mindspore-lite-guidelines.md 9.3 KB
Newer Older
S
shawn_he 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
# Using MindSpore Lite for Model Inference

## When to Use

MindSpore Lite is an AI engine that provides AI model inference for different hardware devices. It has been used in a wide range of fields, such as image classification, target recognition, facial recognition, and character recognition.

This document describes the general development process for MindSpore Lite model inference.

## Basic Concepts

Before getting started, you need to understand the following basic concepts:

**Tensor**: a special data structure that is similar to arrays and matrices. It is basic data structure used in MindSpore Lite network operations.

**Float16 inference**: a mode in which Float16 is used for inference. Float16, also called half-precision, uses 16 bits to represent a number. 



## Available APIs
APIs involved in MindSpore Lite model inference are categorized into context APIs, model APIs, and tensor APIs.
### Context APIs

| API       | Description       |
| ------------------ | ----------------- |
|OH_AI_ContextHandle OH_AI_ContextCreate()|Creates a context object.|
|void OH_AI_ContextSetThreadNum(OH_AI_ContextHandle context, int32_t thread_num)|Sets the number of runtime threads.|
| void OH_AI_ContextSetThreadAffinityMode(OH_AI_ContextHandle context, int mode)|Sets the affinity mode for binding runtime threads to CPU cores, which are categorized into little cores and big cores depending on the CPU frequency.|
|OH_AI_DeviceInfoHandle OH_AI_DeviceInfoCreate(OH_AI_DeviceType device_type)|Creates a runtime device information object.|
|void OH_AI_ContextDestroy(OH_AI_ContextHandle *context)|Destroys a context object.|
|void OH_AI_DeviceInfoSetEnableFP16(OH_AI_DeviceInfoHandle device_info, bool is_fp16)|Sets whether to enable float16 inference. This function is available only for CPU and GPU devices.|
|void OH_AI_ContextAddDeviceInfo(OH_AI_ContextHandle context, OH_AI_DeviceInfoHandle device_info)|Adds a runtime device information object.|

### Model APIs

| API       | Description       |
| ------------------ | ----------------- |
|OH_AI_ModelHandle OH_AI_ModelCreate()|Creates a model object.|
|OH_AI_Status OH_AI_ModelBuildFromFile(OH_AI_ModelHandle model, const char *model_path,OH_AI_ModelType odel_type, const OH_AI_ContextHandle model_context)|Loads and builds a MindSpore model from a model file.|
|void OH_AI_ModelDestroy(OH_AI_ModelHandle *model)|Destroys a model object.|

### Tensor APIs

| API       | Description       |
| ------------------ | ----------------- |
|OH_AI_TensorHandleArray OH_AI_ModelGetInputs(const OH_AI_ModelHandle model)|Obtains the input tensor array structure of a model.|
|int64_t OH_AI_TensorGetElementNum(const OH_AI_TensorHandle tensor)|Obtains the number of tensor elements.|
|const char *OH_AI_TensorGetName(const OH_AI_TensorHandle tensor)|Obtains the name of a tensor.|
|OH_AI_DataType OH_AI_TensorGetDataType(const OH_AI_TensorHandle tensor)|Obtains the tensor data type.|
|void *OH_AI_TensorGetMutableData(const OH_AI_TensorHandle tensor)|Obtains the pointer to variable tensor data.|

## How to Develop
The following figure shows the development process for MindSpore Lite model inference.

**Figure 1** Development process for MindSpore Lite model inference
![how-to-use-mindspore-lite](figures/01.png)

The development process consists of the following main steps:

1. Prepare the required model.

    The required model can be downloaded directly or obtained using the model conversion tool.
  
     - If the downloaded model is in the `.ms` format, you can use it directly for inference. The following uses the **mobilenetv2.ms** model as an example.
     - If the downloaded model uses a third-party framework, such as TensorFlow, TensorFlow Lite, Caffe, or ONNX, you can use the [model conversion tool](https://www.mindspore.cn/lite/docs/en/r1.5/use/benchmark_tool.html) to convert it to the `.ms` format.

2. Create a context, and set parameters such as the number of runtime threads and device type.
  
    ```c
    // Create a context, and set the number of runtime threads to 2 and the thread affinity mode to 1 (big cores first).
    OH_AI_ContextHandle context = OH_AI_ContextCreate();
    if (context == NULL) {
      printf("OH_AI_ContextCreate failed.\n");
      return OH_AI_STATUS_LITE_ERROR;
    }
    const int thread_num = 2;
    OH_AI_ContextSetThreadNum(context, thread_num);
    OH_AI_ContextSetThreadAffinityMode(context, 1);
    // Set the device type to CPU, and disable Float16 inference.
    OH_AI_DeviceInfoHandle cpu_device_info = OH_AI_DeviceInfoCreate(OH_AI_DEVICETYPE_CPU);
    if (cpu_device_info == NULL) {
      printf("OH_AI_DeviceInfoCreate failed.\n");
      OH_AI_ContextDestroy(&context);
      return OH_AI_STATUS_LITE_ERROR;
    }
    OH_AI_DeviceInfoSetEnableFP16(cpu_device_info, false);
    OH_AI_ContextAddDeviceInfo(context, cpu_device_info);
    ```

3. Create, load, and build the model.

    Call **OH_AI_ModelBuildFromFile** to load and build the model.

    In this example, the **argv[1]** parameter passed to **OH_AI_ModelBuildFromFile** indicates the specified model file path.

    ```c
    // Create a model.
    OH_AI_ModelHandle model = OH_AI_ModelCreate();
    if (model == NULL) {
      printf("OH_AI_ModelCreate failed.\n");
      OH_AI_ContextDestroy(&context);
      return OH_AI_STATUS_LITE_ERROR;
    }

    // Load and build the model. The model type is OH_AI_ModelTypeMindIR.
    int ret = OH_AI_ModelBuildFromFile(model, argv[1], OH_AI_ModelTypeMindIR, context);
    if (ret != OH_AI_STATUS_SUCCESS) {
      printf("OH_AI_ModelBuildFromFile failed, ret: %d.\n", ret);
      OH_AI_ModelDestroy(&model);
      return ret;
    }
    ```

4. Input data.
 
    Before executing model inference, you need to populate data to the input tensor. In this example, random data is used to populate the model.

    ```c
    // Obtain the input tensor.
    OH_AI_TensorHandleArray inputs = OH_AI_ModelGetInputs(model);
    if (inputs.handle_list == NULL) {
      printf("OH_AI_ModelGetInputs failed, ret: %d.\n", ret);
      OH_AI_ModelDestroy(&model);
      return ret;
    }
    // Use random data to populate the tensor.
    ret = GenerateInputDataWithRandom(inputs);
    if (ret != OH_AI_STATUS_SUCCESS) {
      printf("GenerateInputDataWithRandom failed, ret: %d.\n", ret);
      OH_AI_ModelDestroy(&model);
      return ret;
    }
   ```

5. Execute model inference.

    Call **OH_AI_ModelPredict** to perform model inference.

    ```c
    // Execute model inference.
    OH_AI_TensorHandleArray outputs;
    ret = OH_AI_ModelPredict(model, inputs, &outputs, NULL, NULL);
    if (ret != OH_AI_STATUS_SUCCESS) {
      printf("OH_AI_ModelPredict failed, ret: %d.\n", ret);
      OH_AI_ModelDestroy(&model);
      return ret;
    }
    ```

6. Obtain the output.

    After model inference is complete, you can obtain the inference result through the output tensor.

    ```c
    // Obtain the output tensor and print the information.
    for (size_t i = 0; i < outputs.handle_num; ++i) {
      OH_AI_TensorHandle tensor = outputs.handle_list[i];
      int64_t element_num = OH_AI_TensorGetElementNum(tensor);
      printf("Tensor name: %s, tensor size is %zu ,elements num: %lld.\n", OH_AI_TensorGetName(tensor),
            OH_AI_TensorGetDataSize(tensor), element_num);
      const float *data = (const float *)OH_AI_TensorGetData(tensor);
      printf("output data is:\n");
      const int max_print_num = 50;
      for (int j = 0; j < element_num && j <= max_print_num; ++j) {
        printf("%f ", data[j]);
      }
      printf("\n");
    }
    ```

7. Destroy the model.

    If the MindSpore Lite inference framework is no longer needed, you need to destroy the created model.

    ```c
    // Destroy the model.
    OH_AI_ModelDestroy(&model);
    ```

## Verification

1. Compile **CMakeLists.txt**.

    ```cmake
    cmake_minimum_required(VERSION 3.14)
    project(Demo)

    add_executable(demo main.c)

    target_link_libraries(
            demo
            mindspore-lite.huawei
            pthread
            dl
    )
    ```
   - To use ohos-sdk for cross compilation, you need to set the native toolchain path for the CMake tool as follows: `-DCMAKE_TOOLCHAIN_FILE="/xxx/ohos-sdk/linux/native/build/cmake/ohos.toolchain.cmake"`.
    
   - The toolchain builds a 64-bit application by default. To build a 32-bit application, add the following configuration: `-DOHOS_ARCH="armeabi-v7a"`.

2. Run the CMake tool.

    - Use hdc_std to connect to the RK3568 development board and put **demo** and **mobilenetv2.ms** to the same directory on the board.
    - Run the hdc_std shell command to access the development board, go to the directory where **demo** is located, and run the following command:

    ```shell
    ./demo mobilenetv2.ms
    ```

    The inference is successful if the output is similar to the following:

    ```shell
    # ./QuickStart ./mobilenetv2.ms                                            
    Tensor name: Softmax-65, tensor size is 4004 ,elements num: 1001.
    output data is:
    0.000018 0.000012 0.000026 0.000194 0.000156 0.001501 0.000240 0.000825 0.000016 0.000006 0.000007 0.000004 0.000004 0.000004 0.000015 0.000099 0.000011 0.000013 0.000005 0.000023 0.000004 0.000008 0.000003 0.000003 0.000008 0.000014 0.000012 0.000006 0.000019 0.000006 0.000018 0.000024 0.000010 0.000002 0.000028 0.000372 0.000010 0.000017 0.000008 0.000004 0.000007 0.000010 0.000007 0.000012 0.000005 0.000015 0.000007 0.000040 0.000004 0.000085 0.000023 
    ```