提交 e6bff76b 编写于 作者: A annie_wangli

update docs

Signed-off-by: Nannie_wangli <annie.wangli@huawei.com>
上级 1e802e53
# Guidelines for Compiling and Building the Linux Kernel<a name="EN-US_TOPIC_0000001076416924"></a>
# Guidelines for Building the Linux Kernel<a name="EN-US_TOPIC_0000001076416924"></a>
- [Example 1](#section19369206113115)
- [Scenario 1: Building the Native Kernel at the Version Level](#section1025111193220)
- [Scenario 2: Building the Modified Kernel Separately](#section17446652173211)
The following uses the Hi3516D V300 development board and Ubuntu x86 server as an example.
## Example 1<a name="section19369206113115"></a>
The following uses the Hi3516D V300 board and Ubuntu x86 server as an example.
### Scenario 1: Building the Native Kernel at the Version Level<a name="section1025111193220"></a>
Perform a full build for the project to generate the **uImage** kernel image.
Perform a full build for the project to generate the **uImage** kernel image.
```
./build.sh --product-name Hi3516DV300 # Build the uImage kernel image of the Hi3516D V300 board.
./build.sh --product-name Hi3516DV300 # Build the Hi3516D V300 image.
--build-target build_kernel # Build the uImage kernel image of Hi3516D V300.
--gn-args linux_kernel_version=\"linux-5.10\" # Build the specified kernel version.
```
### Scenario 2: Building the Modified Kernel Separately<a name="section17446652173211"></a>
1. Set up the build environment.
1. Merge the required patch by referring to [guidelines for using patches on development boards](kernel-standard-patch.md).
2. Prepare for the build environment. You can use the Arm Clang or GCC compiler.
Enter the root directory of the project and configure environment variables:
```
export PATH=`pwd`/prebuilts/clang/host/linux-x86/clang-r353983c/bin:`pwd`/prebuilts/gcc/linux-x86/arm/gcc-linaro-7.5.0-arm-linux-gnueabi/bin/:$PATH # Configure the build environment.
MAKE_OPTIONES="ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- CC=clang HOSTCC=clang" # Use Clang provided by the project.
```
2. Modify the kernel code or kernel configuration \(**defconfig** file provided by OpenHarmony can be used for reference\).
3. Create a build directory and generate the **.config** file of the kernel.
```
make ${MAKE_OPTIONES} hi3516dv300_emmc_smp_hos_l2_defconfig # Use the defconfig file to build the kernel.
```
4. Build the kernel image.
```
make ${MAKE_OPTIONES} -j32 uImage # Build the uImage kernel image.
```
......@@ -15,7 +15,4 @@ The LTS version provides long-term kernel maintenance \(in fixing bugs and secur
## OpenHarmony Kernel Version Selection<a name="section2716416191715"></a>
You can select an appropriate LTS kernel version as the Linux kernel for OpenHarmony. Currently, LTS version 4.19 is used on most devices. LTS versions 4.4 to 4.14 are old and do not support new features. Additionally, these versions will no longer be maintained in 2023 as planned. In this regard, they can be adopted only by the systems for short-term use but are not suitable for the systems of the first release. The more up-to-date LTS version 5.4 has not been widely used in released products. In comparison, version 4.19 is more well-recognized and can shorten the kernel adaptation period. New versions will be released continuously.
In OpenHarmony, the Linux kernel is recommended for devices whose memory is greater than or equal to 128 MB.
Select an appropriate LTS kernel version as the Linux kernel for OpenHarmony. Currently, Linux-4.19 and Linux-5.10 are supported.
# Guidelines for Using Patches on OpenHarmony Development Boards<a name="EN-US_TOPIC_0000001081980461"></a>
# Applying Patches on OpenHarmony Development Boards<a name="EN-US_TOPIC_0000001081980461"></a>
The patch files are stored in the **kernel/linux/patches/linux-4.19** source code path of the project. You can obtain the driver patch of a specific chip architecture from this directory.
1. Apply HDF patches.
To use the patch of a specific chip platform driver, you need to merge the required kernel patch into the kernel code.
Apply the HDF kernel patches matching your kernel version. For details, see the method in **kernel.mk** in the **kernel/linux/build** repository.
```
$(OHOS_BUILD_HOME)/drivers/adapter/khdf/linux/patch_hdf.sh $(OHOS_BUILD_HOME) $(KERNEL_SRC_TMP_PATH) $(HDF_PATCH_FILE)
```
Merge the corresponding patches for different chip platforms.
2. Apply the chip driver patches.
The following uses Hi3516D V300 as an example:
The following uses Hi3516D V300 as an example.
Place the patches for the chip component in the corresponding path based on the path and naming rules for the patches of the chip component in **kernel.mk** in the **kernel/linux/build** repository.
```
DEVICE_PATCH_DIR := $(OHOS_BUILD_HOME)/kernel/linux/patches/${KERNEL_VERSION}/$(DEVICE_NAME)_patch
DEVICE_PATCH_FILE := $(DEVICE_PATCH_DIR)/$(DEVICE_NAME).patch
```
```
patch -p1 < device/hisilicon/hi3516dv300/sdk_linux/open_source/linux/hisi_linux-4.19_hos_l2.patch
```
3. Modify the **config** file to build.
>![](../public_sys-resources/icon-notice.gif) **NOTICE:**
>Because patches are applied after the code environment of **kernel/linux-4.19** is copied during compilation and building of the OpenHarmony project, you must retain the original code environment of **kernel/linux-4.19** before running the OpenHarmony version-level build command.
Place the **config** file for the chip component in the corresponding path based on the path and naming rules of the chip component in **kernel.mk** in the **kernel/linux/build** repository.
```
KERNEL_CONFIG_PATH := $(OHOS_BUILD_HOME)/kernel/linux/config/${KERNEL_VERSION}
DEFCONFIG_FILE := $(DEVICE_NAME)_$(BUILD_TYPE)_defconfig
```
> **Note**:
>
>In the OpenHarmony project build process, patches are installed after **kernel/linux/linux-\*\.\*** is copied. Before using the version-level build command of OpenHarmony, ensure that the **kernel/linux/linux-\*\.\*** source code is available.
>
>The kernel built is generated in the **kernel** directory under the **out** directory. Modify the **config** file based on the kernel built, and copy the generated **.config** file to the corresponding path in the **config** repository. Then, the configuration takes effect.
# Kernel<a name="EN-US_TOPIC_0000001077309884"></a>
- [Introduction](#section11660541593)
- [LiteOS](#section6253122153515)
- [Linux](#section143373618411)
- [Directory Structure](#section21571344112)
- [Constraints](#section19647171710417)
- [Usage](#section1393789267)
- [LiteOS](#section118811457303)
- [Linux](#section1352114469620)
- [Build](#section19369206113115)
- [Repositories Involved](#section27639463106)
## Introduction<a name="section11660541593"></a>
OpenHarmony provides LiteOS and Linux for different levels of systems. LiteOS applies to mini and small systems. Linux applies to small and standard systems.
<a name="table91002058194612"></a>
<table><thead align="left"><tr id="row010015589464"><th class="cellrowborder" valign="top" width="25%" id="mcps1.2.5.1.1"><p id="p310015824612"><a name="p310015824612"></a><a name="p310015824612"></a>System Level</p>
</th>
<th class="cellrowborder" valign="top" width="25%" id="mcps1.2.5.1.2"><p id="p910013586463"><a name="p910013586463"></a><a name="p910013586463"></a>Mini System</p>
</th>
<th class="cellrowborder" valign="top" width="25%" id="mcps1.2.5.1.3"><p id="p14100858164615"><a name="p14100858164615"></a><a name="p14100858164615"></a>Small System</p>
</th>
<th class="cellrowborder" valign="top" width="25%" id="mcps1.2.5.1.4"><p id="p191001158154610"><a name="p191001158154610"></a><a name="p191001158154610"></a>Standard System</p>
</th>
</tr>
</thead>
<tbody><tr id="row18100165894619"><td class="cellrowborder" valign="top" width="25%" headers="mcps1.2.5.1.1 "><p id="p110055824611"><a name="p110055824611"></a><a name="p110055824611"></a>LiteOS</p>
</td>
<td class="cellrowborder" valign="top" width="25%" headers="mcps1.2.5.1.2 "><p id="p3100175815461"><a name="p3100175815461"></a><a name="p3100175815461"></a></p>
</td>
<td class="cellrowborder" valign="top" width="25%" headers="mcps1.2.5.1.3 "><p id="p15762194124714"><a name="p15762194124714"></a><a name="p15762194124714"></a></p>
</td>
<td class="cellrowborder" valign="top" width="25%" headers="mcps1.2.5.1.4 "><p id="p647872125416"><a name="p647872125416"></a><a name="p647872125416"></a>×</p>
</td>
</tr>
<tr id="row15104331164711"><td class="cellrowborder" valign="top" width="25%" headers="mcps1.2.5.1.1 "><p id="p15104163120477"><a name="p15104163120477"></a><a name="p15104163120477"></a>Linux</p>
</td>
<td class="cellrowborder" valign="top" width="25%" headers="mcps1.2.5.1.2 "><p id="p15762194124714"><a name="p15762194124714"></a><a name="p15762194124714"></a>×</p>
<td class="cellrowborder" valign="top" width="25%" headers="mcps1.2.5.1.3 "><p id="p15762194124714"><a name="p15762194124714"></a><a name="p15762194124714"></a></p>
<td class="cellrowborder" valign="top" width="25%" headers="mcps1.2.5.1.4 "><p id="p4251543134711"><a name="p4251543134711"></a><a name="p4251543134711"></a></p>
</td>
</tr>
</tbody>
</table>
## LiteOS<a name="section6253122153515"></a>
OpenHarmony LiteOS is a real-time OS kernel developed for IoT devices. It boasts lightweight features as the real-time operating system (RTOS) and is easy-to-use like Linux.
LiteOS provides basic kernel functions, such as process and thread scheduling, memory management, inter-process communication (IPC), and timer management.
The LiteOS source code is stored in **kernel&#92;\_liteos&#92;\_a** and **kernel&#92;\_liteos&#92;\_m** repositories. The **kernel&#92;\_liteos&#92;\_a** repository stores kernel code for small and standard systems. The **kernel\\_liteos&#92;\_m** repository stores kernel code for mini systems. This document describes the **kernel&#92;\_liteos&#92;\_a** repository. Figure 1 shows the architecture of OpenHarmony LiteOS-A.
**Figure 1** OpenHarmony LiteOS-A kernel architecture <a name="fig225412228353"></a>
![](figures/OpenHarmony-LiteOS-A Kernel Architecture.png "OpenHarmony-LiteOS-A Kernel Architecture")
## Linux<a name="section143373618411"></a>
Evolved from the open-source Linux kernel LTS 4.19.y and 5.10.y, the OpenHarmony Linux kernel has incorporated CVE patches and OpenHarmony features as the OpenHarmony common kernel baseline. Vendors can complete the kernel adaptation by applying the driver patches for boards.
For more information about Linux LTS 4.19.y, visit the [official kernel website](https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/log/?h=linux-4.19.y).
For more information about Linux LTS 5.10.y, visit the [official kernel website] (https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/log/?h=linux-5.10.y).
During the build process, you can merge the driver code based on the chip platform and build the kernel image. All patches are licensed under GNU General Public License (GPL) 2.0.
## Directory Structure<a name="section21571344112"></a>
```
kernel/
├── linux
│ ├── linux-4.19 # OpenHarmony linux-4.19 common kernel
│ ├── linux-5.10 # OpenHarmony linux-5.10 common kernel
│ ├── build
│ │ ├── BUILD.gn # GN file of the build framework
│ │ ├── kernel.mk # Kernel build file
│ │ └── ohos.build # Kernel build component file
│ ├── patches
│ │ ├── linux-4.19 # linux-4.19 patches
│ │ │   └── hi3516dv300_patch
│ │ │   ├── hi3516dv300.patch # linux-4.19 Hi3516D V300 SOC patches
│ │ │   └── hdf.patch # linux-4.19 Hi3516D V300 HDF patches
│ │ └── linux-5.10
│ │    └── hi3516dv300_patch
│ │    ├── hi3516dv300.patch # linux-5.10 Hi3516D V300 SOC patches
│ │    └── hdf.patch # linux-5.10 Hi3516D V300 HDF patches
│ └── config
│ ├── linux-4.19
│ │   └── arch
│ │   └── arm
│ │   └── configs
│ │ ├── hi3516dv300_small_defconfig # Small-system defconfig of the open-source Hi3516D V300 development board from HiSilicon
│ │ ├── hi3516dv300_standard_defconfig # Standard-system defconfig of the open-source Hi3516D V300 development board from HiSilicon
│ │ ├── small_common_defconfig # Common defconfig of the small-system kernel
│ │ └── standard_common_defconfig # Common defconfig of the standard-system kernel
│ └── linux-5.10
│ └── arch
│ └── arm
│ └── configs
│ ├── hi3516dv300_small_defconfig # Small-system defconfig of the open-source Hi3516D V300 development board from HiSilicon
│ ├── hi3516dv300_standard_defconfig # Standard-system defconfig of the open-source Hi3516D V300 development board from HiSilicon
│ ├── small_common_defconfig # Common defconfig of the small-system kernel
│ └── standard_common_defconfig # Common defconfig of the standard-system kernel
└── liteos_a # Baseline code of the LiteOS kernel
├── apps # User-mode init and shell applications
├── arch # Directory of the system architecture, such as arm
│ └── arm # Code for arm
├── bsd # Code of the driver and adaptation layer module related to the FreeBSD, such as the USB module
├── compat # Kernel API compatibility
│ └── posix # POSIX APIs
├── drivers # Kernel drivers
│ └── char # Character device
│ ├── mem # Driver for accessing physical input/output (I/O) devices
│ ├── quickstart # APIs for quick system start
│ ├── random # Driver for random number generators
│ └── video # Framework of the framebuffer driver
├── fs # File system module, which derives from the NuttX open-source project
│ ├── fat # FAT file system
│ ├── jffs2 # JFFS2 file system
│ ├── include # Header files exposed externally
│ ├── nfs # NFS file system
│ ├── proc # proc file system
│ ├── ramfs # Ramfs file system
│ └── vfs # VFS layer
├── kernel # Kernel modules including the process, memory, and IPC modules
│ ├── base # Basic kernel modules, including the scheduling and memory modules
│ ├── common # Common components of the kernel
│ ├── extended # Extended kernel modules, including the dynamic loading, vDSO, and LiteIPC modules
│ ├── include # Header files exposed externally
│ └── user # Init process loading
├── lib # Kernel library
├── net # Network module, which mainly derives from the lwIP open-source project
├── platform # Code for supporting different systems on a chip (SOCs), such as Hi3516D V300
│ ├── hw # Logic code related to clocks and interrupts
│ ├── include # Header files exposed externally
│ └── uart # Logic code related to the serial port
├── platform # Code for supporting different SOCs, such as Hi3516D V300
├── security # Code related to security features, including process permission management and virtual ID mapping management
├── syscall # System calling
└── tools # Building tools as well as related configuration and code
```
## Constraints<a name="section19647171710417"></a>
LiteOS:
By default, the Hi3518E V300 uses the JFFS2 file system, and Hi3516D V300 uses the FAT file system. Adaptation must be performed if you want to use other file systems.
## Usage<a name="section1393789267"></a>
### LiteOS<a name="section118811457303"></a>
For details, see "Usage" in LiteOS-A Kernel [README](https://gitee.com/openharmony/kernel_liteos_a/blob/master/README.md) and LiteOS-M Kernel [README](https://gitee.com/openharmony/kernel_liteos_m/blob/master/README.md).
### Linux<a name="section1352114469620"></a>
1. Apply HDF patches.
Apply the HDF kernel patches matching your kernel version. For details, see the method in **kernel.mk** in the **kernel/linux/build** repository.
```
$(OHOS_BUILD_HOME)/drivers/adapter/khdf/linux/patch_hdf.sh $(OHOS_BUILD_HOME) $(KERNEL_SRC_TMP_PATH) $(HDF_PATCH_FILE)
```
2. Apply the chip driver patches.
The following uses Hi3516D V300 as an example.
Place the patches for the chip component in the corresponding path based on the path and naming rules for the patches of the chip component in **kernel.mk** in the **kernel/linux/build** repository.
```
DEVICE_PATCH_DIR := $(OHOS_BUILD_HOME)/kernel/linux/patches/${KERNEL_VERSION}/$(DEVICE_NAME)_patch
DEVICE_PATCH_FILE := $(DEVICE_PATCH_DIR)/$(DEVICE_NAME).patch
```
3. Modify the **config** file to build.
Place the **config** file for the chip component in the corresponding path based on the path and naming rules of the chip component in **kernel.mk** in the **kernel/linux/build** repository.
```
KERNEL_CONFIG_PATH := $(OHOS_BUILD_HOME)/kernel/linux/config/${KERNEL_VERSION}
DEFCONFIG_FILE := $(DEVICE_NAME)_$(BUILD_TYPE)_defconfig
```
> **Note**:
>
>In the OpenHarmony project build process, patches are installed after **kernel/linux/linux-\*\.\*** is copied. Before using the version-level build command of OpenHarmony, ensure that the **kernel/linux/linux-\*\.\*** source code is available.
>
>The kernel built is generated in the **kernel** directory under the **out** directory. Modify the **config** file based on the kernel built, and copy the generated **.config** file to the corresponding path in the **config** repository. Then, the configuration takes effect.
## Build<a name="section19369206113115"></a>
The following uses the Hi3516D V300 development board and Ubuntu x86 server as an example.
Perform a full build for the project to generate the **uImage** kernel image.
```
./build.sh --product-name Hi3516DV300 # Build the Hi3516D V300 image.
--build-target build_kernel # Build the uImage kernel image of Hi3516D V300.
--gn-args linux_kernel_version=\"linux-5.10\" # Build the specified kernel version.
```
## Repositories Involved<a name="section27639463106"></a>
**Kernel**
LiteOS:
[drivers\_liteos](https://gitee.com/openharmony/drivers_liteos/blob/master/README.md)
[kernel\_liteos\_a](https://gitee.com/openharmony/kernel_liteos_a/blob/master/README.md)
[kernel\_liteos\_m](https://gitee.com/openharmony/kernel_liteos_m/blob/master/README.md)
[device\_qemu](https://gitee.com/openharmony/device_qemu/blob/master/README.md)
[prebuilts\_lite\_sysroot](https://gitee.com/openharmony/prebuilts_lite_sysroot/blob/master/README.md)
Linux:
[kernel\_linux\_patches](https://gitee.com/openharmony/kernel_linux_patches/blob/master/README.md)
[kernel\_linux\_config](https://gitee.com/openharmony/kernel_linux_config/blob/master/README.md)
[kernel\_linux\_build](https://gitee.com/openharmony/kernel_linux_build/blob/master/README.md)
[kernel\_linux\_4.19](https://gitee.com/openharmony/kernel_linux_4.19/blob/master/README)
[kernel\_linux\_5.10](https://gitee.com/openharmony/kernel_linux_5.10/blob/master/README)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册