porting-asr582x-combo-demo.md 25.2 KB
Newer Older
E
ester.zhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337


# Combo Solution – ASR Chip Porting Case

The IoT combo solution (Wi-Fi+BLE) is developed based on the OpenHarmony LiteOS-M kernel. This document exemplifies how to port code of the DEV.WIFI.A development board powered by the ASR582X chip.

## Compilation and Porting

### Directory Planning

In the directory structure of this solution, the board vendor code is decoupled from the SoC vendor code.

```
device
├── board                                --- Board vendor directory
│   └── lango                            --- Board vendor: Lango
│       └── dev_wifi_a                   --- Board name: DEV.WIFI.A
└── soc                                  --- SoC vendor directory
    └── asrmicro                         --- SoC vendor: ASR
        └── asr582x                      --- SoC series: ASR582X
```

The planned product demo directory is as follows:

```
vendor
└── asrmicro                             --- Vendor of the product demo.
    ├── wifi_demo                        --- Product demo name.
    └── xts_demo                         --- Product name.
```

### Product Definition

The following uses `vendor/asrmicro/wifi_demo` as an example to describe the kernel, board, and subsystem used by the product. The kernel, board model, and board vendor need to be planned in advance, which are involved in the precompilation instruction (`hb set`). The information entered here corresponds to the planned directory. Example:

```
{
    "product_name": "wifi_demo",          --- Product name.
    "type": "mini",                       --- System type: mini.
    "version": "3.0",                     --- System version: 3.0
    "device_company": "lango",            --- Board vendor: Lango.
    "board": "dev_wifi_a",                --- Board name: dev_wifi_a.
    "kernel_type": "liteos_m",            --- Kernel type: liteos_m.
    "kernel_version": "3.0.0",            --- Kernel version: 3.0.0.
    "subsystems": []                      --- Subsystem.
}
```
**device_company** and **board** are used to associate the **//device/board/<device_company>/<board> directory**.

### Board Configuration

In this example, the `device/board/lango/dev_wifi_a` directory is used. Place the **config.gni** file in the **liteos_m** directory. This configuration file is used to describe the board information, including the CPU, toolchain, kernel, and compile flags. Sample code:

```
# Kernel type
kernel_type = "liteos_m"

# Kernel version
kernel_version = "3.0.0"

# Board CPU Type
board_cpu = "cortex-m4"

# Toolchain. Here, arm-none-eabi is used.
board_toolchain = "arm-none-eabi"

# Toolchain path. You can use the system path by entering "", or a custom path.
board_toolchain_path = rebase_path("//device/soc/asrmicro/gcc/gcc-arm-none-eabi/Linux64/bin")

# Board-specific compilation parameters
board_cflags = []

# Board-specific link parameters
board_ld_flags = []

# Board-specific header file
board_include_dirs = []
```

### Precompiling

After the product directory, product definition, and board settings are correctly configured, run the precompilation command `hb set` in the project root directory. Then you can find the related product in the displayed list.

![ohos_config.json](figures/asr582x_ohos_config.png)

After selecting a product, press **Enter**. The `ohos_config.json` file is automatically generated in the root directory. Information about the product to be compiled is listed here.


## Kernel Porting

### Kconfig Adaptation

During the compilation of `//kernel/liteos_m`, you need to use the `Kconfig` file for indexing in the corresponding board and SoC directory.

`Kconfig` in the board directory, for example, `//device/board/lango`:
```
├── dev_wifi_a                                   --- dev_wifi_a board configuration
│   ├── Kconfig.liteos_m.board                   --- Board configuration options
│   ├── Kconfig.liteos_m.defconfig.board         --- Default configuration of the board
│   └── liteos_m
│       └── config.gni                           --- Board configuration file
├── Kconfig.liteos_m.boards                      --- Boards configuration of the board vendor
└── Kconfig.liteos_m.defconfig.boards            --- Default boards configuration of the board vendor
```

In `dev_wifi_a/Kconfig.liteos_m.board`, **BOARD_DEV_WIFI_A** can be selected only when **SOC_ASR5822S** is selected.

```
config BOARD_DEV_WIFI_A
    bool "select board DEV_WIFI_A"
    depends on SOC_ASR5822S
```

`Kconfig` in the SoC directory, for example, `//device/soc/asrmicro`:

```
├── asr582x                                      --- ASR582X series
│   ├── Kconfig.liteos_m.defconfig.asr5822s      --- Default configuration of the ASR5822S chip
│   ├── Kconfig.liteos_m.defconfig.series        --- Default configuration of the ASR582X series
│   ├── Kconfig.liteos_m.series                  --- Configuration of the ASR582X series
│   └── Kconfig.liteos_m.soc                     --- ASR582X chip configuration
├── Kconfig.liteos_m.defconfig                   --- SoC default configuration
├── Kconfig.liteos_m.series                      --- Series configuration
└── Kconfig.liteos_m.soc                         --- SoC configuration
```

In **asr582x/Kconfig.liteos_m.series**:

```
config SOC_SERIES_ASR582X
    bool "ASR582X Series"
    select ARM
    select SOC_COMPANY_ASRMICRO              --- Select SOC_COMPANY_ASRMICRO.
    select CPU_CORTEX_M4
    help
        Enable support for ASR582X series
```

**SOC_ASR5822S** can be selected in **asr582x/Kconfig.liteos_m.soc** only when **SOC_SERIES_ASR582X** is selected.

```
choice
    prompt "ASR582X series SoC"
    depends on SOC_SERIES_ASR582X

config SOC_ASR5822S                         --- Select SOC_ASR5822S.
    bool "SoC ASR5822S"

endchoice
```

To compile the board BOARD_DEV_WIFI_A, you need to select **SOC_COMPANY_ASRMICRO**, **SOC_SERIES_ASR582X**, and **SOC_ASR5822S**. You can do so by running `make menuconfig` in `kernel/liteos_m`.

![asr5822s_select.json](figures/asr5822s_select.png)

The configurations are saved in `//vendor/asrmicro/wifi_demo/kernel_configs/debug.config` by default. You can directly modify the configurations in **debug.config**.

```
LOSCFG_BOARD_DEV_WIFI_A=y
LOSCFG_SOC_COMPANY_ASRMICRO=y
LOSCFG_SOC_SERIES_ASR582X=y
LOSCFG_SOC_ASR5822S=y
```

### Modular Compilation

The compilation of `Board` and `SoC` adopts the modular compilation method, starting from `kernel/liteos_m/BUILD.gn` and increasing by level. The adaptation process of this solution is as follows:

1. Create the **BUILD.gn** file in `//device/board/lango` and add the following content to the file:

   ```
   if (ohos_kernel_type == "liteos_m") {
     import("//kernel/liteos_m/liteos.gni")
     module_name = get_path_info(rebase_path("."), "name")
     module_group(module_name) {
       modules = [
         "dev_wifi_a",                     --- Board module
         "hcs",                            --- Module corresponding to the hcs file
       ]
     }
   }
   ```

   In the preceding **BUILD.gn** file, **dev_wifi_a** and **hcs** are the module names organized by directory level.

2. In `//device/soc/asrmicro`, use the same method to create the **BUILD.gn** file and add the following content to the file:

   ```
   if (ohos_kernel_type == "liteos_m") {
     import("//kernel/liteos_m/liteos.gni")
     module_name = get_path_info(rebase_path("."), "name")
     module_group(module_name) {
       modules = [
         "asr582x",
       ]
     }
   }
   ```

3. In the `//device/soc/asrmicro` module at each level, add the **BUILD.gn** file and compile the module. The following uses `//device/soc/asrmicro/asr582x/liteos_m/sdk/startup/BUILD.gn` as an example:

   ```
   import("//kernel/liteos_m/liteos.gni")

   config("public") {
     include_dirs = [ "." ]                 --- Common header file
   }

   kernel_module("asr_startup") {           --- Module for compilation
     sources = [                            --- Source file for compilation
         "startup.c",
         "board.c",
         "startup_cm4.S",
     ]

     include_dirs = [                       --- Header files used in the include
       "...",
     ]
   }
   ```

4. To organize links and some compilation options, the following parameters are set in **config("public")** in `//device/soc/asrmicro/asr582x/liteos_m/sdk/config/BUILD.gn`:

   ```
   config("public") {
     include_dirs = []                       --- Common header file
     ldflags = []                            ---  Link parameters, including the ld file
     libs = []                               --- Link library
     defines = []                            --- Definition
   ```

   ![](../public_sys-resources/icon-note.gif) **NOTE**
	It is recommended that common parameter options and header files not be repeatedly filled in all components.

5. To organize some product applications, this solution adds **list** to the **config.json** file of the vendor. The following uses `//vendor/asrmicro/wifi_demo/config.json` as an example to describe how to add **list** to the **config.json** file:
   ```
   "tests_list": [                       --- demo list
     {
       "enable": "true", --- list switch
       "test_modules": [
         "example",                      --- OS basic demo
         "wifi_test"                     --- Wi-Fi demo
       ]
     }
   ]
   ```

   The demo is managed as a module. To enable or disable a demo, add or delete items in **tests_list**.**tests_list** can be directly read in GN. You need to add the following content to `//device/board/lango/dev_wifi_a/liteos_m/config.gni`:

   ```
   product_conf = read_file("${product_path}/config.json", "json")
   product_name = product_conf.product_name
   tests_list = product_conf.tests_list
   ```

   After reading the **list**, you can add related component libraries to the corresponding link options. Add the following content to `//device/soc/asrmicro/asr582x/liteos_m/sdk/config/BUILD.gn`:

   ```
   foreach(test_item, tests_list) {
       test_enable = test_item.enable
       if(test_enable == "true")
       {
         foreach(test_module, test_item.test_modules) {
         ldflags += [ "-l${test_module}" ]
         }
       }
   }
   ```

### C Library Adaptation

To ensure that the entire system does not distinguish the user mode and kernel mode, the upper-layer components and kernel share the same musl-based C library. This solution uses the musl C library. For details about the third-party library, see `//third_party/musl/porting/liteos_m/kernel/BUILD.gn`.

In addition, the kernel modifies and adapts the code for malloc. For details about the adaptation file, see `//kernel/liteos_m/kal/libc/musl/porting/src/malloc.c`.

In this solution, printf-related APIs are implemented using open-source code. For details about the adaptation file, see `//device/soc/asrmicro/asr582x/liteos_m/sdk/drivers/platform/system/printf-stdarg.c`.

The **wrap** links of the printf-related APIs need to be added to the `//device/board/lango/dev_wifi_a/liteos_m/config.gni` file so that these APIs can be invoked.

```
board_ld_flags += [
  "-Wl,--wrap=printf",
  "-Wl,--wrap=sprintf",
  "-Wl,--wrap=snprintf",
  "-Wl,--wrap=vprintf",
  "-Wl,--wrap=vsprintf",
  "-Wl,--wrap=vsnprintf",
]
```
### Shell Adaptation

To facilitate debugging, this solution integrates the shell component of the kernel. You can select **Enable Shell** in **Debug** of **make menuconfig** or enter **LOSCFG_SHELL=y** in the `//vendor/asrmicro/wifi_demo/kernel_configs/debug.config` file.
The shell component needs to be initialized. For details, see `device/soc/asrmicro/asr582x/liteos_m/sdk/startup/board.c`.

```
ret = LosShellInit();
if (ret != LOS_OK) {
    printf("LosShellInit failed! ERROR: 0x%x\n", ret);
}
ret = OsShellInit();
if (ret != LOS_OK) {
    printf("OsShellInit failed! ERROR: 0x%x\n", ret);
}
```

After initialization, each shell command needs to be registered, for example, `vendor/asrmicro/wifi_demo/tests/wifi/wifi_app.c`:

```
osCmdReg(CMD_TYPE_STD, "wifi_open", 0, (CMD_CBK_FUNC)ap_conn_func);    --- Connect to the AP. Input parameters can be carried.
osCmdReg(CMD_TYPE_EX, "wifi_close", 0, (CMD_CBK_FUNC)ap_close_func);   --- Disconnect from the AP.
```

### Kernel Boot Adaptation

After the board enters the **main** function, it is initialized. After that, interrupts are registered, and then the kernel is initialized and scheduled.
For details about interrupt registration, see `//device/soc/asrmicro/asr582x/liteos_m/sdk/startup/board.c`.

```
ArchHwiCreate(UART1_IRQn,configLIBRARY_NORMAL_INTERRUPT_PRIORITY,0,UART1_IRQHandler,0);   --- UART interrupt
ArchHwiCreate(GPIO_IRQn,configLIBRARY_NORMAL_INTERRUPT_PRIORITY,0,GPIO_IRQHandler,0);     --- GPIO interrupt
```

The following is an example of kernel initialization:
```
osStatus_t ret = osKernelInitialize();                                                    --- Kernel initialization

if(ret == osOK)
{
    threadId = osThreadNew((osThreadFunc_t)sys_init,NULL,&g_main_task);                   --- Create the init thread.

    if(threadId!=NULL)
    {
        osKernelStart();                                                                  --- Thread scheduling
    }
}
```

Q
qingdao@qing 已提交
338
In `sys_init`, you need to initialize the OpenHarmony system components.
E
ester.zhou 已提交
339 340 341 342 343

```
...
DeviceManagerStart();           --- Initialize HDF.

Q
qingdao@qing 已提交
344
OHOS_SystemInit();              --- Initialize OpenHarmony system components.
E
ester.zhou 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
....
```

### HDF Framework Adaptation

HDF provides a set of unified APIs for applications to access hardware, simplifying application development. To add the HDF component, you need to add it to `//vendor/asrmicro/wifi_demo/kernel_configs/debug.config`:

```
LOSCFG_DRIVERS_HDF=y
LOSCFG_DRIVERS_HDF_PLATFORM=y
```

In addition, you need to add the hardware configuration description file of the corresponding development board to `board`. The file is stored in `//device/board/lango/hcs`. This example takes the GPIO and UART as an example. The porting process is as follows:

#### GPIO Adaptation

1. The chip driver adaptation file is stored in the `//drivers/adapter/platform` directory. Add the `gpio_asr.c` and `gpio_asr.h` files to the `gpio` directory, and add the compilation conditions of the new driver file to `BUILD.gn`.

   ```
   if (defined(LOSCFG_SOC_COMPANY_ASRMICRO)) {
     sources += [ "gpio_asr.c" ]
   }
   ```

2. The driver description file in `gpio_asr.c` is as follows:

   ```
   struct HdfDriverEntry g_GpioDriverEntry = {
       .moduleVersion = 1,
       .moduleName = "ASR_GPIO_MODULE_HDF",
       .Init = GpioDriverInit,
       .Release = GpioDriverRelease,
   };
   HDF_INIT(g_GpioDriverEntry);
   ```

3. Add the GPIO hardware description file `gpio.hcs` to `//device/board/lango/hcs`. The mapped GPIO0 controls the programmable LED on the board. GPIO1 corresponds to the user key. The HCS content is as follows:

   ```
   root {
       platform {
           gpio_config {
               match_attr = "gpio_config";
               pin = [0, 1];
               // led3: GPIO9
               // user key: GPIO7
               realPin = [9, 7];
               config = [5, 1];
               pinNum = 2;
           }
       }
   }
   ```

4. The configuration information of `gpio.hcs` is loaded in GpioDriverInit, and the corresponding GPIO pins are initialized. The application layer needs only the following simple code to control LED indicators and read key information:

   ```
   int32_t GpioKeyIrqFunc(uint16_t gpio, void *data)
   {
       printf("user key %d pressed\n", gpio);
   }
   GpioSetIrq(1, OSAL_IRQF_TRIGGER_FALLING, GpioKeyIrqFunc, NULL);

   GpioWrite(0, 0);
   lega_rtos_delay_milliseconds(1000);
   GpioWrite(0, 1);
   ```

#### UART Adaptation

1. The chip driver adaptation file is stored in the `//drivers/adapter/platform` directory. Add the `uart_asr.c` and `uart_asr.h` files to the `uart` directory, and add the compilation conditions of the new driver file to `BUILD.gn`.

   ```
   if (defined(LOSCFG_SOC_COMPANY_ASRMICRO)) {
     sources += [ "uart_asr.c" ]
   }
   ```

2. The driver description file in `uart_asr.c` is as follows:

   ```
   struct HdfDriverEntry g_hdfUartDevice = {
       .moduleVersion = 1,
       .moduleName = "HDF_PLATFORM_UART",
       .Bind = HdfUartDeviceBind,
       .Init = HdfUartDeviceInit,
       .Release = HdfUartDeviceRelease,
   };

   HDF_INIT(g_hdfUartDevice);
   ```

3. Add the GPIO hardware description file `uart.hcs` to `//device/board/lango/hcs`. The HCS content is as follows:

   ```
   controller_uart0 :: uart_controller {
       match_attr = "asr582x_uart_0";
       port = 0;                       /* UART_ID_0 */

       pin_tx_pin = 0;                /* IO_PIN_10 */
       pin_tx_mux = 25;                 /* IO_MUX_2  */

       pin_rx_pin = 1;                /* IO_PIN_11 */
       pin_rx_mux = 25;                 /* IO_MUX_2 */
       tx_rx = 3;                     /* TX_RX MODE */
   }
   ```

4. The configuration information of `gpio.hcs` is loaded in `HdfUartDeviceInit`, and the corresponding serial port pins are initialized. The code for testing the serial port at the application layer is as follows:

   ```
   DevHandle uart_handle = UartOpen(0);
   UartSetBaud(uart_handle, 115200);
   ...
   attr.dataBits = UART_ATTR_DATABIT_8;
   attr.parity = UART_ATTR_PARITY_NONE;
   attr.stopBits = UART_ATTR_STOPBIT_1;
   ret = UartSetAttribute(uart_handle, &attr);
   ret = UartWrite(uart_handle, send_data, strlen(send_data));
   ret = UartRead(uart_handle, recv_data, sizeof(recv_data) - 1);
   ...
   ```

## OpenHarmony Component Porting

The compilation option entry of the subsystem is in the `config.json` file of the corresponding product. The following uses `//vendor/asrmicro/wifi_demo/config.json` as an example.

### LWIP component

Q
qingdao@qing 已提交
474
The source code of the lwIP component is stored in `//third_party/lwip`. The kernel in OpenHarmony is customized in `//kernel/liteos_m/components/net/lwip-2.1`, including the redefinition of some interfaces and structures.
E
ester.zhou 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681

For details about the porting process, see [lwIP Module Adaptation](https://gitee.com/openharmony/docs/blob/master/en/device-dev/porting/porting-chip-board-lwip.md).

In this example, the path for setting lwip in the `config.json` file is as follows:

   ```
   "subsystem": "kernel",
   "components": [
     {
       "component": "liteos_m",
       "features": [
         "ohos_kernel_liteos_m_lwip_path = \"//device/soc/asrmicro/asr582x/liteos_m/components/net/lwip-2.1\""
       ]
     }
   ]
   ```

Enable lwIP compilation in the `kernel_config/debug.config` file.

```
LOSCFG_NET_LWIP=y
```

### Security Component

For the security component, enable the corresponding options in `config.json`. In this example, mbedtls (`//third_party/mbedtls`) in the third-party library is used as the encryption module. The options are as follows:

```
"subsystem": "security",
"components": [
  { "component": "huks", "features":
    [
      ...
      "ohos_security_huks_mbedtls_porting_path = \"//device/soc/asrmicro/asr582x/liteos_m/components/mbedtls\""
    ]
  }
]
```

In the preceding directory, you need to configure mbedtls. For details, see `config/config_liteos_m.h`. Note that if the RNG capability of mbedtls is used (for example, the dsoftbus component is used in `//foundation/communication/dsoftbus/adapter/common/mbedtls/softbus_adapter_crypto.c`), the entropy source for generating random numbers must be specified. In this example, the hardware random number capability of the ASR582X is used. You need to enable the following macro:

```
#define MBEDTLS_ENTROPY_HARDWARE_ALT
```

After this macro is enabled, the `entropy_hardware_alt` interface needs to be implemented. For details, see `library/entropy_hardware_alt.c`.

### wifi_lite Component

The options of the wifi_lite component are as follows:

```
"subsystem": "communication",
"components": [
  { "component": "wifi_lite", "features":[] }
  ]
```

Wi-Fi-related functions are implemented in `//device/soc/asrmicro/asr582x/liteos_m/sdk/hal/src/wifi_adapter.c`.

This example also provides a demo that uses the `wifi_lite` interfaces. For details, see `//vendor/asrmicro/wifi_demo/tests/wifi/wifi_app.c`. The following two connection test commands are provided:

Table 1 ASR Wi-Fi connection commands

| Command        | Parameter    | Description    |
|------------|--------|--------|
| wifi_open  | sta [SSID] [KEY] | Connection routing command, for example, `wifi_open sta ASR_AP test123456`.|
| wifi_close | N/A     | Command for disconnecting a connection.  |

### XTS component

To adapt the XTS component, for example, `//vendor/asrmicro/xts_demo/config.json`, add the following component options:

```
"subsystem": "xts",
"components": [
  { "component": "xts_acts", "features":
    [
      "enable_ohos_test_xts_acts_use_thirdparty_lwip = true"
    ]
  },
  { "component": "xts_tools", "features":[] }
]
```

The XTS function is also organized using `list`. You can add or delete modules in the `config.json` file by referring to [Modular Compilation].

```
"xts_list": [
  {
    "enable": "true",
    "xts_modules": [
      "ActsKvStoreTest",
      "ActsDfxFuncTest",
      "ActsHieventLiteTest",
      "ActsSamgrTest",
      "ActsParameterTest",
      "ActsWifiServiceTest",
      "ActsWifiIotTest",
      "ActsBootstrapTest"
    ]
  }
],
```

### dsoftbus component

The dsoftbus component provides the discovery, connection, networking, and transmission capabilities between devices. This solution uses the DSoftBus capability between Wi-Fi devices as an example.

Dependent components: lwIP, security, and wifi_lite.

Prerequisites: The device is connected to a router, and all networking devices are in the same LAN.

The options of the dsoftbus component are as follows:

```
"subsystem": "communication",
"components": [
  { "component": "dsoftbus", "features":[] }
  ]
```

The dsoftbus test demo is provided in `//vendor/asrmicro/wifi_demo`. To enable this function, modify `//vendor/asrmicro/wifi_demo/tests/BUILD.gn`.

```
declare_args() {
  asr_dsoftbus_test = true              --- Enable dsoftbus demo compilation.
}
```

Add the dsoftbus_test module to the `//vendor/asrmicro/wifi_demo/config.json` file.

```
"tests_list": [
    {
    "enable": "true",
    "test_modules": [
        "wifi_test",
        "dsoftbus_test"                 --- Enable the dsoftbus_test module.
    ]
    }
]
```

For details about the startup interface of the dsoftbus component, see `//vendor/asrmicro/wifi_demo/tests/dsoftbus/dsoftbus_app.c`.

```
InitSoftBusServer();
```

At least 80 KB RAM needs to be reserved for the running of the DSoftBus component. If the resources are insufficient, other parts such as the lwIP component can be tailored.
`//kernel_liteos_m/blob/master/components/net/lwip-2.1/porting/include/lwip/lwipopts.h`:

```
#define TCPIP_THREAD_STACKSIZE          0x2000              --- Reduce the size of the TCP/IP task stack.
```

The `-fPIC` compilation option is added to the `communication_dsoftbus` repository. In this way, the compiler generates position-independent code and uses relative addresses. However, the LiteOS-M core uses a static library, which is not recommended.
You are advised to manually comment out the `-fPIC` compilation option in the following files:
`//foundation/communication/dsoftbus/core/common/BUILD.gn`
`//foundation/communication/dsoftbus/core/frame/BUILD.gn`
`//foundation/communication/dsoftbus/sdk/BUILD.gn`
`//foundation/communication/dsoftbus/components/nstackx_mini/nstackx_ctrl/BUILD.gn`

The DSoftBus networking requires device authentication. In the R&D phase, you can skip the authentication and  focus on the networking and transmission capabilities. You need to replace the `HandleReceiveDeviceId` function in the `//foundation/communication/dsoftbus/core/authentication/src/auth_manager.c` file with the following implementation:

```
void HandleReceiveDeviceId(AuthManager *auth, uint8_t *data)
{
    uint8_t tempKey[SESSION_KEY_LENGTH] = {0};
    if (auth == NULL || data == NULL) {
        SoftBusLog(SOFTBUS_LOG_AUTH, SOFTBUS_LOG_ERROR, "invalid parameter");
        return;
    }
    if (AuthUnpackDeviceInfo(auth, data) != SOFTBUS_OK) {
        SoftBusLog(SOFTBUS_LOG_AUTH, SOFTBUS_LOG_ERROR, "AuthUnpackDeviceInfo failed");
        AuthHandleFail(auth, SOFTBUS_AUTH_UNPACK_DEVID_FAILED);
        return;
    }
    if (auth->side == SERVER_SIDE_FLAG) {
        if (EventInLooper(auth->authId) != SOFTBUS_OK) {
            SoftBusLog(SOFTBUS_LOG_AUTH, SOFTBUS_LOG_ERROR, "auth EventInLooper failed");
            AuthHandleFail(auth, SOFTBUS_MALLOC_ERR);
            return;
        }
        if (AuthSyncDeviceUuid(auth) != SOFTBUS_OK) {
            AuthHandleFail(auth, SOFTBUS_AUTH_SYNC_DEVID_FAILED);
        }
        (void)memset_s(tempKey, SESSION_KEY_LENGTH, 1, SESSION_KEY_LENGTH);
        AuthOnSessionKeyReturned(auth->authId, tempKey, SESSION_KEY_LENGTH); 
        return;
    }
    //VerifyDeviceDevLvl(auth);                                            --- Comment out the authentication process.
    (void)memset_s(tempKey, SESSION_KEY_LENGTH, 1, SESSION_KEY_LENGTH);
    AuthOnSessionKeyReturned(auth->authId, tempKey, SESSION_KEY_LENGTH);
}
```

After correct configuration, compilation, and burning, the device uses the wifi_open command to connect to the router. After the connection is successful, the device automatically performs networking.


The adaptation process of other components is similar to that of other vendors.

## To-do

- Adding BLE support
- Diversifying Wi-Fi test commands