- 22 2月, 2012 1 次提交
-
-
由 Paul E. McKenney 提交于
It is illegal to have a grace period within a same-flavor RCU read-side critical section, so this commit adds lockdep-RCU checks to splat when such abuse is encountered. This commit does not detect more elaborate RCU deadlock situations. These situations might be a job for lockdep enhancements. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 12 12月, 2011 19 次提交
-
-
由 Paul E. McKenney 提交于
The current rcu_batch_end event trace records only the name of the RCU flavor and the total number of callbacks that remain queued on the current CPU. This is insufficient for testing and tuning the new dyntick-idle RCU_FAST_NO_HZ code, so this commit adds idle state along with whether or not any of the callbacks that were ready to invoke at the beginning of rcu_do_batch() are still queued. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
No point in having two identical rcu_cpu_stall_suppress declarations, so remove the more obscure of the two. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The rcu_do_batch() function that invokes callbacks for TREE_RCU and TREE_PREEMPT_RCU normally throttles callback invocation to avoid degrading scheduling latency. However, as long as the CPU would otherwise be idle, there is no downside to continuing to invoke any callbacks that have passed through their grace periods. In fact, processing such callbacks in a timely manner has the benefit of increasing the probability that the CPU can enter the power-saving dyntick-idle mode. Therefore, this commit allows callback invocation to continue beyond the preset limit as long as the scheduler does not have some other task to run and as long as context is that of the idle task or the relevant RCU kthread. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Frederic Weisbecker 提交于
Because tasks don't nest, the ->dyntick_nesting must always be zero upon entry to rcu_idle_enter_common(). Therefore, pass "0" rather than the counter itself. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Josh Triplett <josh@joshtriplett.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Frederic Weisbecker 提交于
Because tasks do not nest, rcu_idle_enter() and rcu_idle_exit() do not need to check for nesting. This commit therefore moves nesting checks from rcu_idle_enter_common() to rcu_irq_exit() and from rcu_idle_exit_common() to rcu_irq_enter(). Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Josh Triplett <josh@joshtriplett.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The current implementation of RCU_FAST_NO_HZ prevents CPUs from entering dyntick-idle state if they have RCU callbacks pending. Unfortunately, this has the side-effect of often preventing them from entering this state, especially if at least one other CPU is not in dyntick-idle state. However, the resulting per-tick wakeup is wasteful in many cases: if the CPU has already fully responded to the current RCU grace period, there will be nothing for it to do until this grace period ends, which will frequently take several jiffies. This commit therefore permits a CPU that has done everything that the current grace period has asked of it (rcu_pending() == 0) even if it still as RCU callbacks pending. However, such a CPU posts a timer to wake it up several jiffies later (6 jiffies, based on experience with grace-period lengths). This wakeup is required to handle situations that can result in all CPUs being in dyntick-idle mode, thus failing to ever complete the current grace period. If a CPU wakes up before the timer goes off, then it cancels that timer, thus avoiding spurious wakeups. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Fixes and workarounds for a number of issues (for example, that in df4012edc) make it safe to once again detect dyntick-idle CPUs on the first pass of force_quiescent_state(), so this commit makes that change. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Assertions in rcu_init_percpu_data() unknowingly relied on outgoing CPUs being turned off before reaching the idle loop. Unfortunately, when running under kvm/qemu on x86, CPUs really can get to idle before begin shut off. These CPUs are then born in dyntick-idle mode from an RCU perspective, which results in splats in rcu_init_percpu_data() and in RCU wrongly ignoring those CPUs despite them being active. This in turn can cause RCU to end grace periods prematurely, potentially freeing up memory that the newly onlined CPUs were still using. This is most decidedly not what we need to see in an RCU implementation. This commit therefore replaces the assertions in rcu_init_percpu_data() with code that forces RCU's dyntick-idle view of newly onlined CPUs to match reality. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
With the new implementation of RCU_FAST_NO_HZ, it was possible to hang RCU grace periods as follows: o CPU 0 attempts to go idle, cycles several times through the rcu_prepare_for_idle() loop, then goes dyntick-idle when RCU needs nothing more from it, while still having at least on RCU callback pending. o CPU 1 goes idle with no callbacks. Both CPUs can then stay in dyntick-idle mode indefinitely, preventing the RCU grace period from ever completing, possibly hanging the system. This commit therefore prevents CPUs that have RCU callbacks from entering dyntick-idle mode. This approach also eliminates the need for the end-of-grace-period IPIs used previously. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Change from direct comparison of ->pid with zero to is_idle_task(). Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
RCU has traditionally relied on idle_cpu() to determine whether a given CPU is running in the context of an idle task, but commit 908a3283 (Fix idle_cpu()) has invalidated this approach. After commit 908a3283, idle_cpu() will return true if the current CPU is currently running the idle task, and will be doing so for the foreseeable future. RCU instead needs to know whether or not the current CPU is currently running the idle task, regardless of what the near future might bring. This commit therefore switches from idle_cpu() to "current->pid != 0". Reported-by: NWu Fengguang <fengguang.wu@intel.com> Suggested-by: NCarsten Emde <C.Emde@osadl.org> Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Tested-by: NWu Fengguang <fengguang.wu@intel.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Currently, RCU does not permit a CPU to enter dyntick-idle mode if that CPU has any RCU callbacks queued. This means that workloads for which each CPU wakes up and does some RCU updates every few ticks will never enter dyntick-idle mode. This can result in significant unnecessary power consumption, so this patch permits a given to enter dyntick-idle mode if it has callbacks, but only if that same CPU has completed all current work for the RCU core. We determine use rcu_pending() to determine whether a given CPU has completed all current work for the RCU core. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The current code just complains if the current task is not the idle task. This commit therefore adds printing of the identity of the idle task. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
The trace_rcu_dyntick() trace event did not print both the old and the new value of the nesting level, and furthermore printed only the low-order 32 bits of it. This could result in some confusion when interpreting trace-event dumps, so this commit prints both the old and the new value, prints the full 64 bits, and also selects the process-entry/exit increment to print nicely in hexadecimal. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Frederic Weisbecker 提交于
Report that none of the rcu read lock maps are held while in an RCU extended quiescent state (the section between rcu_idle_enter() and rcu_idle_exit()). This helps detect any use of rcu_dereference() and friends from within the section in idle where RCU is not allowed. This way we can guarantee an extended quiescent window where the CPU can be put in dyntick idle mode or can simply aoid to be part of any global grace period completion while in the idle loop. Uses of RCU from such mode are totally ignored by RCU, hence the importance of these checks. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Thomas Gleixner 提交于
When setting up an expedited grace period, if there were no readers, the task will awaken itself. This commit removes this useless self-awakening. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Because rcu_is_cpu_idle() is to be used to check for extended quiescent states in RCU-preempt read-side critical sections, it cannot assume that preemption is disabled. And preemption must be disabled when accessing the dyntick-idle state, because otherwise the following sequence of events could occur: 1. Task A on CPU 1 enters rcu_is_cpu_idle() and picks up the pointer to CPU 1's per-CPU variables. 2. Task B preempts Task A and starts running on CPU 1. 3. Task A migrates to CPU 2. 4. Task B blocks, leaving CPU 1 idle. 5. Task A continues execution on CPU 2, accessing CPU 1's dyntick-idle information using the pointer fetched in step 1 above, and finds that CPU 1 is idle. 6. Task A therefore incorrectly concludes that it is executing in an extended quiescent state, possibly issuing a spurious splat. Therefore, this commit disables preemption within the rcu_is_cpu_idle() function. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
Earlier versions of RCU used the scheduling-clock tick to detect idleness by checking for the idle task, but handled idleness differently for CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side critical sections in the idle task, for example, for tracing. A more fine-grained detection of idleness is therefore required. This commit presses the old dyntick-idle code into full-time service, so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is always invoked at the beginning of an idle loop iteration. Similarly, rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked at the end of an idle-loop iteration. This allows the idle task to use RCU everywhere except between consecutive rcu_idle_enter() and rcu_idle_exit() calls, in turn allowing architecture maintainers to specify exactly where in the idle loop that RCU may be used. Because some of the userspace upcall uses can result in what looks to RCU like half of an interrupt, it is not possible to expect that the irq_enter() and irq_exit() hooks will give exact counts. This patch therefore expands the ->dynticks_nesting counter to 64 bits and uses two separate bitfields to count process/idle transitions and interrupt entry/exit transitions. It is presumed that userspace upcalls do not happen in the idle loop or from usermode execution (though usermode might do a system call that results in an upcall). The counter is hard-reset on each process/idle transition, which avoids the interrupt entry/exit error from accumulating. Overflow is avoided by the 64-bitness of the ->dyntick_nesting counter. This commit also adds warnings if a non-idle task asks RCU to enter idle state (and these checks will need some adjustment before applying Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246). In addition, validation of ->dynticks and ->dynticks_nesting is added. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
The ->signaled field was named before complications in the form of dyntick-idle mode and offlined CPUs. These complications have required that force_quiescent_state() be implemented as a state machine, instead of simply unconditionally sending reschedule IPIs. Therefore, this commit renames ->signaled to ->fqs_state to catch up with the new force_quiescent_state() reality. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
- 31 10月, 2011 1 次提交
-
-
由 Paul Gortmaker 提交于
The changed files were only including linux/module.h for the EXPORT_SYMBOL infrastructure, and nothing else. Revector them onto the isolated export header for faster compile times. Nothing to see here but a whole lot of instances of: -#include <linux/module.h> +#include <linux/export.h> This commit is only changing the kernel dir; next targets will probably be mm, fs, the arch dirs, etc. Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
-
- 29 9月, 2011 18 次提交
-
-
由 Paul E. McKenney 提交于
It is possible for the CPU that noted the end of the prior grace period to not need a new one, and therefore to decide to propagate ->completed throughout the rcu_node tree without starting another grace period. However, in so doing, it releases the root rcu_node structure's lock, which can allow some other CPU to start another grace period. The first CPU will be propagating ->completed in parallel with the second CPU initializing the rcu_node tree for the new grace period. In theory this is harmless, but in practice we need to keep things simple. This commit therefore moves the propagation of ->completed to rcu_report_qs_rsp(), and refrains from marking the old grace period as having been completed until it has finished doing this. This prevents anyone from starting a new grace period concurrently with marking the old grace period as having been completed. Of course, the optimization where a CPU needing a new grace period doesn't bother marking the old one completed is still in effect: In that case, the marking happens implicitly as part of initializing the new grace period. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The purpose of rcu_needs_cpu_flush() was to iterate on pushing the current grace period in order to help the current CPU enter dyntick-idle mode. However, this can result in failures if the CPU starts entering dyntick-idle mode, but then backs out. In this case, the call to rcu_pending() from rcu_needs_cpu_flush() might end up announcing a non-existing quiescent state. This commit therefore removes rcu_needs_cpu_flush() in favor of letting the dyntick-idle machinery at the end of the softirq handler push the loop along via its call to rcu_pending(). Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Mike Galbraith 提交于
RCU boost threads start life at RCU_BOOST_PRIO, while others remain at RCU_KTHREAD_PRIO. While here, change thread names to match other kthreads, and adjust rcu_yield() to not override the priority set by the user. This last change sets the stage for runtime changes to priority in the -rt tree. Signed-off-by: NMike Galbraith <efault@gmx.de> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
CPUs set rdp->qs_pending when coming online to resolve races with grace-period start. However, this means that if RCU is idle, the just-onlined CPU might needlessly send itself resched IPIs. Adjust the online-CPU initialization to avoid this, and also to correctly cause the CPU to respond to the current grace period if needed. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: NJosh Boyer <jwboyer@redhat.com> Tested-by: NChristian Hoffmann <email@christianhoffmann.info>
-
由 Paul E. McKenney 提交于
It is possible for an RCU CPU stall to end just as it is detected, in which case the current code will uselessly dump all CPU's stacks. This commit therefore checks for this condition and refrains from sending needless NMIs. And yes, the stall might also end just after we checked all CPUs and tasks, but in that case we would at least have given some clue as to which CPU/task was at fault. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Greater use of RCU during early boot (before the scheduler is operating) is causing RCU to attempt to start grace periods during that time, which in turn is resulting in both RCU and the callback functions attempting to use the scheduler before it is ready. This commit prevents these problems by prohibiting RCU grace periods until after the scheduler has spawned the first non-idle task. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
There isn't a whole lot of point in poking the scheduler before there are other tasks to switch to. This commit therefore adds a check for rcu_scheduler_fully_active in __rcu_pending() to suppress any pre-scheduler calls to set_need_resched(). The downside of this approach is additional runtime overhead in a reasonably hot code path. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The trigger_all_cpu_backtrace() function is a no-op in architectures that do not define arch_trigger_all_cpu_backtrace. On such architectures, RCU CPU stall warning messages contain no stack trace information, which makes debugging quite difficult. This commit therefore substitutes dump_stack() for architectures that do not define arch_trigger_all_cpu_backtrace, so that at least the local CPU's stack is dumped as part of the RCU CPU stall warning message. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
When the ->dynticks field in the rcu_dynticks structure changed to an atomic_t, its size on 64-bit systems changed from 64 bits to 32 bits. The local variables in rcu_implicit_dynticks_qs() need to change as well, hence this commit. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
The in_irq() check in rcu_enter_nohz() is redundant because if we really are in an interrupt, the attempt to re-enter dyntick-idle mode will invoke rcu_needs_cpu() in any case, which will force the check for RCU callbacks. So this commit removes the check along with the set_need_resched(). Suggested-by: NFrederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
There is often a delay between the time that a CPU passes through a quiescent state and the time that this quiescent state is reported to the RCU core. It is quite possible that the grace period ended before the quiescent state could be reported, for example, some other CPU might have deduced that this CPU passed through dyntick-idle mode. It is critically important that quiescent state be counted only against the grace period that was in effect at the time that the quiescent state was detected. Previously, this was handled by recording the number of the last grace period to complete when passing through a quiescent state. The RCU core then checks this number against the current value, and rejects the quiescent state if there is a mismatch. However, one additional possibility must be accounted for, namely that the quiescent state was recorded after the prior grace period completed but before the current grace period started. In this case, the RCU core must reject the quiescent state, but the recorded number will match. This is handled when the CPU becomes aware of a new grace period -- at that point, it invalidates any prior quiescent state. This works, but is a bit indirect. The new approach records the current grace period, and the RCU core checks to see (1) that this is still the current grace period and (2) that this grace period has not yet ended. This approach simplifies reasoning about correctness, and this commit changes over to this new approach. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Add trace events to record grace-period start and end, quiescent states, CPUs noticing grace-period start and end, grace-period initialization, call_rcu() invocation, tasks blocking in RCU read-side critical sections, tasks exiting those same critical sections, force_quiescent_state() detection of dyntick-idle and offline CPUs, CPUs entering and leaving dyntick-idle mode (except from NMIs), CPUs coming online and going offline, and CPUs being kicked for staying in dyntick-idle mode for too long (as in many weeks, even on 32-bit systems). Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> rcu: Add the rcu flavor to callback trace events The earlier trace events for registering RCU callbacks and for invoking them did not include the RCU flavor (rcu_bh, rcu_preempt, or rcu_sched). This commit adds the RCU flavor to those trace events. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
We now have kthreads only for flavors of RCU that support boosting, so update the now-misleading comments accordingly. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Add a string to the rcu_batch_start() and rcu_batch_end() trace messages that indicates the RCU type ("rcu_sched", "rcu_bh", or "rcu_preempt"). The trace messages for the actual invocations themselves are not marked, as it should be clear from the rcu_batch_start() and rcu_batch_end() events before and after. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
In order to allow event tracing to distinguish between flavors of RCU, we need those names in the relevant RCU data structures. TINY_RCU has avoided them for memory-footprint reasons, so add them only if CONFIG_RCU_TRACE=y. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
This commit adds the trace_rcu_utilization() marker that is to be used to allow postprocessing scripts compute RCU's CPU utilization, give or take event-trace overhead. Note that we do not include RCU's dyntick-idle interface because event tracing requires RCU protection, which is not available in dyntick-idle mode. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
There was recently some controversy about the overhead of invoking RCU callbacks. Add TRACE_EVENT()s to obtain fine-grained timings for the start and stop of a batch of callbacks and also for each callback invoked. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Pull the code that waits for an RCU grace period into a single function, which is then called by synchronize_rcu() and friends in the case of TREE_RCU and TREE_PREEMPT_RCU, and from rcu_barrier() and friends in the case of TINY_RCU and TINY_PREEMPT_RCU. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 13 7月, 2011 1 次提交
-
-
由 Paul E. McKenney 提交于
Under some rare but real combinations of configuration parameters, RCU callbacks are posted during early boot that use kernel facilities that are not yet initialized. Therefore, when these callbacks are invoked, hard hangs and crashes ensue. This commit therefore prevents RCU callbacks from being invoked until after the scheduler is fully up and running, as in after multiple tasks have been spawned. It might well turn out that a better approach is to identify the specific RCU callbacks that are causing this problem, but that discussion will wait until such time as someone really needs an RCU callback to be invoked (as opposed to merely registered) during early boot. Reported-by: Njulie Sullivan <kernelmail.jms@gmail.com> Reported-by: NRKK <kulkarni.ravi4@gmail.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com> Tested-by: Njulie Sullivan <kernelmail.jms@gmail.com> Tested-by: NRKK <kulkarni.ravi4@gmail.com>
-