- 23 10月, 2010 2 次提交
-
-
由 Jason Wessel 提交于
When returning from the kernel debugger reset the rcu jiffies_stall value to prevent the rcu stall detector from sending NMI events which invoke a stack dump for each cpu in the system. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
Move the various clock and watch dog syncs to a single function in advance of adding another sync for the rcu stall detector. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
- 20 8月, 2010 1 次提交
-
-
由 Dmitry Torokhov 提交于
Noone is using tty argument so let's get rid of it. Acked-by: NAlan Cox <alan@lxorguk.ukuu.org.uk> Acked-by: NJason Wessel <jason.wessel@windriver.com> Acked-by: NGreg Kroah-Hartman <gregkh@suse.de> Signed-off-by: NDmitry Torokhov <dtor@mail.ru>
-
- 05 8月, 2010 1 次提交
-
-
由 Jason Wessel 提交于
When an arch such as mips and microblaze does not implement either HW or software single stepping the debug core should re-enter kdb. The kdb code will properly ignore the single step operation. Attempting to single step the kernel without software or hardware support causes unpredictable kernel crashes. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
- 22 7月, 2010 1 次提交
-
-
由 Jason Wessel 提交于
Immediately following an exit from the kdb shell the kgdb_connected variable should be set to zero, unless there are breakpoints planted. If the kgdb_connected variable is not zeroed out with kdb, it is impossible to turn off kdb. This patch is merely a work around for now, the real fix will check for the breakpoints. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
- 19 7月, 2010 1 次提交
-
-
由 Pavel Machek 提交于
pavel@suse.cz no longer works, replace it with working address. Signed-off-by: NPavel Machek <pavel@ucw.cz> Signed-off-by: NJiri Kosina <jkosina@suse.cz>
-
- 21 5月, 2010 11 次提交
-
-
由 Jason Wessel 提交于
The kernel debugger can operate well before mm_init(), but the x86 hardware breakpoint code which uses the perf api requires that the kernel allocators are initialized. This means the kernel debug core needs to provide an optional arch specific call back to allow the initialization functions to run after the kernel has been further initialized. The kdb shell already had a similar restriction with an early initialization and late initialization. The kdb_init() was moved into the debug core's version of the late init which is called dbg_late_init(); CC: kgdb-bugreport@lists.sourceforge.net Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
It is highly desirable to trap into kdb on panic. The debug core will attempt to register as the first in line for the panic notifier. CC: Ingo Molnar <mingo@elte.hu> CC: Andrew Morton <akpm@linux-foundation.org> CC: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
This allows kdb to debug a crash with in the kms code with a single level recursive re-entry. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
Some kgdb I/O modules require the ability to create a breakpoint tasklet, such as kgdboc and external modules such as kgdboe. The breakpoint tasklet is used as an asynchronous entry point into the debugger which will have a different function scope than the current execution path where it might not be safe to have an inline breakpoint. This is true of some of the kgdb I/O drivers which share code with kgdb and rest of the kernel users. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
The only way the debugger can handle a trap in inside rcu_lock, notify_die, or atomic_notifier_call_chain without a triple fault is to have a low level "first opportunity handler" in the int3 exception handler. Generally this will be something the vast majority of folks will not need, but for those who need it, it is added as a kernel .config option called KGDB_LOW_LEVEL_TRAP. CC: Ingo Molnar <mingo@elte.hu> CC: Thomas Gleixner <tglx@linutronix.de> CC: H. Peter Anvin <hpa@zytor.com> CC: x86@kernel.org Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
Remove all the references to the kgdb_post_primary_code. This function serves no useful purpose because you can obtain the same information from the "struct kgdb_state *ks" from with in the debugger, if for some reason you want the data. Also remove the unintentional duplicate assignment for ks->ex_vector. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
One of the driving forces behind integrating another front end (kdb) to the debug core is to allow front end commands to be accessible via gdb's monitor command. It is true that you could write gdb macros to get certain data, but you may want to just use gdb to access the commands that are available in the kdb front end. This patch implements the Rcmd gdb stub packet. In gdb you access this with the "monitor" command. For instance you could type "monitor help", "monitor lsmod" or "monitor ps A" etc... There is no error checking or command restrictions on what you can and cannot access at this point. Doing something like trying to set breakpoints with the monitor command is going to cause nothing but problems. Perhaps in the future only the commands that are actually known to work with the gdb monitor command will be available. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
The design of the kdb shell requires that every device that can provide input to kdb have a polling routine that exits immediately if there is no character available. This is required in order to get the page scrolling mechanism working. Changing the kernel debugger I/O API to require all polling character routines to exit immediately if there is no data allows the kernel debugger to process multiple input channels. NO_POLL_CHAR will be the return code to the polling routine when ever there is no character available. CC: linux-serial@vger.kernel.org Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
These are the minimum changes to the kgdb core in order to enable an API to connect a new front end (kdb) to the debug core. This patch introduces the dbg_kdb_mode variable controls where the user level I/O is routed. It will be routed to the gdbstub (kgdb) or to the kdb front end which is a simple shell available over the kgdboc connection. You can switch back and forth between kdb or the gdb stub mode of operation dynamically. From gdb stub mode you can blindly type "$3#33", or from the kdb mode you can enter "kgdb" to switch to the gdb stub. The logic in the debug core depends on kdb to look for the typical gdb connection sequences and return immediately with KGDB_PASS_EVENT if a gdb serial command sequence is detected. That should allow a reasonably seamless transition between kdb -> gdb without leaving the kernel exception state. The two gdb serial queries that kdb is responsible for detecting are the "?" and "qSupported" packets. CC: Ingo Molnar <mingo@elte.hu> Signed-off-by: NJason Wessel <jason.wessel@windriver.com> Acked-by: NMartin Hicks <mort@sgi.com>
-
由 Jason Wessel 提交于
Split the former kernel/kgdb.c into debug_core.c which contains the kernel debugger exception logic and to the gdbstub.c which contains the logic for allowing gdb to talk to the debug core. This also created a private include file called debug_core.h which contains all the definitions to glue the debug_core to any other debugger connections. CC: Ingo Molnar <mingo@elte.hu> Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
Move kgdb.c in preparation to separate the gdbstub from the debug core and exception handling. CC: Ingo Molnar <mingo@elte.hu> Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
- 03 4月, 2010 4 次提交
-
-
由 Jason Wessel 提交于
The kernel debugger should turn off kernel tracing any time the debugger is active and restore it on resume. Signed-off-by: NJason Wessel <jason.wessel@windriver.com> Reviewed-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Jason Wessel 提交于
Memory barriers should be used for the kgdb cpu synchronization. The atomic_set() does not imply a memory barrier. Reported-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
This is a kgdb architectural change to have all the cpus (master or slave) enter the same function. A cpu that hits an exception (wants to be the master cpu) will call kgdb_handle_exception() from the trap handler and then invoke a kgdb_roundup_cpu() to synchronize the other cpus and bring them into the kgdb_handle_exception() as well. A slave cpu will enter kgdb_handle_exception() from the kgdb_nmicallback() and set the exception state to note that the processor is a slave. Previously the salve cpu would have called kgdb_wait(). This change allows the debug core to change cpus without resuming the system in order to inspect arch specific cpu information. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
Rather than call probe_kernel_write() one byte at a time, process the whole buffer locally and pass the entire result in one go. This way, architectures that need to do special handling based on the length can do so, or we only end up calling memcpy() once. [sonic.zhang@analog.com: Reported original problem and preliminary patch] Signed-off-by: NJason Wessel <jason.wessel@windriver.com> Signed-off-by: NSonic Zhang <sonic.zhang@analog.com> Signed-off-by: NMike Frysinger <vapier@gentoo.org>
-
- 01 2月, 2010 1 次提交
-
-
由 Jason Wessel 提交于
When CONFIG_HAVE_UNSTABLE_SCHED_CLOCK is set, sched_clock() gets the time from hardware such as the TSC on x86. In this configuration kgdb will report a softlock warning message on resuming or detaching from a debug session. Sequence of events in the problem case: 1) "cpu sched clock" and "hardware time" are at 100 sec prior to a call to kgdb_handle_exception() 2) Debugger waits in kgdb_handle_exception() for 80 sec and on exit the following is called ... touch_softlockup_watchdog() --> __raw_get_cpu_var(touch_timestamp) = 0; 3) "cpu sched clock" = 100s (it was not updated, because the interrupt was disabled in kgdb) but the "hardware time" = 180 sec 4) The first timer interrupt after resuming from kgdb_handle_exception updates the watchdog from the "cpu sched clock" update_process_times() { ... run_local_timers() --> softlockup_tick() --> check (touch_timestamp == 0) (it is "YES" here, we have set "touch_timestamp = 0" at kgdb) --> __touch_softlockup_watchdog() ***(A)--> reset "touch_timestamp" to "get_timestamp()" (Here, the "touch_timestamp" will still be set to 100s.) ... scheduler_tick() ***(B)--> sched_clock_tick() (update "cpu sched clock" to "hardware time" = 180s) ... } 5) The Second timer interrupt handler appears to have a large jump and trips the softlockup warning. update_process_times() { ... run_local_timers() --> softlockup_tick() --> "cpu sched clock" - "touch_timestamp" = 180s-100s > 60s --> printk "soft lockup error messages" ... } note: ***(A) reset "touch_timestamp" to "get_timestamp(this_cpu)" Why is "touch_timestamp" 100 sec, instead of 180 sec? When CONFIG_HAVE_UNSTABLE_SCHED_CLOCK is set, the call trace of get_timestamp() is: get_timestamp(this_cpu) -->cpu_clock(this_cpu) -->sched_clock_cpu(this_cpu) -->__update_sched_clock(sched_clock_data, now) The __update_sched_clock() function uses the GTOD tick value to create a window to normalize the "now" values. So if "now" value is too big for sched_clock_data, it will be ignored. The fix is to invoke sched_clock_tick() to update "cpu sched clock" in order to recover from this state. This is done by introducing the function touch_softlockup_watchdog_sync(). This allows kgdb to request that the sched clock is updated when the watchdog thread runs the first time after a resume from kgdb. [yong.zhang0@gmail.com: Use per cpu instead of an array] Signed-off-by: NJason Wessel <jason.wessel@windriver.com> Signed-off-by: NDongdong Deng <Dongdong.Deng@windriver.com> Cc: kgdb-bugreport@lists.sourceforge.net Cc: peterz@infradead.org LKML-Reference: <1264631124-4837-2-git-send-email-jason.wessel@windriver.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 30 1月, 2010 1 次提交
-
-
由 Jason Wessel 提交于
In the 2.6.33 kernel, the hw_breakpoint API is now used for the performance event counters. The hw_breakpoint_handler() now consumes the hw breakpoints that were previously set by kgdb arch specific code. In order for kgdb to work in conjunction with this core API change, kgdb must use some of the low level functions of the hw_breakpoint API to install, uninstall, and deal with hw breakpoint reservations. The kgdb core required a change to call kgdb_disable_hw_debug anytime a slave cpu enters kgdb_wait() in order to keep all the hw breakpoints in sync as well as to prevent hitting a hw breakpoint while kgdb is active. During the architecture specific initialization of kgdb, it will pre-allocate 4 disabled (struct perf event **) structures. Kgdb will use these to manage the capabilities for the 4 hw breakpoint registers, per cpu. Right now the hw_breakpoint API does not have a way to ask how many breakpoints are available, on each CPU so it is possible that the install of a breakpoint might fail when kgdb restores the system to the run state. The intent of this patch is to first get the basic functionality of hw breakpoints working and leave it to the person debugging the kernel to understand what hw breakpoints are in use and what restrictions have been imposed as a result. Breakpoint constraints will be dealt with in a future patch. While atomic, the x86 specific kgdb code will call arch_uninstall_hw_breakpoint() and arch_install_hw_breakpoint() to manage the cpu specific hw breakpoints. The net result of these changes allow kgdb to use the same pool of hw_breakpoints that are used by the perf event API, but neither knows about future reservations for the available hw breakpoint slots. Signed-off-by: NJason Wessel <jason.wessel@windriver.com> Acked-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: kgdb-bugreport@lists.sourceforge.net Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: torvalds@linux-foundation.org LKML-Reference: <1264719883-7285-2-git-send-email-jason.wessel@windriver.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 11 12月, 2009 4 次提交
-
-
由 Jason Wessel 提交于
This patch fixes 2 edge cases in using kgdb in conjunction with gdb. 1) kgdb_deactivate_sw_breakpoints() should process the entire array of breakpoints. The failure to do so results in breakpoints that you cannot remove, because a break point can only be removed if its state flag is set to BP_SET. The easy way to duplicate this problem is to plant a break point in a kernel module and then unload the kernel module. 2) kgdb_activate_sw_breakpoints() should process the entire array of breakpoints. The failure to do so results in missed breakpoints when a breakpoint cannot be activated. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
On some architectures for the segv trap, gdb wants to pass the signal back on continue. For kgdb this is not the default behavior, because it can cause the kernel to crash if you arbitrarily pass back a exception outside of kgdb. Instead of causing instability, pass a message back to gdb about the supported kgdb signal passing and execute a standard kgdb continue operation. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
The kgdb core should not assume that a single step operation of a kernel thread will complete on the same CPU. The single step flag is set at the "thread" level and it is possible in a multi cpu system that a kernel thread can get scheduled on another cpu the next time it is run. As a further safety net in case a slave cpu is hung, the debug master cpu will try 100 times before giving up and assuming control of the slave cpus is no longer possible. It is more useful to be able to get some information out of kgdb instead of spinning forever. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
Roel Kluin reported an error found with Parfait. Where we want to ensure that that kgdb_info[-1] never gets accessed. Also check to ensure any negative tid does not exceed the size of the shadow CPU array, else report critical debug context because it is an internal kgdb failure. Reported-by: NRoel Kluin <roel.kluin@gmail.com> Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
- 04 11月, 2009 1 次提交
-
-
由 Hiroshi Shimamoto 提交于
__schedule() had been removed. Signed-off-by: NHiroshi Shimamoto <h-shimamoto@ct.jp.nec.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <4AF129C8.3030008@ct.jp.nec.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 15 5月, 2009 1 次提交
-
-
由 Jason Wessel 提交于
Commit 79e53945 introduced a regression where you cannot use sysrq 'g' to enter kgdb. The solution is to move the intel fb sysrq over to V for video instead of G for graphics. The SMP VOYAGER code to register for the sysrq-v is not anywhere to be found in the mainline kernel, so the comments in the code were cleaned up as well. This patch also cleans up the sysrq definitions for kgdb to make it generic for the kernel debugger, such that the sysrq 'g' can be used in the future to enter a gdbstub or another kernel debugger. Signed-off-by: NJason Wessel <jason.wessel@windriver.com> Acked-by: NJesse Barnes <jbarnes@virtuousgeek.org> Acked-by: NRandy Dunlap <randy.dunlap@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
- 07 10月, 2008 1 次提交
-
-
由 Jason Wessel 提交于
The softlockup watchdog needs to be touched when resuming the from the kgdb stopped state to avoid the printk that a CPU is stuck if the debugger was active for longer than the softlockup threshold. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
- 26 9月, 2008 2 次提交
-
-
由 Jason Wessel 提交于
On the x86 arch, user space single step exceptions should be ignored if they occur in the kernel space, such as ptrace stepping through a system call. First check if it is kgdb that is executing a single step, then ensure it is not an accidental traversal into the user space, while in kgdb, any other time the TIF_SINGLESTEP is set, kgdb should ignore the exception. On x86, arm, mips and powerpc, the kgdb_contthread usage was inconsistent with the way single stepping is implemented in the kgdb core. The arch specific stub should always set the kgdb_cpu_doing_single_step correctly if it is single stepping. This allows kgdb to correctly process an instruction steps if ptrace happens to be requesting an instruction step over a system call. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Atsuo Igarashi 提交于
On the ARM architecture, kgdb will crash the kernel if the last byte of valid memory is written due to a flush_icache_range flushing beyond the memory boundary. Signed-off-by: NAtsuo Igarashi <atsuo_igarashi@tripeaks.co.jp> Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
- 01 8月, 2008 2 次提交
-
-
由 Jason Wessel 提交于
The command "info threads" did not work correctly with kgdb. It would result in a silent kernel hang if used. This patach addresses several problems. - Fix use of deprecated NR_CPUS - Fix kgdb to not walk linearly through the pid space - Correctly implement shadow pids - Change the threads per query to a #define - Fix kgdb_hex2long to work with negated values The threads 0 and -1 are reserved to represent the current task. That means that CPU 0 will start with a shadow thread id of -2, and CPU 1 will have a shadow thread id of -3, etc... From the debugger you can switch to a shadow thread to see what one of the other cpus was doing, however it is not possible to execute run control operations on any other cpu execept the cpu executing the kgdb_handle_exception(). Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
由 Jason Wessel 提交于
A regression to the kgdb core was found in the case of using the CONFIG_DEBUG_RODATA kernel option. When this option is on, a breakpoint cannot be written into any readonly memory page. When an external debugger requests a breakpoint to get set, the kgdb_validate_break_address() was only checking to see if the address to place the breakpoint was readable and lacked a write check. This patch changes the validate routine to try reading (via the breakpoint set request) and also to try immediately writing the break point. If either fails, an error is correctly returned and the debugger behaves correctly. Then an end user can make the descision to use hardware breakpoints. Also update the documentation to reflect that using CONFIG_DEBUG_RODATA will inhibit the use of software breakpoints. Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
- 24 6月, 2008 1 次提交
-
-
由 Jason Wessel 提交于
- Fix warning reported by sparse kernel/kgdb.c:1502:6: warning: symbol 'kgdb_console_write' was not declared. Should it be static? Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
- 29 5月, 2008 1 次提交
-
-
由 Harvey Harrison 提交于
Signed-off-by: NHarvey Harrison <harvey.harrison@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
- 15 5月, 2008 1 次提交
-
-
由 Harvey Harrison 提交于
Add a common hex array in hexdump.c so everyone can use it. Add a common hi/lo helper to avoid the shifting masking that is done to get the upper and lower nibbles of a byte value. Pull the pack_hex_byte helper from kgdb as it is opencoded many places in the tree that will be consolidated. Signed-off-by: NHarvey Harrison <harvey.harrison@gmail.com> Acked-by: NPaul Mundt <lethal@linux-sh.org> Cc: Jason Wessel <jason.wessel@windriver.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 5月, 2008 1 次提交
-
-
由 Harvey Harrison 提交于
Noticed by sparse: arch/x86/kernel/kgdb.c:556:15: warning: symbol 'kgdb_arch_pc' was not declared. Should it be static? kernel/kgdb.c:149:8: warning: symbol 'kgdb_do_roundup' was not declared. Should it be static? kernel/kgdb.c:193:22: warning: symbol 'kgdb_arch_pc' was not declared. Should it be static? kernel/kgdb.c:712:5: warning: symbol 'remove_all_break' was not declared. Should it be static? Related to kgdb_hex2long: arch/x86/kernel/kgdb.c:371:28: warning: incorrect type in argument 2 (different signedness) arch/x86/kernel/kgdb.c:371:28: expected long *long_val arch/x86/kernel/kgdb.c:371:28: got unsigned long *<noident> kernel/kgdb.c:469:27: warning: incorrect type in argument 2 (different signedness) kernel/kgdb.c:469:27: expected long *long_val kernel/kgdb.c:469:27: got unsigned long *<noident> kernel/kgdb.c:470:27: warning: incorrect type in argument 2 (different signedness) kernel/kgdb.c:470:27: expected long *long_val kernel/kgdb.c:470:27: got unsigned long *<noident> kernel/kgdb.c:894:27: warning: incorrect type in argument 2 (different signedness) kernel/kgdb.c:894:27: expected long *long_val kernel/kgdb.c:894:27: got unsigned long *<noident> kernel/kgdb.c:895:27: warning: incorrect type in argument 2 (different signedness) kernel/kgdb.c:895:27: expected long *long_val kernel/kgdb.c:895:27: got unsigned long *<noident> kernel/kgdb.c:1127:28: warning: incorrect type in argument 2 (different signedness) kernel/kgdb.c:1127:28: expected long *long_val kernel/kgdb.c:1127:28: got unsigned long *<noident> kernel/kgdb.c:1132:25: warning: incorrect type in argument 2 (different signedness) kernel/kgdb.c:1132:25: expected long *long_val kernel/kgdb.c:1132:25: got unsigned long *<noident> Signed-off-by: NHarvey Harrison <harvey.harrison@gmail.com> Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
- 18 4月, 2008 2 次提交
-
-
由 Jason Wessel 提交于
On the ppc 4xx architecture the instruction cache must be flushed as well as the data cache. This patch just makes it generic for all architectures where CACHE_FLUSH_IS_SAFE is set to 1. Signed-off-by: NJason Wessel <jason.wessel@windriver.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Jason Wessel 提交于
Fix the problem of protecting the kgdb handle_exception exit which had an NMI race condition, while trying to restore normal system operation. There was a small window after the master processor sets cpu_in_debug to zero but before it has set kgdb_active to zero where a non-master processor in an SMP system could receive an NMI and re-enter the kgdb_wait() loop. As long as the master processor sets the cpu_in_debug before sending the cpu roundup the cpu_in_debug variable can also be used to guard against the race condition. The kgdb_wait() function no longer needs to check kgdb_active because it is done in the arch specific code and handled along with the nmi traps at the low level. This also allows kgdb_wait() to exit correctly if it was entered for some unknown reason due to a spurious NMI that could not be handled by the arch specific code. Signed-off-by: NJason Wessel <jason.wessel@windriver.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-