提交 55de6b22 编写于 作者: J jiaziyang

add pin files

Signed-off-by: Njiaziyang <jiaziyang1@huawei.com>
上级 1bc36c89
......@@ -32,6 +32,7 @@
- [I3C](driver-platform-i3c-des.md)
- [MIPI-CSI](driver-platform-mipicsi-des.md)
- [MIPI-DSI](driver-platform-mipidsi-des.md)
- [PIN](driver-platform-pin-des.md)
- [PWM](driver-platform-pwm-des.md)
- [REGULATOR](driver-platform-regulator-des.md)
- [RTC](driver-platform-rtc-des.md)
......
# PIN
- [概述](#section1)
- [功能简介](#section2)
- [基本概念](#section3)
- [运作机制](#section4)
- [约束与限制](#section5)
- [使用指导](#section6)
- [场景介绍](#section7)
- [接口说明](#section8)
- [开发步骤](#section9)
- [使用实例](#section10)
## 概述<a name="section1"></a>
### 功能简介<a name="section2"></a>
- PIN即管脚控制器,用于统一管理各SoC厂商管脚资源,对外提供管脚复用功能:包括管脚推拉方式、管脚推拉强度以及管脚功能。
- PIN接口定义了操作PIN管脚的通用方法集合,包括:
- 获取/释放管脚描述句柄: 传入管脚名与链表中每个控制器下管脚名进行匹配,匹配则会获取一个管脚描述句柄,操作完PIN管脚后释放该管脚描述句柄。
- 设置/获取管脚推拉方式:推拉方式可以是上拉、下拉以及悬空。
- 设置/获取管脚推拉强度:用户可根据实际设置管脚推拉强度大小。
- 设置/获取管脚功能:通过管脚功能名设置/获取管脚功能,实现管脚复用。
### 基本概念<a name="section3"></a>
PIN是一个软件层面的概念,目的是为了统一各SoC厂商PIN管脚管理,对外提供管脚复用功能,配置PIN管脚的电气特性。
- SoC(System on Chip)
系统级芯片,也有称作片上系统,通常是面向特定用途将微处理器、模拟IP核、数字IP核和存储器集成在单一芯片的标准产品。
- 管脚复用
由于芯片自身的引脚数量有限,无法满足日益增多的外接需求。此时可以通过软件层面的寄存器设置,让引脚工作在不同的状态,从而实现相同引脚完成不同功能的目的。
### 运作机制<a name="section4"></a>
在HDF框架中,PIN模块暂不支持用户态,所以不需要发布服务,接口适配模式采用无服务模式,用于不需要在用户态提供API的设备类型,或者没有用户态和内核区分的OS系统,其关联方式是DevHandle直接指向设备对象内核态地址(DevHandle是一个void类型指针)。
PIN模块各分层作用:接口层提供获取PIN管脚、设置PIN管脚推拉方式、获取PIN管脚推拉方式、设置PIN管脚推拉强度、获取PIN管脚推拉强度、设置PIN管脚功能、获取PIN管脚功能、释放PIN管脚的接口。核心层主要提供PIN管脚资源匹配,PIN管脚控制器的添加、移除以及管理的能力,通过钩子函数与适配层交互。适配层主要是将钩子函数的功能实例化,实现具体的功能。
**图 1** PIN无服务模式<a name="fig14423182615525"></a>
![](figures/无服务模式结构图.png "PIN无服务模式")
### 约束与限制<a name="section5"></a>
PIN模块目前仅支持轻量和小型系统内核(LiteOS)。
## 使用指导<a name="section6"></a>
### 场景介绍<a name="section7"></a>
PIN模块仅是一个软件层面的概念,主要工作是管脚资源管理。使用复用管脚时,通过设置管脚功能、设置管脚推拉方式、设置管脚推拉强度来适配指定场景的需求。
### 接口说明<a name="section8"></a>
PIN模块提供的主要接口如[表1](#table1)所示,更多关于接口的介绍请参考对应的API接口文档。
**表 1** PIN驱动API接口功能介绍
<a name="table1"></a>
| **接口名** | **描述** |
| ------------------------------------------------------------ | ---------------- |
| DevHandle PinGet(const char *pinName); | 获取管脚描述句柄 |
| void PinPut(DevHandle handle); | 释放管脚描述句柄 |
| int32_t PinSetPull(DevHandle handle, enum PinPullType pullType); | 设置管脚推拉方式 |
| int32_t PinGetPull(DevHandle handle, enum PinPullType *pullType); | 获取管脚推拉方式 |
| int32_t PinSetStrength(DevHandle handle, uint32_t strength); | 设置管脚推拉强度 |
| int32_t PinGetStrength(DevHandle handle, uint32_t *strength); | 获取管脚推拉强度 |
| int32_t PinSetFunc(DevHandle handle, const char *funcName); | 设置管脚功能 |
| int32_t PinGetFunc(DevHandle handle, const char **funcName); | 获取管脚功能 |
>![](../public_sys-resources/icon-note.gif) **说明:**
>本文涉及的所有接口,仅限内核态使用,不支持在用户态使用。
### 开发步骤<a name="section9"></a>
使用PIN设备的一般流程如[图2](#fig2)所示。
**图 2** PIN使用流程图<a name="fig2"></a>
![](figures/PIN使用流程图.png "PIN使用流程图")
#### 获取PIN管脚描述句柄
在使用PIN进行管脚操作时,首先要调用PinGet获取管脚描述句柄,该函数会返回匹配传入管脚名的管脚描述句柄。
```
DevHandle PinGet(const char *pinName);
```
**表 2** PinGet参数和返回值描述
<a name="table2"></a>
| 参数 | 参数描述 |
| ---------- | ----------------------- |
| pinName | 管脚名 |
| **返回值** | **返回值描述** |
| NULL | 获取PIN管脚描述句柄失败 |
| handle | PIN管脚描述句柄 |
假设PIN需要操作的管脚名为P18,获取其管脚描述句柄的示例如下:
```
DevHandle handle = NULL; /* PIN管脚描述句柄 */
char pinName = "P18"; /* PIN管脚号 */
handle = PinGet(pinName);
if (handle == NULL) {
HDF_LOGE("PinGet: get handle failed!\n");
return;
}
```
#### PIN设置管脚推拉方式
PIN设置管脚推拉方式的函数如下所示:
```
int32_t PinSetPull(DevHandle handle, enum PinPullType pullType);
```
**表 3** 参数和返回值描述
<a name="table3"></a>
| 参数 | 参数描述 |
| ---------- | ----------------------- |
| handle | PIN管脚描述句柄 |
| pullType | PIN管脚推拉方式 |
| **返回值** | **返回值描述** |
| 0 | PIN设置管脚推拉方式成功 |
| 负数 | PIN设置管脚推拉方式失败 |
假设PIN要设置的管脚推拉方式为上拉,其实例如下:
```
int32_t ret;
enum PinPullType pullTypeNum;
/* PIN设置管脚推拉方式 */
pullTypeNum = 1;
ret = PinSetPull(handle, pullTypeNum);
if (ret != HDF_SUCCESS) {
HDF_LOGE("PinSetPull: failed, ret %d\n", ret);
return ret;
}
```
#### PIN获取管脚推拉方式
PIN获取管脚推拉方式的函数如下所示:
```
int32_t PinGetPull(DevHandle handle, enum PinPullType *pullType);
```
**表 4** PinGetPull参数和返回值描述
<a name="table4"></a>
| 参数 | 参数描述 |
| ---------- | ------------------------- |
| handle | PIN管脚描述句柄 |
| pullType | 接收PIN管脚推拉方式的指针 |
| **返回值** | **返回值描述** |
| 0 | PIN获取管脚推拉方式成功 |
| 负数 | PIN获取管脚推拉方式失败 |
PIN获取管脚推拉方式的实例如下:
```
int32_t ret;
enum PinPullType pullTypeNum;
/* PIN获取管脚推拉方式 */
ret = PinGetPull(handle, &pullTypeNum);
if (ret != HDF_SUCCESS) {
HDF_LOGE("PinGetPull: failed, ret %d\n", ret);
return ret;
}
```
#### PIN设置管脚推拉强度
PIN设置管脚推拉强度函数如下所示:
```
int32_t PinSetStrength(DevHandle handle, uint32_t strength);
```
**表 5** PinSetStrength参数和返回值描述
<a name="table5"></a>
| 参数 | 参数描述 |
| ---------- | ----------------------- |
| handle | 管脚描述句柄 |
| strength | PIN管脚推拉强度 |
| **返回值** | **返回值描述** |
| 0 | PIN设置管脚推拉强度成功 |
| 负数 | PIN设置管脚推拉强度失败 |
假设PIN要设置的管脚推拉强度为2,其实例如下:
```
int32_t ret;
uint32_t strengthNum;
/* PIN设置管脚推拉强度 */
strengthNum = 2;
ret = PinSetStrength(handle, strengthNum);
if (ret != HDF_SUCCESS) {
HDF_LOGE("PinSetStrength: failed, ret %d\n", ret);
return ret;
}
```
#### PIN获取管脚推拉强度
PIN设置管脚推拉强度后,可以通过PIN获取管脚推拉强度接口来查看PIN管脚推拉强度,PIN获取管脚推拉强度的函数如下所示:
```
int32_t PinGetStrength(DevHandle handle, uint32_t *strength);
```
**表 6** PinGetStrength参数和返回值描述
<a name="table6"></a>
| 参数 | 参数描述 |
| ---------- | ------------------------- |
| handle | 管脚描述句柄 |
| strength | 接收PIN管脚推拉强度的指针 |
| **返回值** | **返回值描述** |
| 0 | PIN获取管脚推拉强度成功 |
| 负数 | PIN获取管脚推拉强度失败 |
PIN获取管脚推拉强度的实例如下:
```
int32_t ret;
uint32_t strengthNum;
/* PIN获取管脚推拉强度 */
ret = PinGetStrength(handle, &strengthNum);
if (ret != HDF_SUCCESS) {
HDF_LOGE("PinGetStrength: failed, ret %d\n", ret);
return ret;
}
```
#### PIN设置管脚功能
管脚功能特指的是管脚复用的功能,每个管脚功能都不相同,管脚功能名详细可以参考[PIN配置hcs文件](https://gitee.com/openharmony/device_soc_hisilicon/blob/master/hi3516dv300/sdk_liteos/hdf_config/pin/pin_config.hcs)
PIN设置管脚功能函数如下所示:
```
int32_t PinSetFunc(DevHandle handle, const char *funcName);
```
**表 7** PinSetFunc参数和返回值描述
<a name="table7"></a>
| 参数 | 参数描述 |
| ---------- | ------------------- |
| handle | 管脚描述句柄 |
| funcName | PIN管脚功能名 |
| **返回值** | **返回值描述** |
| 0 | PIN设置管脚功能成功 |
| 负数 | PIN设置管脚功能失败 |
假设PIN需要设置的管脚功能为LSADC_CH1(ADC通道1),其实例如下:
```
int32_t ret;
char funcName = "LSADC_CH1";
/* PIN设置管脚功能 */
ret = PinSetFunc(handle, funcName);
if (ret != HDF_SUCCESS) {
HDF_LOGE("PinSetFunc: failed, ret %d\n", ret);
return ret;
}
```
#### PIN获取管脚功能
PIN设置管脚功能后,可以通过PIN获取管脚功能接口来查看PIN管脚功能,PIN获取管脚功能的函数如下所示:
```
int32_t PinGetFunc(DevHandle handle, const char **funcName);
```
**表 8** PinGetFunc参数和返回值描述
<a name="table8"></a>
| 参数 | 参数描述 |
| ---------- | --------------------- |
| handle | 管脚描述句柄 |
| funcName | 接收PIN管脚功能名指针 |
| **返回值** | **返回值描述** |
| 0 | PIN获取管脚功能成功 |
| 负数 | PIN获取管脚功能失败 |
PIN获取管脚功能的实例如下:
```
int32_t ret;
char *funcName;
/* PIN获取管脚功能 */
ret = PinGetFunc(handle,&funcName);
if (ret != HDF_SUCCESS) {
HDF_LOGE("PinGetFunc: failed, ret %d\n", ret);
return ret;
}
```
#### 释放PIN管脚描述句柄
PIN不再进行任何操作后,需要释放PIN管脚描述管脚句柄,函数如下所示:
```
void PinPut(DevHandle handle);
```
**表 9** PinPut参数和返回值描述
<a name="table9"></a>
| 参数 | 参数描述 |
| ---------- | -------------- |
| handle | 管脚描述句柄 |
| **返回值** | **返回值描述** |
| NA | 无返回值 |
PIN销毁管脚描述句柄实例如下:
```
PinPut(handle);
```
## 使用实例<a name="section10"></a>
使用PIN设置管脚相关属性完整使用可以参考如下示例代码,示例代码步骤主要如下:
1. 传入要设置的管脚名,获取PIN管脚描述句柄。
2. 通过PIN管脚描述句柄以及推拉方式pullTypeNum设置管脚推拉方式,如果操作失败则释放PIN管脚描述句柄。
3. 通过PIN管脚描述句柄,并用pullTypeNum承接获取的管脚推拉方式,如果操作失败则释放PIN管脚描述句柄。
4. 通过PIN管脚描述句柄以及推拉强度strengthNum设置管脚推拉强度,如果操作失败则释放PIN管脚描述句柄。
5. 通过PIN管脚描述句柄,并用strengthNum承接获取的管脚推拉强度,如果操作失败则释放PIN管脚描述句柄。
5. 通过PIN管脚描述句柄以及管脚功能名funName设置管脚功能,如果操作失败则释放PIN管脚描述句柄。
6. 通过PIN管脚描述句柄,并用funName承接获取的管脚功能名,如果操作失败则释放PIN管脚描述句柄。
7. 使用完PIN后,不再对管脚进行操作,释放PIN管脚描述句柄。
```
#include "hdf_log.h" /* 标准日志打印头文件 */
#include "pin_if.h" /* PIN标准接口头文件 */
int32_t PinTestSample(void)
{
int32_t ret;
uint32_t strengthNum;
enum PinPullType pullTypeNum;
char pinName;
char *funName;
DevHandle handle = NULL;
/* PIN管脚名,要填写实际要设置的管脚名 */
pinName = "P18";
/* PIN获取管脚描述句柄 */
handle = PinGet(pinName);
if (handle == NULL) {
HDF_LOGE("PinGet: failed!\n");
return;
}
/* PIN设置管脚推拉方式为上拉 */
pullTypeNum = 1;
ret = PinSetPull(handle, pullTypeNum);
if (ret != HDF_SUCCESS) {
HDF_LOGE("PinSetPull: failed, ret %d\n", ret);
goto ERR;
}
/* PIN获取管脚推拉方式 */
ret = PinGetPull(handle, &pullTypeNum);
if (ret != HDF_SUCCESS) {
HDF_LOGE("PinGetPull: failed, ret %d\n", ret);
goto ERR;
}
/* PIN设置管脚推拉强度为2 */
strengthNum = 2;
ret = PinSetStrength(handle, strengthNum);
if (ret != HDF_SUCCESS) {
HDF_LOGE("PinSetStrength: failed, ret %d\n", ret);
goto ERR;
}
/* PIN获取管脚推拉强度 */
ret = PinGetStrength(handle, &strengthNum);
if (ret != HDF_SUCCESS) {
HDF_LOGE("PinGetStrength: failed, ret %d\n", ret);
goto ERR;
}
/* PIN设置管脚功能为LSADC_CH1 */
funName = "LSADC_CH1";
ret = PinSetFunc(handle, funName);
if (ret != HDF_SUCCESS) {
HDF_LOGE("PinSetFunc: failed, ret %d\n", ret);
goto ERR;
}
/* PIN获取管脚功能 */
ret = PinGetFunc(handle, &funcName);
if (ret != HDF_SUCCESS) {
HDF_LOGE("PinGetFunc: failed, ret %d\n", ret);
goto ERR;
}
ERR:
/* 释放PIN管脚描述句柄 */
PinPut(handle);
return ret;
}
# PIN<a name="title_PinDevelop"></a>
- [概述](#section1_PinDevelop)
- [接口说明](#section2_PinDevelop)
- [开发步骤](#section3_PinDevelop)
- [开发实例](#section4_PinDevelop)
- [功能简介](#section2_PinDevelop)
- [基本概念](#section3_PinDevelop)
- [运作机制](#section4_PinDevelop)
- [约束与限制](#section5_PinDevelop)
- [使用指导](#section6_PinDevelop)
- [场景介绍](#section7_PinDevelop)
- [接口说明](#section8_PinDevelop)
- [开发步骤](#section9_PinDevelop)
## 概述 <a name="section1_PinDevelop"></a>
PIN模块用于控制系统中管脚的状态和功能特性。在HDF框架中,PIN的接口适配模式采用无服务模式,用于不需要在用户态提供API的设备类型,或者没有用户态和内核区分的OS系统,其关联方式是DevHandle直接指向设备对象内核态地址(DevHandle是一个void类型指针)。
### 功能简介<a name="section2_PinDevelop"></a>
PIN即管脚控制器,用于统一管理各SoC厂商管脚资源,对外提供管脚复用功能。
图 1 无服务模式结构图
### 基本概念<a name="section3_PinDevelop"></a>
PIN是一个软件层面的概念,目的是为了统一各SoC厂商PIN管脚管理,对外提供管脚复用功能,配置PIN管脚的电气特性。
- SoC(System on Chip)
系统级芯片,也有称作片上系统,通常是面向特定用途将微处理器、模拟IP核、数字IP核和存储器集成在单一芯片的标准产品。
- 管脚复用
由于芯片自身的引脚数量有限,无法满足日益增多的外接需求。此时可以通过软件层面的寄存器设置,让引脚工作在不同的状态,从而实现相同引脚完成不同功能的目的。
### 运作机制<a name="section4_PinDevelop"></a>
在HDF框架中,PIN模块暂不支持用户态,所以不需要发布服务,接口适配模式采用无服务模式(如图1所示),用于不需要在用户态提供API的设备类型,或者没有用户态和内核区分的OS系统,其关联方式是DevHandle直接指向设备对象内核态地址(DevHandle是一个void类型指针)。
PIN模块各分层作用:接口层提供获取PIN管脚、设置PIN管脚推拉方式、获取PIN管脚推拉方式、设置PIN管脚推拉强度、获取PIN管脚推拉强度、设置PIN管脚功能、获取PIN管脚功能、释放PIN管脚的接口。核心层主要提供PIN管脚资源匹配,PIN管脚控制器的添加、移除以及管理的能力,通过钩子函数与适配层交互。适配层主要是将钩子函数的功能实例化,实现具体的功能。
**图 1** 无服务模式结构图
![image1](figures/无服务模式结构图.png)
## 接口说明<a name="section2_PinDevelop"></a>
### 约束与限制<a name="section5_PinDevelop"></a>
PIN模块目前仅支持轻量和小型系统内核(LiteOS)。
## 开发指导<a name="section6_PinDevelop"></a>
### 场景介绍<a name="section7_PinDevelop"></a>
PIN模块主要用于管脚资源管理。在各SoC厂商对接HDF框架时,需要来适配PIN驱动。
### 接口说明<a name="section8_PinDevelop"></a>
通过以下PinCntlrMethod中的函数调用PIN驱动对应的函数。
PinCntlrMethod定义:
```c
......@@ -29,51 +64,31 @@ struct PinCntlrMethod {
**表 1** PinCntlrMethod成员的回调函数功能说明
| 成员函数 | 入参 | 返回值 | 功能 |
| ------------ | ------------------------------------------- | ------ | ---- |
| SetPinPull | **cntlr**:结构体指针,核心层Pin控制器;<br>**index**:uint32_t变量,管脚索引号;<br/>**pullType**:枚举常量,Pin管脚推拉方式; |HDF_STATUS相关状态|设置Pin管脚推拉方式|
| GetPinPull | **cntlr**:结构体指针,核心层Pin控制器;<br/>**index**:uint32_t变量,管脚索引号;<br/>**pullType**:枚举常量指针,传出Pin管脚推拉方式; | HDF_STATUS相关状态 | 获取Pin管脚推拉方式 |
| SetPinStrength | **cntlr**:结构体指针,核心层Pin控制器;<br/>**index**:uint32_t变量,管脚索引号;<br/>**strength**:uint32_t变量,Pin推拉强度; | HDF_STATUS相关状态 | 设置Pin推拉强度 |
| GetPinStrength | **cntlr**:结构体指针,核心层Pin控制器;<br/>**index**:uint32_t变量,管脚索引号;<br/>**strength**:uint32_t变量指针,传出Pin推拉强度; | HDF_STATUS相关状态 | 获取Pin推拉强度 |
| SetPinFunc | **cntlr**:结构体指针,核心层Pin控制器;<br/>**index**:uint32_t变量,管脚索引号;<br/>**funcName**:char指针常量,传入Pin管脚功能; | HDF_STATUS相关状态 | 设置Pin管脚功能 |
| GetPinFunc | **cntlr**:结构体指针,核心层Pin控制器;<br/>**index**:uint32_t变量,管脚索引号;<br/>**funcName**:char双重指针常量,传出Pin管脚功能; | HDF_STATUS相关状态 | 获取Pin管脚功能 |
| 成员函数 | 入参 | 出参 | 返回值 | 功能 |
| ------------ | ------------------------------------------- | ------ | ---- | ---- |
| SetPinPull | **cntlr**:结构体指针,核心层Pin控制器;<br>**index**:uint32_t变量,管脚索引号;<br/>**pullType**:枚举常量,Pin管脚推拉方式; | 无 |HDF_STATUS相关状态|PIN设置管脚推拉方式|
| GetPinPull | **cntlr**:结构体指针,核心层Pin控制器;<br/>**index**:uint32_t变量,管脚索引号; | **pullType**:枚举常量指针,传出Pin管脚推拉方式; | HDF_STATUS相关状态 | PIN获取管脚推拉方式 |
| SetPinStrength | **cntlr**:结构体指针,核心层Pin控制器;<br/>**index**:uint32_t变量,管脚索引号;<br/>**strength**:uint32_t变量,Pin推拉强度; | 无 | HDF_STATUS相关状态 | PIN设置推拉强度 |
| GetPinStrength | **cntlr**:结构体指针,核心层Pin控制器;<br/>**index**:uint32_t变量,管脚索引号; | **strength**:uint32_t变量指针,传出Pin推拉强度; | HDF_STATUS相关状态 | PIN获取推拉强度 |
| SetPinFunc | **cntlr**:结构体指针,核心层Pin控制器;<br/>**index**:uint32_t变量,管脚索引号;<br/>**funcName**:char指针常量,传入Pin管脚功能; | 无 | HDF_STATUS相关状态 | PIN设置管脚功能 |
| GetPinFunc | **cntlr**:结构体指针,核心层Pin控制器;<br/>**index**:uint32_t变量,管脚索引号; | **funcName**:char双重指针常量,传出Pin管脚功能; | HDF_STATUS相关状态 | PIN获取管脚功能 |
## 开发步骤 <a name="section3_PinDevelop"></a>
### 开发步骤 <a name="section9_PinDevelop"></a>
PIN模块适配的三个环节是实例化驱动入口、配置属性文件、以及实例化核心层接口函数。
PIN模块适配包含以下四个步骤:
- 实例化驱动入口。
- 配置属性文件。
- 实例化核心层接口函数。
- 驱动调试。
1. **实例化驱动入口:**
- 实例化HdfDriverEntry结构体成员。
- 调用HDF_INIT将HdfDriverEntry实例化对象注册到HDF框架中。
2. **配置属性文件:**
- 在device_info.hcs文件中添加deviceNode描述。
- 【可选】添加pin_config.hcs器件属性文件。
3. **实例化PIN控制器对象:**
- 初始化PinCntlr成员。
- 实例化PinCntlr成员PinCntlrMethod。
>![](../public_sys-resources/icon-note.gif) **说明:**
>实例化PinCntlr成员PinCntlrMethod,其定义和成员说明见[接口说明](#section2_PINDevelop)。
4. **驱动调试:**
- 【可选】针对新增驱动程序,建议验证驱动基本功能,例如挂载后的信息反馈,数据传输的成功与否等。
驱动开发首先需要实例化驱动入口,驱动入口必须为HdfDriverEntry(在 hdf_device_desc.h 中定义)类型的全局变量,且moduleName要和device_info.hcs中保持一致。
## 开发实例 <a name="section4_PinDevelop"></a>
下方将以pin_hi35xx.c为示例,展示需要厂商提供哪些内容来完整实现设备功能。
1. 驱动开发首先需要实例化驱动入口,驱动入口必须为HdfDriverEntry(在 hdf\_device\_desc.h 中定义)类型的全局变量,且moduleName要和device\_info.hcs中保持一致。HDF框架会将所有加载的驱动的HdfDriverEntry对象首地址汇总,形成一个类似数组的段地址空间,方便上层调用。
一般在加载驱动时HDF会先调用Bind函数,再调用Init函数加载该驱动。当Init调用异常时,HDF框架会调用Release释放驱动资源并退出。
PIN驱动入口参考
- 调用HDF_INIT将HdfDriverEntry实例化对象注册到HDF框架中。
一般在加载驱动时HDF会先调用Init函数加载该驱动。当Init调用异常时,HDF框架会调用Release释放驱动资源并退出。
```c
static struct HdfDriverEntry g_hi35xxPinDriverEntry = {
......@@ -81,19 +96,13 @@ PIN模块适配的三个环节是实例化驱动入口、配置属性文件、
.Bind = Hi35xxPinBind,
.Init = Hi35xxPinInit,
.Release = Hi35xxPinRelease,
.moduleName = "hi35xx_pin_driver",//【必要且与HCS文件中里面的moduleName匹配】
.moduleName = "hi35xx_pin_driver", // 【必要且与HCS文件中里面的moduleName匹配】
};
//调用HDF_INIT将驱动入口注册到HDF框架中
HDF_INIT(g_hi35xxPinDriverEntry);
HDF_INIT(g_hi35xxPinDriverEntry); // 调用HDF_INIT将驱动入口注册到HDF框架中
```
2. 完成驱动入口注册之后,下一步请在device\_info.hcs文件中添加deviceNode信息,并在pin\_config.hcs中配置器件属性。deviceNode信息与驱动入口注册相关,器件属性值与核心层PinCntlr成员的默认值或限制范围有密切关系。
>![](../public_sys-resources/icon-note.gif) **说明:**
>如有更多个器件信息,则需要在device\_info文件增加deviceNode信息,以及在pin\_config文件中增加对应的器件属性。
- device\_info.hcs 配置参考。
2. **配置属性文件:**
- 在vendor/hisilicon/hispark_taurus/hdf_config/device_info/device_info.hcs文件中添加deviceNode描述。
```c
root {
device_info {
......@@ -101,197 +110,276 @@ PIN模块适配的三个环节是实例化驱动入口、配置属性文件、
hostName = "platform_host";
priority = 50;
device_pin :: device {
device0 :: deviceNode { //为每一个Pin控制器配置一个HDF设备节点,存在多个时须添加,否则不用
policy = 0; //2:用户态可见,1:内核态可见,0:不需要发布服务
device0 :: deviceNode { // 为每一个Pin控制器配置一个HDF设备节点,存在多个时须添加,否则不用
policy = 0; // 2:用户态可见,1:内核态可见,0:不需要发布服务
priority = 10; // 驱动启动优先级
permission = 0644; // 驱动创建设备节点权限
/*【必要】用于指定驱动名称,需要与期望的驱动Entry中的moduleName一致;*/
moduleName = "hi35xx_Pin_driver";
/*【必要】用于配置控制器私有数据,要与Pin_config.hcs中对应控制器保持一致,具体的控制器信息在Pin_config.hcs 中*/
deviceMatchAttr = "hisilicon_hi35xx_Pin_0";
/* 【必要】用于指定驱动名称,需要与期望的驱动Entry中的moduleName一致 */
moduleName = "hi35xx_pin_driver";
/* 【必要】用于配置控制器私有数据,要与pin_config.hcs中对应控制器保持一致,具体的控制器信息在pin_config.hcs中 */
deviceMatchAttr = "hisilicon_hi35xx_pin_0";
}
device1 :: deviceNode {
policy = 0;
priority = 10;
permission = 0644;
moduleName = "hi35xx_Pin_driver";
deviceMatchAttr = "hisilicon_hi35xx_Pin_1";
moduleName = "hi35xx_pin_driver";
deviceMatchAttr = "hisilicon_hi35xx_pin_1";
}
...
......
}
}
}
}
```
- Pin\_config.hcs 配置参考。
- 添加pin_config.hcs器件属性文件。
在device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/pin/pin_config.hcs目录下配置器件属性 ,其中配置参数如下:
```c
root {
platform {
Pin_config_hi35xx {
template Pin_controller { //【必要】模板配置,继承该模板的节点如果使用模板中的默认值,则节点字段可以缺省
number = 0; //【必要】controller 编号
regStartBasePhy = 0; //【必要】寄存器物理基地址起始地址
regSize = 0; //【必要】寄存器位宽
PinCount = 0; //【必要】管脚数量
pin_config_hi35xx {
template pin_controller { // 【必要】模板配置,继承该模板的节点如果使用模板中的默认值,则节点字段可以缺省
number = 0; // 【必要】controller编号
regStartBasePhy = 0; // 【必要】寄存器物理基地址起始地址
regSize = 0; // 【必要】寄存器位宽
pinCount = 0; // 【必要】管脚数量
match_attr = "";
template Pin_desc {
PinName = ""; //【必要】管脚名称
init = 0; //【必要】寄存器默认值
F0 = ""; //【必要】功能0
F1 = ""; //功能1
F2 = ""; //功能2
F3 = ""; //功能3
F4 = ""; //功能4
F5 = ""; //功能5
}
}
controller_0 :: Pin_controller {
template pin_desc {
pinName = ""; // 【必要】管脚名称
init = 0; // 【必要】寄存器默认值
F0 = ""; // 【必要】功能0
F1 = ""; // 功能1
F2 = ""; // 功能2
F3 = ""; // 功能3
F4 = ""; // 功能4
F5 = ""; // 功能5
}
}
controller_0 :: pin_controller {
number = 0;
regStartBasePhy = 0x10FF0000;
regSize = 0x48;
PinCount = 18;
match_attr = "hisilicon_hi35xx_Pin_0";
T1 :: Pin_desc {
PinName = "T1";
pinCount = 18;
match_attr = "hisilicon_hi35xx_pin_0";
T1 :: pin_desc {
pinName = "T1";
init = 0x0600;
F0 = "EMMC_CLK";
F1 = "SFC_CLK";
F2 = "SFC_BOOT_MODE";
}
...
...... // 对应管脚控制器下的每个管脚,按实际添加
}
...//每个Pin控制器对应一个controller节点,如存在多个Pin控制器,请依次添加对应的controller节点。
......//每个管脚控制器对应一个controller节点,如存在多个Pin控制器,请依次添加对应的controller节点。
}
}
}
```
3. 完成驱动入口注册之后,最后一步就是对核心层PinCntlr对象的初始化,包括厂商自定义结构体(传递参数和数据),实例化PinCntlr成员PinCntlrMethod(让用户可以通过接口来调用驱动底层函数),实现HdfDriverEntry成员函数(Bind,Init,Release)。
3. **实例化PIN控制器对象:**
- 初始化PinCntlr成员。
在Hi35xxPinCntlrInit函数中对PinCntlr成员进行初始化操作。
- 自定义结构体参考。
```c
struct Hi35xxPinDesc {
// 管脚名
const char *pinName;
// 初始化值
uint32_t init;
// 管脚索引
uint32_t index;
// 管脚推拉方式
int32_t pullType;
// 管脚推拉强度
int32_t strength;
// 管脚功能名字符串数组
const char *func[HI35XX_PIN_FUNC_MAX];
};
从驱动的角度看,PinCntlr结构体是参数和数据的载体,HDF框架通过DeviceResourceIface将pin\_config.hcs文件中的数值读入其中。
struct Hi35xxPinCntlr {
// 管脚控制器
struct PinCntlr cntlr;
// 管脚描述结构体指针
struct Hi35xxPinDesc *desc;
// 寄存器映射地址
volatile unsigned char *regBase;
// 管脚控制器编号
uint16_t number;
// 寄存器物理基地址起始地址
uint32_t regStartBasePhy;
// 寄存器位宽
uint32_t regSize;
// 管脚数量
uint32_t pinCount;
};
```c
// PinCntlr是核心层控制器结构体,其中的成员在Init函数中会被赋值
// PinCntlr是核心层控制器,其中的成员在init函数中会被赋值
struct PinCntlr {
struct IDeviceIoService service;
struct HdfDeviceObject *device;
struct PinCntlrMethod *method;
struct DListHead node;
OsalSPinlock sPin;
uint16_t number;
uint16_t PinCount;
struct PinDesc *Pins;
void *priv;
struct DListHead node; // 链表节点
OsalSpinlock spin; // 自旋锁
uint16_t number; // 管脚控制器编号
uint16_t pinCount; // 管脚数量
struct PinDesc *pins;
void *priv; // 私有数据
};
struct PinDesc {
const char *PinName; //Pin管脚名
void *priv;
};
// PinCntlr管脚控制器初始化
static int32_t Hi35xxPinCntlrInit(struct HdfDeviceObject *device, struct Hi35xxPinCntlr *hi35xx)
{
struct DeviceResourceIface *drsOps = NULL;
int32_t ret;
// 从hcs文件读取管脚控制器相关属性
drsOps = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE);
if (drsOps == NULL || drsOps->GetUint32 == NULL || drsOps->GetUint16 == NULL) {
HDF_LOGE("%s: invalid drs ops fail!", __func__);
return HDF_FAILURE;
}
ret = drsOps->GetUint16(device->property, "number", &hi35xx->number, 0);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read number failed", __func__);
return ret;
}
ret = drsOps->GetUint32(device->property, "regStartBasePhy", &hi35xx->regStartBasePhy, 0);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read regStartBasePhy failed", __func__);
return ret;
}
ret = drsOps->GetUint32(device->property, "regSize", &hi35xx->regSize, 0);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read regSize failed", __func__);
return ret;
}
ret = drsOps->GetUint32(device->property, "pinCount", &hi35xx->pinCount, 0);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read pinCount failed", __func__);
return ret;
}
// 将读取的值赋值给管脚控制器的成员,完成管脚控制器初始化
hi35xx->cntlr.pinCount = hi35xx->pinCount;
hi35xx->cntlr.number = hi35xx->number;
hi35xx->regBase = OsalIoRemap(hi35xx->regStartBasePhy, hi35xx->regSize); // 管脚控制器映射
if (hi35xx->regBase == NULL) {
HDF_LOGE("%s: remap Pin base failed", __func__);
return HDF_ERR_IO;
}
hi35xx->desc = (struct Hi35xxPinDesc *)OsalMemCalloc(sizeof(struct Hi35xxPinDesc) * hi35xx->pinCount);
hi35xx->cntlr.pins = (struct PinDesc *)OsalMemCalloc(sizeof(struct PinDesc) * hi35xx->pinCount);
return HDF_SUCCESS;
}
```
- 实例化PinCntlr成员PinCntlrMethod,其他成员在Init函数中初始化。
- PinCntlr成员回调函数结构体PinCntlrMethod的实例化,其他成员在Init函数中初始化。
```c
// Pin_hi35xx.c 中的示例:钩子函数的填充
// PinCntlrMethod结构体成员都是回调函数,厂商需要根据表1完成相应的函数功能。
static struct PinCntlrMethod g_method = {
.SetPinPull = Hi35xxPinSetPull,
.GetPinPull = Hi35xxPinGetPull,
.SetPinStrength = Hi35xxPinSetStrength,
.GetPinStrength = Hi35xxPinGetStrength,
.SetPinFunc = Hi35xxPinSetFunc,
.GetPinFunc = Hi35xxPinGetFunc,
.SetPinPull = Hi35xxPinSetPull, // 设置推拉方式
.GetPinPull = Hi35xxPinGetPull, // 获取推拉方式
.SetPinStrength = Hi35xxPinSetStrength, // 设置推拉强度
.GetPinStrength = Hi35xxPinGetStrength, // 获取推拉强度
.SetPinFunc = Hi35xxPinSetFunc, // 设置管脚功能
.GetPinFunc = Hi35xxPinGetFunc, // 获取管脚功能
};
```
- Init函数参考
- Init函数
入参:
HdfDeviceObject 是整个驱动对外暴露的接口参数,具备 HCS 配置文件的信息。
HdfDeviceObject这个是整个驱动对外暴露的接口参数,具备HCS配置文件的信息。
返回值:
HDF\_STATUS相关状态 (下表为部分展示,如需使用其他状态,可见/drivers/framework/include/utils/hdf\_base.h中HDF\_STATUS 定义)。
**表 2** HDF\_STATUS相关状态
<table><thead align="left"><tr id="row31521027164144"><th class="cellrowborder" valign="top" width="50%" id="mcps1.1.3.1.1"><p id="entry1990732428164144p0"><a name="entry1990732428164144p0"></a><a name="entry1990732428164144p0"></a>状态(值)</p>
</th>
<th class="cellrowborder" valign="top" width="50%" id="mcps1.1.3.1.2"><p id="entry2123581292164144p0"><a name="entry2123581292164144p0"></a><a name="entry2123581292164144p0"></a>问题描述</p>
</th>
</tr>
</thead>
<tbody><tr id="row1749271383164144"><td class="cellrowborder" valign="top" width="50%" headers="mcps1.1.3.1.1 "><p id="entry202330388164144p0"><a name="entry202330388164144p0"></a><a name="entry202330388164144p0"></a>HDF_ERR_INVALID_OBJECT</p>
</td>
<td class="cellrowborder" valign="top" width="50%" headers="mcps1.1.3.1.2 "><p id="entry1717598064164144p0"><a name="entry1717598064164144p0"></a><a name="entry1717598064164144p0"></a>控制器对象非法</p>
</td>
</tr>
<tr id="row1715354988164144"><td class="cellrowborder" valign="top" width="50%" headers="mcps1.1.3.1.1 "><p id="entry450625221164144p0"><a name="entry450625221164144p0"></a><a name="entry450625221164144p0"></a>HDF_ERR_MALLOC_FAIL</p>
</td>
<td class="cellrowborder" valign="top" width="50%" headers="mcps1.1.3.1.2 "><p id="entry361497788164144p0"><a name="entry361497788164144p0"></a><a name="entry361497788164144p0"></a>内存分配失败</p>
</td>
</tr>
<tr id="row1202091366164144"><td class="cellrowborder" valign="top" width="50%" headers="mcps1.1.3.1.1 "><p id="entry370837906164144p0"><a name="entry370837906164144p0"></a><a name="entry370837906164144p0"></a>HDF_ERR_INVALID_PARAM</p>
</td>
<td class="cellrowborder" valign="top" width="50%" headers="mcps1.1.3.1.2 "><p id="entry353311523164144p0"><a name="entry353311523164144p0"></a><a name="entry353311523164144p0"></a>参数非法</p>
</td>
</tr>
<tr id="row602018308164144"><td class="cellrowborder" valign="top" width="50%" headers="mcps1.1.3.1.1 "><p id="entry1984036607164144p0"><a name="entry1984036607164144p0"></a><a name="entry1984036607164144p0"></a>HDF_ERR_IO</p>
</td>
<td class="cellrowborder" valign="top" width="50%" headers="mcps1.1.3.1.2 "><p id="entry1221756048164144p0"><a name="entry1221756048164144p0"></a><a name="entry1221756048164144p0"></a>I/O 错误</p>
</td>
</tr>
<tr id="row47997479164144"><td class="cellrowborder" valign="top" width="50%" headers="mcps1.1.3.1.1 "><p id="entry1220816374164144p0"><a name="entry1220816374164144p0"></a><a name="entry1220816374164144p0"></a>HDF_SUCCESS</p>
</td>
<td class="cellrowborder" valign="top" width="50%" headers="mcps1.1.3.1.2 "><p id="entry1903499126164144p0"><a name="entry1903499126164144p0"></a><a name="entry1903499126164144p0"></a>初始化成功</p>
</td>
</tr>
<tr id="row2031856197164144"><td class="cellrowborder" valign="top" width="50%" headers="mcps1.1.3.1.1 "><p id="entry463793674164144p0"><a name="entry463793674164144p0"></a><a name="entry463793674164144p0"></a>HDF_FAILURE</p>
</td>
<td class="cellrowborder" valign="top" width="50%" headers="mcps1.1.3.1.2 "><p id="entry516362874164144p0"><a name="entry516362874164144p0"></a><a name="entry516362874164144p0"></a>初始化失败</p>
</td>
</tr>
</tbody>
</table>
| **状态(值)** | **问题描述** |
| ---------------------- | -------------- |
| HDF_ERR_INVALID_OBJECT | 控制器对象非法 |
| HDF_ERR_MALLOC_FAIL | 内存分配失败 |
| HDF_ERR_INVALID_PARAM | 参数非法 |
| HDF_ERR_IO | I/O 错误 |
| HDF_SUCCESS | 初始化成功 |
| HDF_FAILURE | 初始化失败 |
函数说明:
初始化自定义结构体和PinCntlr成员,并通过调用核心层PinCntlrAdd函数挂载Pin控制器。
初始化自定义结构体对象和PinCntlr成员,并通过调用核心层PinCntlrAdd函数挂载Pin控制器。
```c
static int32_t Hi35xxPinInit(struct HdfDeviceObject *device)
static int32_t Hi35xxPinReadFunc(struct Hi35xxPinDesc *desc, const struct DeviceResourceNode *node, struct DeviceResourceIface *drsOps)
{
...
struct Hi35xxPinCntlr *hi35xx = NULL;
...
ret = Hi35xxPinCntlrInit(device, hi35xx); //读取hcs文件信息
...
DEV_RES_NODE_FOR_EACH_CHILD_NODE(device->property, childNode) {
ret = Hi35xxPinParsePinNode(childNode, hi35xx, index); //【必要】实现如下
...
int32_t ret;
uint32_t funcNum = 0;
// 从hcs中读取管脚控制器子节点管脚功能名
ret = drsOps->GetString(node, "F0", &desc->func[funcNum], "NULL");
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read F0 failed", __func__);
return ret;
}
funcNum++;
ret = drsOps->GetString(node, "F1", &desc->func[funcNum], "NULL");
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read F1 failed", __func__);
return ret;
}
hi35xx->cntlr.method = &g_method; //实例化ops
ret = PinCntlrAdd(&hi35xx->cntlr); //挂载控制器
...
funcNum++;
......
return HDF_SUCCESS;
}
static int32_t Hi35xxPinParsePinNode(const struct DeviceResourceNode *node,
struct Hi35xxPinCntlr *hi35xx,
int32_t index)
static int32_t Hi35xxPinParsePinNode(const struct DeviceResourceNode *node, struct Hi35xxPinCntlr *hi35xx, int32_t index)
{
...
hi35xx->cntlr.Pins[index].PinName = hi35xx->desc[index].PinName; //实例化PinName
hi35xx->cntlr.Pins[index].priv = (void *)node; //实例化节点
...
int32_t ret;
struct DeviceResourceIface *drsOps = NULL;
// 从hcs中读取管脚控制器子节点管脚相关属性
drsOps = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE);
if (drsOps == NULL || drsOps->GetUint32 == NULL || drsOps->GetString == NULL) {
HDF_LOGE("%s: invalid drs ops fail!", __func__);
return HDF_FAILURE;
}
ret = drsOps->GetString(node, "pinName", &hi35xx->desc[index].pinName, "NULL");
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read pinName failed", __func__);
return ret;
}
......
ret = Hi35xxPinReadFunc(&hi35xx->desc[index], node, drsOps);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s:Pin read Func failed", __func__);
return ret;
}
hi35xx->cntlr.pins[index].pinName = hi35xx->desc[index].pinName;
hi35xx->cntlr.pins[index].priv = (void *)node;
......
return HDF_SUCCESS;
}
static int32_t Hi35xxPinInit(struct HdfDeviceObject *device)
{
......
struct Hi35xxPinCntlr *hi35xx = NULL;
......
ret = Hi35xxPinCntlrInit(device, hi35xx); // 管脚控制器初始化
......
DEV_RES_NODE_FOR_EACH_CHILD_NODE(device->property, childNode) { // 遍历管脚控制器的每个子节点
ret = Hi35xxPinParsePinNode(childNode, hi35xx, index); // 解析子节点
......
}
hi35xx->cntlr.method = &g_method; // 实例化method
ret = PinCntlrAdd(&hi35xx->cntlr); // 挂载控制器
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: add Pin cntlr: failed", __func__);
ret = HDF_FAILURE;
}
return HDF_SUCCESS;
}
```
- Release 函数参考
- Release 函数
入参:
......@@ -308,9 +396,38 @@ PIN模块适配的三个环节是实例化驱动入口、配置属性文件、
```c
static void Hi35xxPinRelease(struct HdfDeviceObject *device)
{
int32_t ret;
uint16_t number;
struct PinCntlr *cntlr = NULL;
...
PinCntlrRemove(cntlr);//【必要】调用核心层函数,释放PinCntlr的设备和服务
...
struct Hi35xxPinCntlr *hi35xx = NULL;
struct DeviceResourceIface *drsOps = NULL;
if (device == NULL || device->property == NULL) {
HDF_LOGE("%s: device or property is null", __func__);
return;
}
// 从hcs文件中读取管脚控制器编号
drsOps = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE);
if (drsOps == NULL || drsOps->GetUint32 == NULL || drsOps->GetString == NULL) {
HDF_LOGE("%s: invalid drs ops", __func__);
return;
}
ret = drsOps->GetUint16(device->property, "number", &number, 0);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read cntlr number failed", __func__);
return;
}
cntlr = PinCntlrGetByNumber(number); // 通过管脚控制器编号获取管脚控制器
PinCntlrRemove(cntlr);
hi35xx = (struct Hi35xxPinCntlr *)cntlr;
if (hi35xx != NULL) {
if (hi35xx->regBase != NULL) {
OsalIoUnmap((void *)hi35xx->regBase);
}
OsalMemFree(hi35xx);
}
}
```
4. **驱动调试:**
【可选】针对新增驱动程序,建议验证驱动基本功能,例如挂载后的信息反馈,数据传输的成功与否等。
\ No newline at end of file
......@@ -14,6 +14,8 @@
- **[MIPI-DSI](driver-platform-mipidsi-des.md)**
- **[PIN](driver-platform-pin-des.md)**
- **[PWM](driver-platform-pwm-des.md)**
- **[RTC](driver-platform-rtc-des.md)**
......
zh-cn/device-dev/driver/figures/无服务模式结构图.png

83.7 KB | W: | H:

zh-cn/device-dev/driver/figures/无服务模式结构图.png

34.3 KB | W: | H:

zh-cn/device-dev/driver/figures/无服务模式结构图.png
zh-cn/device-dev/driver/figures/无服务模式结构图.png
zh-cn/device-dev/driver/figures/无服务模式结构图.png
zh-cn/device-dev/driver/figures/无服务模式结构图.png
  • 2-up
  • Swipe
  • Onion skin
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册