	for_each_present_cpu(i) {
653
		int nid;
L
Linus Torvalds 已提交
654 655

		cpu = find_cpu_node(i);
656
		BUG_ON(!cpu);
657
		nid = of_node_to_nid_single(cpu);
658
		of_node_put(cpu);
L
Linus Torvalds 已提交
659

660 661 662 663 664 665 666 667
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
668 669
	}

670
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
L
Linus Torvalds 已提交
671 672 673 674
	memory = NULL;
	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
		unsigned long start;
		unsigned long size;
675
		int nid;
L
Linus Torvalds 已提交
676
		int ranges;
677
		const unsigned int *memcell_buf;
L
Linus Torvalds 已提交
678 679
		unsigned int len;

680
		memcell_buf = of_get_property(memory,
681 682
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
683
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
684 685 686
		if (!memcell_buf || len <= 0)
			continue;

687 688
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
689 690
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
691 692
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
693

694 695 696 697 698
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
699
		nid = of_node_to_nid_single(memory);
700 701
		if (nid < 0)
			nid = default_nid;
702 703

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
704
		node_set_online(nid);
L
Linus Torvalds 已提交
705

706
		if (!(size = numa_enforce_memory_limit(start, size))) {
L
Linus Torvalds 已提交
707 708 709 710 711 712
			if (--ranges)
				goto new_range;
			else
				continue;
		}

713 714
		add_active_range(nid, start >> PAGE_SHIFT,
				(start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
L
Linus Torvalds 已提交
715 716 717 718 719

		if (--ranges)
			goto new_range;
	}

720 721 722 723 724 725 726 727
	/*
	 * Now do the same thing for each LMB listed in the ibm,dynamic-memory
	 * property in the ibm,dynamic-reconfiguration-memory node.
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory)
		parse_drconf_memory(memory);

L
Linus Torvalds 已提交
728 729 730 731 732 733 734
	return 0;
}

static void __init setup_nonnuma(void)
{
	unsigned long top_of_ram = lmb_end_of_DRAM();
	unsigned long total_ram = lmb_phys_mem_size();
735
	unsigned long start_pfn, end_pfn;
736
	unsigned int i, nid = 0;
L
Linus Torvalds 已提交
737

738
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
739
	       top_of_ram, total_ram);
740
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
741 742
	       (top_of_ram - total_ram) >> 20);

743 744 745
	for (i = 0; i < lmb.memory.cnt; ++i) {
		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
746 747 748 749

		fake_numa_create_new_node(end_pfn, &nid);
		add_active_range(nid, start_pfn, end_pfn);
		node_set_online(nid);
750
	}
L
Linus Torvalds 已提交
751 752
}

753 754 755 756 757 758 759 760 761
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
762
		printk(KERN_DEBUG "Node %d CPUs:", node);
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
		for (cpu = 0; cpu < NR_CPUS; cpu++) {
			if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
				if (count == 0)
					printk(" %u", cpu);
				++count;
			} else {
				if (count > 1)
					printk("-%u", cpu - 1);
				count = 0;
			}
		}

		if (count > 1)
			printk("-%u", NR_CPUS - 1);
		printk("\n");
	}
}

static void __init dump_numa_memory_topology(void)
L
Linus Torvalds 已提交
788 789 790 791 792 793 794 795 796 797
{
	unsigned int node;
	unsigned int count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
		unsigned long i;

798
		printk(KERN_DEBUG "Node %d Memory:", node);
L
Linus Torvalds 已提交
799 800 801

		count = 0;

802 803 804
		for (i = 0; i < lmb_end_of_DRAM();
		     i += (1 << SECTION_SIZE_BITS)) {
			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
L
Linus Torvalds 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
				if (count == 0)
					printk(" 0x%lx", i);
				++count;
			} else {
				if (count > 0)
					printk("-0x%lx", i);
				count = 0;
			}
		}

		if (count > 0)
			printk("-0x%lx", i);
		printk("\n");
	}
}

/*
 * Allocate some memory, satisfying the lmb or bootmem allocator where
 * required. nid is the preferred node and end is the physical address of
 * the highest address in the node.
 *
826
 * Returns the virtual address of the memory.
L
Linus Torvalds 已提交
827
 */
828
static void __init *careful_zallocation(int nid, unsigned long size,
829 830
				       unsigned long align,
				       unsigned long end_pfn)
L
Linus Torvalds 已提交
831
{
832
	void *ret;
833
	int new_nid;
834 835 836
	unsigned long ret_paddr;

	ret_paddr = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
837 838

	/* retry over all memory */
839 840
	if (!ret_paddr)
		ret_paddr = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
L
Linus Torvalds 已提交
841

842
	if (!ret_paddr)
843
		panic("numa.c: cannot allocate %lu bytes for node %d",
L
Linus Torvalds 已提交
844 845
		      size, nid);

846 847
	ret = __va(ret_paddr);

L
Linus Torvalds 已提交
848
	/*
849 850 851 852 853 854 855 856 857 858
	 * We initialize the nodes in numeric order: 0, 1, 2...
	 * and hand over control from the LMB allocator to the
	 * bootmem allocator.  If this function is called for
	 * node 5, then we know that all nodes <5 are using the
	 * bootmem allocator instead of the LMB allocator.
	 *
	 * So, check the nid from which this allocation came
	 * and double check to see if we need to use bootmem
	 * instead of the LMB.  We don't free the LMB memory
	 * since it would be useless.
L
Linus Torvalds 已提交
859
	 */
860
	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
861
	if (new_nid < nid) {
862
		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
L
Linus Torvalds 已提交
863 864
				size, align, 0);

865
		dbg("alloc_bootmem %p %lx\n", ret, size);
L
Linus Torvalds 已提交
866 867
	}

868
	memset(ret, 0, size);
869
	return ret;
L
Linus Torvalds 已提交
870 871
}

872 873 874 875 876
static struct notifier_block __cpuinitdata ppc64_numa_nb = {
	.notifier_call = cpu_numa_callback,
	.priority = 1 /* Must run before sched domains notifier. */
};

877 878 879 880 881 882 883 884 885
static void mark_reserved_regions_for_nid(int nid)
{
	struct pglist_data *node = NODE_DATA(nid);
	int i;

	for (i = 0; i < lmb.reserved.cnt; i++) {
		unsigned long physbase = lmb.reserved.region[i].base;
		unsigned long size = lmb.reserved.region[i].size;
		unsigned long start_pfn = physbase >> PAGE_SHIFT;
886
		unsigned long end_pfn = PFN_UP(physbase + size);
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
		struct node_active_region node_ar;
		unsigned long node_end_pfn = node->node_start_pfn +
					     node->node_spanned_pages;

		/*
		 * Check to make sure that this lmb.reserved area is
		 * within the bounds of the node that we care about.
		 * Checking the nid of the start and end points is not
		 * sufficient because the reserved area could span the
		 * entire node.
		 */
		if (end_pfn <= node->node_start_pfn ||
		    start_pfn >= node_end_pfn)
			continue;

		get_node_active_region(start_pfn, &node_ar);
		while (start_pfn < end_pfn &&
			node_ar.start_pfn < node_ar.end_pfn) {
			unsigned long reserve_size = size;
			/*
			 * if reserved region extends past active region
			 * then trim size to active region
			 */
			if (end_pfn > node_ar.end_pfn)
				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
912
					- physbase;
913 914 915 916 917 918 919 920 921 922 923
			/*
			 * Only worry about *this* node, others may not
			 * yet have valid NODE_DATA().
			 */
			if (node_ar.nid == nid) {
				dbg("reserve_bootmem %lx %lx nid=%d\n",
					physbase, reserve_size, node_ar.nid);
				reserve_bootmem_node(NODE_DATA(node_ar.nid),
						physbase, reserve_size,
						BOOTMEM_DEFAULT);
			}
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
			/*
			 * if reserved region is contained in the active region
			 * then done.
			 */
			if (end_pfn <= node_ar.end_pfn)
				break;

			/*
			 * reserved region extends past the active region
			 *   get next active region that contains this
			 *   reserved region
			 */
			start_pfn = node_ar.end_pfn;
			physbase = start_pfn << PAGE_SHIFT;
			size = size - reserve_size;
			get_node_active_region(start_pfn, &node_ar);
		}
	}
}


L
Linus Torvalds 已提交
945 946 947 948 949 950 951 952 953 954 955
void __init do_init_bootmem(void)
{
	int nid;

	min_low_pfn = 0;
	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();
	else
956
		dump_numa_memory_topology();
L
Linus Torvalds 已提交
957 958

	register_cpu_notifier(&ppc64_numa_nb);
959 960
	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
			  (void *)(unsigned long)boot_cpuid);
L
Linus Torvalds 已提交
961 962

	for_each_online_node(nid) {
963
		unsigned long start_pfn, end_pfn;
964
		void *bootmem_vaddr;
L
Linus Torvalds 已提交
965 966
		unsigned long bootmap_pages;

967
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
L
Linus Torvalds 已提交
968

969 970 971 972 973 974 975
		/*
		 * Allocate the node structure node local if possible
		 *
		 * Be careful moving this around, as it relies on all
		 * previous nodes' bootmem to be initialized and have
		 * all reserved areas marked.
		 */
976
		NODE_DATA(nid) = careful_zallocation(nid,
L
Linus Torvalds 已提交
977
					sizeof(struct pglist_data),
978
					SMP_CACHE_BYTES, end_pfn);
L
Linus Torvalds 已提交
979 980 981 982

  		dbg("node %d\n", nid);
		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));

983
		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
984 985
		NODE_DATA(nid)->node_start_pfn = start_pfn;
		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
L
Linus Torvalds 已提交
986 987 988 989

		if (NODE_DATA(nid)->node_spanned_pages == 0)
  			continue;

990 991
  		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
  		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
992

993
		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
994
		bootmem_vaddr = careful_zallocation(nid,
995 996
					bootmap_pages << PAGE_SHIFT,
					PAGE_SIZE, end_pfn);
L
Linus Torvalds 已提交
997

998
		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
L
Linus Torvalds 已提交
999

1000 1001
		init_bootmem_node(NODE_DATA(nid),
				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1002
				  start_pfn, end_pfn);
L
Linus Torvalds 已提交
1003

1004
		free_bootmem_with_active_regions(nid, end_pfn);
1005 1006
		/*
		 * Be very careful about moving this around.  Future
1007
		 * calls to careful_zallocation() depend on this getting
1008 1009 1010
		 * done correctly.
		 */
		mark_reserved_regions_for_nid(nid);
1011
		sparse_memory_present_with_active_regions(nid);
1012
	}
L
Linus Torvalds 已提交
1013 1014 1015 1016
}

void __init paging_init(void)
{
1017 1018 1019
	unsigned long max_zone_pfns[MAX_NR_ZONES];
	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
	max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
1020
	free_area_init_nodes(max_zone_pfns);
L
Linus Torvalds 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

1034 1035 1036 1037
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
1038 1039 1040
	return 0;
}
early_param("numa", early_numa);
1041 1042

#ifdef CONFIG_MEMORY_HOTPLUG
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
/*
 * Validate the node associated with the memory section we are
 * trying to add.
 */
int valid_hot_add_scn(int *nid, unsigned long start, u32 lmb_size,
		      unsigned long scn_addr)
{
	nodemask_t nodes;

	if (*nid < 0 || !node_online(*nid))
		*nid = any_online_node(NODE_MASK_ALL);

	if ((scn_addr >= start) && (scn_addr < (start + lmb_size))) {
		nodes_setall(nodes);
		while (NODE_DATA(*nid)->node_spanned_pages == 0) {
			node_clear(*nid, nodes);
			*nid = any_online_node(nodes);
		}

		return 1;
	}

	return 0;
}

/*
 * Find the node associated with a hot added memory section represented
 * by the ibm,dynamic-reconfiguration-memory node.
 */
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
				     unsigned long scn_addr)
{
	const u32 *dm;
	unsigned int n, rc;
	unsigned long lmb_size;
	int default_nid = any_online_node(NODE_MASK_ALL);
	int nid;
	struct assoc_arrays aa;

	n = of_get_drconf_memory(memory, &dm);
	if (!n)
		return default_nid;;

	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
		return default_nid;

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
		return default_nid;

	for (; n != 0; --n) {
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if it is reserved or not assigned to
		 * this partition */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
			continue;

		nid = of_drconf_to_nid_single(&drmem, &aa);

		if (valid_hot_add_scn(&nid, drmem.base_addr, lmb_size,
				      scn_addr))
			return nid;
	}

	BUG();	/* section address should be found above */
	return 0;
}

1116 1117 1118 1119 1120 1121 1122 1123
/*
 * Find the node associated with a hot added memory section.  Section
 * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that
 * sections are fully contained within a single LMB.
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1124
	int nid;
1125 1126

	if (!numa_enabled || (min_common_depth < 0))
1127 1128 1129 1130 1131 1132 1133 1134
		return any_online_node(NODE_MASK_ALL);

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
		of_node_put(memory);
		return nid;
	}
1135 1136 1137

	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
		unsigned long start, size;
1138
		int ranges;
1139
		const unsigned int *memcell_buf;
1140 1141
		unsigned int len;

1142
		memcell_buf = of_get_property(memory, "reg", &len);
1143 1144 1145
		if (!memcell_buf || len <= 0)
			continue;

1146 1147
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1148 1149 1150
ha_new_range:
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
1151
		nid = of_node_to_nid_single(memory);
1152

1153
		if (valid_hot_add_scn(&nid, start, size, scn_addr)) {
1154
			of_node_put(memory);
1155
			return nid;
1156 1157 1158 1159 1160 1161
		}

		if (--ranges)		/* process all ranges in cell */
			goto ha_new_range;
	}
	BUG();	/* section address should be found above */
1162
	return 0;
1163 1164
}
#endif /* CONFIG_MEMORY_HOTPLUG */