- 11 4月, 2012 2 次提交
-
-
由 Sarah Sharp 提交于
The xhci_save_registers() function saved the event ring dequeue pointer in the s3 register structure, but xhci_restore_registers() never restored it. No other code in the xHCI successful resume path would ever restore it either. Fix that. This should be backported to kernels as old as 2.6.37, that contain the commit 5535b1d5 "USB: xHCI: PCI power management implementation". Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Tested-by: NElric Fu <elricfu1@gmail.com> Cc: Andiry Xu <andiry.xu@amd.com> Cc: stable@vger.kernel.org
-
由 Sarah Sharp 提交于
Eric Fu reports a problem with his VIA host controller fetching a zeroed event ring pointer on resume from suspend. The host should have been halted, but we can't be sure because that code ignores the return value from xhci_halt(). Print a warning when the host controller refuses to halt within XHCI_MAX_HALT_USEC (currently 16 seconds). (Update: it turns out that the VIA host controller is reporting a halted state when it fetches the zeroed event ring pointer. However, we still need this warning for other host controllers.) Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
- 14 3月, 2012 3 次提交
-
-
This adds a fairly simple xhci-platform driver support. Currently it is used by the dwc3 driver for supporting host mode. Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NFelipe Balbi <balbi@ti.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Andiry Xu 提交于
Update sg tablesize as we can expand the ring now. Signed-off-by: NAndiry Xu <andiry.xu@amd.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Tested-by: NPaul Zimmerman <Paul.Zimmerman@synopsys.com>
-
由 Andiry Xu 提交于
In the past, the room_on_ring() check was implemented by walking all over the ring, which is wasteful and complicated. Count the number of free TRBs instead. The free TRBs number should be updated when enqueue/dequeue pointer is updated, or upon the completion of a set dequeue pointer command. Signed-off-by: NAndiry Xu <andiry.xu@amd.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Tested-by: NPaul Zimmerman <Paul.Zimmerman@synopsys.com>
-
- 13 3月, 2012 1 次提交
-
-
由 Andiry Xu 提交于
The latest released errata for USB2.0 ECN LPM adds new fields to USB2.0 extension descriptor, defines two BESL values for device: baseline BESL and deep BESL. Baseline BESL value communicates a nominal power savings design point and the deep BESL value communicates a significant power savings design point. If device indicates BESL value, driver will use a value count in both host BESL and device BESL. Use baseline BESL value as default. Signed-off-by: NAndiry Xu <andiry.xu@amd.com> Tested-by: NJason Fan <jcfan@qca.qualcomm.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
- 02 3月, 2012 1 次提交
-
-
由 Felipe Balbi 提交于
There's really no point in having hcd->irq as a signed integer when we consider the fact that IRQ 0 means NO_IRQ. In order to avoid confusion, make hcd->irq unsigned and fix users who were passing -1 as the IRQ number to usb_add_hcd. Tested-by: NKuninori Morimoto <kuninori.morimoto.gx@renesas.com> Signed-off-by: NFelipe Balbi <balbi@ti.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 15 2月, 2012 1 次提交
-
-
由 Sarah Sharp 提交于
Intel has a PCI USB xhci host controller on a new platform. It doesn't have a line IRQ definition in BIOS. The Linux driver refuses to initialize this controller, but Windows works well because it only depends on MSI. Actually, Linux also can work for MSI. This patch avoids the line IRQ checking for USB3 HCDs in usb core PCI probe. It allows the xHCI driver to try to enable MSI or MSI-X first. It will fail the probe if MSI enabling failed and there's no legacy PCI IRQ. This patch should be backported to kernels as old as 2.6.32. Signed-off-by: NAlex Shi <alex.shi@intel.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable@vger.kernel.org
-
- 05 1月, 2012 2 次提交
-
-
由 Felipe Balbi 提交于
According to USB 3.0 Specification Table 9-22, if bmAttributes [4:0] are set to zero, it means "no streams supported", but the way this helper was defined on Linux, we will *always* have one stream which might cause several problems. For example on DWC3, we would tell the controller endpoint has streams enabled and yet start transfers with Stream ID set to 0, which would goof up the host side. While doing that, convert the macro to an inline function due to the different checks we now need. Signed-off-by: NFelipe Balbi <balbi@ti.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
由 Hans de Goede 提交于
I encountered a result of COMP_2ND_BW_ERR while improving how the pwc webcam driver handles not having the full usb1 bandwidth available to itself. I created the following test setup, a NEC xhci controller with a single TT USB 2 hub plugged into it, with a usb keyboard and a pwc webcam plugged into the usb2 hub. This caused the following to show up in dmesg when trying to stream from the pwc camera at its highest alt setting: xhci_hcd 0000:01:00.0: ERROR: unexpected command completion code 0x23. usb 6-2.1: Not enough bandwidth for altsetting 9 And usb_set_interface returned -EINVAL, which caused my pwc code to not do the right thing as it expected -ENOSPC. This patch makes the xhci driver properly handle COMP_2ND_BW_ERR and makes usb_set_interface return -ENOSPC as expected. This should be backported to stable kernels as old as 2.6.32. Signed-off-by: NHans de Goede <hdegoede@redhat.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable@vger.kernel.org
-
- 23 12月, 2011 2 次提交
-
-
由 Sarah Sharp 提交于
With devices that can need up to 128 segments (with 64 TRBs per segment), we can't afford to print out the entire endpoint ring every time an URB is canceled. Instead, print the offset of the TRB, along with device pathname and endpoint number. Only print DMA addresses, since virtual addresses of internal structures are not useful. Change the cancellation code to be more clear about what steps of the cancellation it is in the process of doing (queueing the request, handling the stop endpoint command, turning the TDs into no-ops, or moving the dequeue pointers). Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
由 Sarah Sharp 提交于
xHCI host controllers may not be capable of MSI, but they should be able to be used in legacy PCI interrupt mode. Similarly, some xHCI host controllers will have MSI support but not MSI-X support. Lower the dmesg log level from an error to debug. The message won't appear unless CONFIG_USB_XHCI_HCD_DEBUGGING is turned on. If we need to find out whether the device can support MSI or MSI-X and it's not being enabled by the driver, it's easy to ask the user to run lspci. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
- 02 12月, 2011 1 次提交
-
-
由 Andiry Xu 提交于
When system enters suspend, xHCI driver clears command ring by writing zero to all the TRBs. However, this also writes zero to the Link TRB, and the ring is mangled. This may cause driver accesses wrong memory address and the result is unpredicted. When clear the command ring, keep the last Link TRB intact, only clear its cycle bit. This should fix the "command ring full" issue reported by Oliver Neukum. This should be backported to stable kernels as old as 2.6.37, since the commit 89821320 "xhci: Fix command ring replay after resume" is merged. Signed-off-by: NAndiry Xu <andiry.xu@amd.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Reported-by: NOliver Neukum <oneukum@suse.de>
-
- 15 11月, 2011 1 次提交
-
-
由 Alan Stern 提交于
This patch (as1494) fixes a problem in xhci-hcd's resume routine. When the controller is runtime-resumed, this can only mean that one of the two root hubs has made a wakeup request and therefore needs to be resumed as well. Rather than try to determine which root hub requires attention (which might be difficult in the case where a new non-SuperSpeed device has been plugged in), the patch simply resumes both root hubs. Without this change, there is a race: The controller might be put back to sleep before it can activate its IRQ line, and the wakeup condition might never get handled. The patch also simplifies the logic in xhci_resume a little, combining some repeated flag settings into a single pair of statements. Signed-off-by: NAlan Stern <stern@rowland.harvard.edu> CC: Sarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable <stable@vger.kernel.org> Tested-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
- 05 11月, 2011 1 次提交
-
-
由 Sarah Sharp 提交于
Matt's AsMedia xHCI host controller was responding with a Context Error to an address device command after a configured device reset. Some sequence of events leads both the slot and endpoint zero add flags cleared to zero, which the AsMedia host doesn't like: [ 223.701839] xhci_hcd 0000:03:00.0: Slot ID 1 Input Context: [ 223.701841] xhci_hcd 0000:03:00.0: @ffff880137b25000 (virt) @ffffc000 (dma) 0x000000 - drop flags [ 223.701843] xhci_hcd 0000:03:00.0: @ffff880137b25004 (virt) @ffffc004 (dma) 0x000000 - add flags [ 223.701846] xhci_hcd 0000:03:00.0: @ffff880137b25008 (virt) @ffffc008 (dma) 0x000000 - rsvd2[0] [ 223.701848] xhci_hcd 0000:03:00.0: @ffff880137b2500c (virt) @ffffc00c (dma) 0x000000 - rsvd2[1] [ 223.701850] xhci_hcd 0000:03:00.0: @ffff880137b25010 (virt) @ffffc010 (dma) 0x000000 - rsvd2[2] [ 223.701852] xhci_hcd 0000:03:00.0: @ffff880137b25014 (virt) @ffffc014 (dma) 0x000000 - rsvd2[3] [ 223.701854] xhci_hcd 0000:03:00.0: @ffff880137b25018 (virt) @ffffc018 (dma) 0x000000 - rsvd2[4] [ 223.701857] xhci_hcd 0000:03:00.0: @ffff880137b2501c (virt) @ffffc01c (dma) 0x000000 - rsvd2[5] [ 223.701858] xhci_hcd 0000:03:00.0: Slot Context: [ 223.701860] xhci_hcd 0000:03:00.0: @ffff880137b25020 (virt) @ffffc020 (dma) 0x8400000 - dev_info [ 223.701862] xhci_hcd 0000:03:00.0: @ffff880137b25024 (virt) @ffffc024 (dma) 0x010000 - dev_info2 [ 223.701864] xhci_hcd 0000:03:00.0: @ffff880137b25028 (virt) @ffffc028 (dma) 0x000000 - tt_info [ 223.701866] xhci_hcd 0000:03:00.0: @ffff880137b2502c (virt) @ffffc02c (dma) 0x000000 - dev_state [ 223.701869] xhci_hcd 0000:03:00.0: @ffff880137b25030 (virt) @ffffc030 (dma) 0x000000 - rsvd[0] [ 223.701871] xhci_hcd 0000:03:00.0: @ffff880137b25034 (virt) @ffffc034 (dma) 0x000000 - rsvd[1] [ 223.701873] xhci_hcd 0000:03:00.0: @ffff880137b25038 (virt) @ffffc038 (dma) 0x000000 - rsvd[2] [ 223.701875] xhci_hcd 0000:03:00.0: @ffff880137b2503c (virt) @ffffc03c (dma) 0x000000 - rsvd[3] [ 223.701877] xhci_hcd 0000:03:00.0: Endpoint 00 Context: [ 223.701879] xhci_hcd 0000:03:00.0: @ffff880137b25040 (virt) @ffffc040 (dma) 0x000000 - ep_info [ 223.701881] xhci_hcd 0000:03:00.0: @ffff880137b25044 (virt) @ffffc044 (dma) 0x2000026 - ep_info2 [ 223.701883] xhci_hcd 0000:03:00.0: @ffff880137b25048 (virt) @ffffc048 (dma) 0xffffe8e0 - deq [ 223.701885] xhci_hcd 0000:03:00.0: @ffff880137b25050 (virt) @ffffc050 (dma) 0x000000 - tx_info [ 223.701887] xhci_hcd 0000:03:00.0: @ffff880137b25054 (virt) @ffffc054 (dma) 0x000000 - rsvd[0] [ 223.701889] xhci_hcd 0000:03:00.0: @ffff880137b25058 (virt) @ffffc058 (dma) 0x000000 - rsvd[1] [ 223.701892] xhci_hcd 0000:03:00.0: @ffff880137b2505c (virt) @ffffc05c (dma) 0x000000 - rsvd[2] ... [ 223.701927] xhci_hcd 0000:03:00.0: // Ding dong! [ 223.701992] xhci_hcd 0000:03:00.0: Setup ERROR: address device command for slot 1. The xHCI spec says that both flags must be set to one for the Address Device command. When the device is first enumerated, xhci_setup_addressable_virt_dev() does set those flags. However, when the device is addressed after it has been reset in the configured state, xhci_setup_addressable_virt_dev() is not called, and xhci_copy_ep0_dequeue_into_input_ctx() is called instead. That function relies on the flags being set up by previous commands, which apparently isn't a good assumption. Move the setting of the flags into the common parent function. This should be queued for stable kernels as old as 2.6.35, since that was the first introduction of xhci_copy_ep0_dequeue_into_input_ctx. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Tested-by: NMatt <mdm@iinet.net.au> Cc: stable@vger.kernel.org
-
- 27 9月, 2011 7 次提交
-
-
This removes the need of ifdefs within the init function and with it the headache about the correct clean without bus X but with bus/platform Y & Z. xhci-pci is only compiled if CONFIG_PCI is selected which can be de-selected now without trouble. For now the result is kinda useless because we have no other glue code. However, since nobody is using USB_ARCH_HAS_XHCI then it should not be an issue :) Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
xhci_gen_setup() is generic so it can be used to perform the bare xhci setup even on non-pci based platform. The typedef for the function pointer is moved into the headerfile Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
The MSI related fuctionality requires a few structs which are not available if CONFIG_PCI is not enabled. This is a prepartion to allow xhci be built without CONFIG_PCI set. Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
This patch moves the complete MSI/MSI-X/Legacy dance into its own function. There is however one difference: If the XHCI_BROKEN_MSI flag is set then we don't free and register the irq, we simply return. This is preparation for later PCI decouple. Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
由 Andiry Xu 提交于
Fix the debug message in xhci_address_device(). Signed-off-by: NAndiry Xu <andiry.xu@amd.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
由 Andiry Xu 提交于
If the device pass the USB2 software LPM and the host supports hardware LPM, enable hardware LPM for the device to let the host decide when to put the link into lower power state. If hardware LPM is enabled for a port and driver wants to put it into suspend, it must first disable hardware LPM, resume the port into U0, and then suspend the port. Signed-off-by: NAndiry Xu <andiry.xu@amd.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
由 Andiry Xu 提交于
This patch tests USB2 software LPM for a USB2 LPM-capable device. When a lpm-capable device is addressed, if the host also supports software LPM, apply a test by putting the device into L1 state and resume it to see if the device can do L1 suspend/resume successfully. If the device fails to enter L1 or resume from L1 state, it may not function normally and usbcore may disconnect and re-enumerate it. In this case, store the device's Vid and Pid information, make sure the host will not test LPM for it twice. The test result is per device/host. Some devices claim to be lpm-capable, but fail to enter L1 or resume. So the test is necessary. The xHCI 1.0 errata has modified the USB2.0 LPM implementation. It redefines the HIRD field to BESL, and adds another register Port Hardware LPM Control (PORTHLPMC). However, this should not affect the LPM behavior on xHC which does not implement 1.0 errata. USB2.0 LPM errata defines a new bit BESL in the device's USB 2.0 extension descriptor. If the device reports it uses BESL, driver should use BESL instead of HIRD for it. Signed-off-by: NAndiry Xu <andiry.xu@amd.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
- 21 9月, 2011 2 次提交
-
-
由 Sarah Sharp 提交于
The Intel Panther Point xHCI host tracks SuperSpeed endpoints in a different way than USB 2.0/1.1 endpoints. The bandwidth interval tables are not used, and instead the bandwidth is calculated in a very simple way. Bandwidth for SuperSpeed endpoints is tracked individually in each direction, since each direction has the full USB 3.0 bandwidth available. 10% of the bus bandwidth is reserved for non-periodic transfers. This checking would be more complex if we had USB 3.0 LPM enabled, because an additional latency for isochronous ping times need to be taken into account. However, we don't have USB 3.0 LPM support in Linux yet. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
instead of reading the xhci interface version each time _even_ if the quirk is not required, simply check if the quirk flag is set. This flag is only set of the module parameter is set and here is where I moved the version check to. Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
- 10 9月, 2011 8 次提交
-
-
由 sifram.rajas@gmail.com 提交于
The xhci_hcd->devs is an array of pointers rather than pointer to pointer. Hence this check is not required. Signed-off-by: Sifram Rajas <Sifram Rajas sifram.rajas@gmail.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
由 Andiry Xu 提交于
In xhci_urb_enqueue(), allocate a block of memory for all the TDs instead of allocating memory for each of them separately. This reduces the number of kzalloc calling when an isochronous usb is submitted. Signed-off-by: NAndiry Xu <andiry.xu@amd.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
由 Sarah Sharp 提交于
Now that we have a bandwidth interval table per root port or TT that describes the endpoint bandwidth information, we can finally use it to check whether the bus bandwidth is oversubscribed for a new device configuration/alternate interface setting. The complication for this algorithm is that the bit of hardware logic that creates the bus schedule is only 12-bit logic. In order to make sure it can represent the maximum bus bandwidth in 12 bits, it has to convert the endpoint max packet size and max esit payload into "blocks" (basically a less-precise representation). The block size for each speed of device is different, aside from low speed and full speed. In order to make sure we don't allow a setup where the scheduler might fail, we also have to do the bandwidth checking in blocks. After checking that the endpoints fit in the schedule, we store the bandwidth used for this root port or TT. If this is a FS/LS device under an external HS hub, we also update the TT bandwidth and the root port bandwidth (if this is a newly activated or deactivated TT). I won't go into the details of the algorithm, as it's pretty well documented in the comments. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
由 Sarah Sharp 提交于
In order to update the root port or TT's bandwidth interval table, we will need to keep track of a list of endpoints, per interval. That way we can easily know the new largest max packet size when we have to remove an endpoint. Add an endpoint list for each root port or TT structure, sorted by endpoint max packet size. Insert new endpoints into the list such that the head of the list always has the endpoint with the greatest max packet size. Only insert endpoints and update the interval table with new information when those endpoints are periodic. Make sure to update the number of active TTs when we add or drop periodic endpoints. A TT is only considered active if it has one or more periodic endpoints attached (control and bulk are best effort, and counted in the 20% reserved on the high speed bus). If the number of active endpoints for a TT was zero, and it's now non-zero, increment the number of active TTs for the rootport. If the number of active endpoints was non-zero, and it's now zero, decrement the number of active TTs. We have to be careful when we're checking the bandwidth for a new configuration/alt setting. If we don't have enough bandwidth, we need to be able to "roll back" the bandwidth information stored in the endpoint and the root port/TT interval bandwidth table. We can't just create a copy of the interval bandwidth table, modify it, and check the bandwidth with the copy because we have lists of endpoints and entries can't be on more than one list. Instead, we copy the old endpoint bandwidth information, and use it to revert the interval table when the bandwidth check fails. We don't check the bandwidth after endpoints are dropped from the interval table when a device is reset or freed after a disconnect, because having endpoints use less bandwidth should not push the bandwidth usage over the limits. Besides which, we can't fail a device disconnect. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
由 Sarah Sharp 提交于
In the upcoming patches, we'll use some stored endpoint information to make software keep track of the worst-case bandwidth schedule. We need to store several variables associated with each periodic endpoint: - the type of endpoint - Max Packet Size - Mult - Max ESIT payload - Max Burst Size (aka number of packets, stored in one-based form) - the endpoint interval (normalized to powers of 2 microframes) All this information is available to the hardware, and stored in its device output context. However, we need to ensure that the new information is stored before the xHCI driver drops the xhci->lock to wait on the Configure Endpoint command, so that another driver requesting a configuration or alt setting change will see the update. The Configure Endpoint command will never fail on the hardware that needs this software bandwidth checking (assuming the slot is enabled and the flags are set properly), so updating the endpoint info before the command completes should be fine. Until we add in the bandwidth checking code, just update the endpoint information after the Configure Endpoint command completes, and after a Reset Device command completes. Don't bother to clear the endpoint bandwidth info when a device is being freed, since the xhci_virt_ep is just going to be freed anyway. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
由 Sarah Sharp 提交于
For upcoming patches, we need to keep information about the bandwidth domains under the xHCI host. Each root port is a separate primary bandwidth domain, and each high speed hub's TT (and potentially each port on a multi-TT hub) is a secondary bandwidth domain. If the table were in text form, it would look a bit like this: EP Interval Sum of Number Largest Max Max Packet of Packets Packet Size Overhead 0 N mps overhead ... 15 N mps overhead Overhead is the maximum packet overhead (for bit stuffing, CRC, protocol overhead, etc) for all the endpoints in this interval. Devices with different speeds have different max packet overhead. For example, if there is a low speed and a full speed endpoint that both have an interval of 3, we would use the higher overhead (the low speed overhead). Interval 0 is a bit special, since we really just want to know the sum of the max ESIT payloads instead of the largest max packet size. That's stored in the interval0_esit_payload variable. For root ports, we also need to keep track of the number of active TTs. For each root port, and each TT under a root port, store some information about the bandwidth consumption. Dynamically allocate an array of root port bandwidth information for the number of root ports on the xHCI host. Each root port stores a list of TTs under the root port. A single TT hub only has one entry in the list, but a multi-TT hub will have an entry per port. When the USB core says that a USB device is a hub, create one or more entries in the root port TT list for the hub. When a device is deleted, and it is a hub, search through the root port TT list and delete all TT entries for the hub. Keep track of which TT entry is associated with a device under a TT. LS/FS devices attached directly to the root port will have usb_device->tt set to the roothub. Ignore that, and treat it like a primary bandwidth domain, since there isn't really a high speed bus between the roothub and the host. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
由 Sarah Sharp 提交于
Move the code to check whether we've reached the host controller's limit on the number of endpoints out of the two conditional statements, to remove duplicate code. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
由 Sarah Sharp 提交于
Some alternate interface settings have no endpoints associated with them. This shows up in some USB webcams, particularly the Logitech HD 1080p, which uses the uvcvideo driver. If a driver switches between two alt settings with no endpoints, there is no need to issue a configure endpoint command, because there is no endpoint information to update. The only time a configure endpoint command with just the add slot flag set makes sense is when the driver is updating hub characteristics in the slot context. However, that code never calls xhci_check_bandwidth, so we should be safe not issuing a command if only the slot context add flag is set. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
- 24 8月, 2011 1 次提交
-
-
由 Kuninori Morimoto 提交于
Now ${LINUX}/drivers/usb/* can use usb_endpoint_maxp(desc) to get maximum packet size instead of le16_to_cpu(desc->wMaxPacketSize). This patch fix it up Cc: Armin Fuerst <fuerst@in.tum.de> Cc: Pavel Machek <pavel@ucw.cz> Cc: Johannes Erdfelt <johannes@erdfelt.com> Cc: Vojtech Pavlik <vojtech@suse.cz> Cc: Oliver Neukum <oliver@neukum.name> Cc: David Kubicek <dave@awk.cz> Cc: Johan Hovold <jhovold@gmail.com> Cc: Brad Hards <bhards@bigpond.net.au> Acked-by: NFelipe Balbi <balbi@ti.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Thomas Dahlmann <dahlmann.thomas@arcor.de> Cc: David Brownell <david-b@pacbell.net> Cc: David Lopo <dlopo@chipidea.mips.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Michal Nazarewicz <m.nazarewicz@samsung.com> Cc: Xie Xiaobo <X.Xie@freescale.com> Cc: Li Yang <leoli@freescale.com> Cc: Jiang Bo <tanya.jiang@freescale.com> Cc: Yuan-hsin Chen <yhchen@faraday-tech.com> Cc: Darius Augulis <augulis.darius@gmail.com> Cc: Xiaochen Shen <xiaochen.shen@intel.com> Cc: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com> Cc: OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com> Cc: Robert Jarzmik <robert.jarzmik@free.fr> Cc: Ben Dooks <ben@simtec.co.uk> Cc: Thomas Abraham <thomas.ab@samsung.com> Cc: Herbert Pötzl <herbert@13thfloor.at> Cc: Arnaud Patard <arnaud.patard@rtp-net.org> Cc: Roman Weissgaerber <weissg@vienna.at> Acked-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Cc: Tony Olech <tony.olech@elandigitalsystems.com> Cc: Florian Floe Echtler <echtler@fs.tum.de> Cc: Christian Lucht <lucht@codemercs.com> Cc: Juergen Stuber <starblue@sourceforge.net> Cc: Georges Toth <g.toth@e-biz.lu> Cc: Bill Ryder <bryder@sgi.com> Cc: Kuba Ober <kuba@mareimbrium.org> Cc: Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> Signed-off-by: NKuninori Morimoto <kuninori.morimoto.gx@renesas.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
- 10 8月, 2011 2 次提交
-
-
由 Sarah Sharp 提交于
When a driver tries to cancel an URB, and the host controller is dying, xhci_urb_dequeue will giveback the URB without removing the xhci_tds that comprise that URB from the td_list or the cancelled_td_list. This can cause a race condition between the driver calling URB dequeue and the stop endpoint command watchdog timer. If the timer fires on a dying host, and a driver attempts to resubmit while the watchdog timer has dropped the xhci->lock to giveback a cancelled URB, URBs may be given back by the xhci_urb_dequeue() function. At that point, the URB's priv pointer will be freed and set to NULL, but the TDs will remain on the td_list. This will cause an oops in xhci_giveback_urb_in_irq() when the watchdog timer attempts to loop through the endpoints' td_lists, giving back killed URBs. Make sure that xhci_urb_dequeue() removes TDs from the TD lists and canceled TD lists before it gives back the URB. This patch should be backported to kernels as old as 2.6.36. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Cc: Andiry Xu <andiry.xu@amd.com> Cc: stable@kernel.org
-
由 Sarah Sharp 提交于
When the isochronous transfer support was introduced, and the xHCI driver switched to using urb->hcpriv to store an "urb_priv" pointer, a couple of memory leaks were introduced into the URB enqueue function in its error handling paths. xhci_urb_enqueue allocates urb_priv, but it doesn't free it if changing the control endpoint's max packet size fails or the bulk endpoint is in the middle of allocating or deallocating streams. xhci_urb_enqueue also doesn't free urb_priv if any of the four endpoint types' enqueue functions fail. Instead, it expects those functions to free urb_priv if an error occurs. However, the bulk, control, and interrupt enqueue functions do not free urb_priv if the endpoint ring is NULL. It will, however, get freed if prepare_transfer() fails in those enqueue functions. Several of the error paths in the isochronous endpoint enqueue function also fail to free it. xhci_queue_isoc_tx_prepare() doesn't free urb_priv if prepare_ring() indicates there is not enough room for all the isochronous TDs in this URB. If individual isochronous TDs fail to be queued (perhaps due to an endpoint state change), urb_priv is also leaked. This argues that the freeing of urb_priv should be done in the function that allocated it, xhci_urb_enqueue. This patch looks rather ugly, but refactoring the code will have to wait because this patch needs to be backported to stable kernels. This patch should be backported to kernels as old as 2.6.36. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Cc: Andiry Xu <andiry.xu@amd.com> Cc: stable@kernel.org
-
- 02 8月, 2011 1 次提交
-
-
由 Sarah Sharp 提交于
Commit fccf4e86 "USB: Free bandwidth when usb_disable_device is called" caused a bit of an issue when the xHCI host controller driver is unloaded. It changed the USB core to remove all endpoints when a USB device is disabled. When the driver is unloaded, it will remove the SuperSpeed split root hub, which will disable all devices under that roothub and then halt the host controller. When the second High Speed split roothub is removed, the USB core will attempt to disable the endpoints, which will submit a Configure Endpoint command to a halted host controller. The command will eventually time out, but it makes the xHCI driver unload take *minutes* if there are a couple of USB 1.1/2.0 devices attached. We must halt the host controller when the SuperSpeed roothub is removed, because we can't allow any interrupts from things like port status changes. Make several different functions not submit commands or URBs to the host controller when the host is halted, by adding a check in xhci_check_args(). xhci_check_args() is used by these functions: xhci.c-int xhci_urb_enqueue() xhci.c-int xhci_drop_endpoint() xhci.c-int xhci_add_endpoint() xhci.c-int xhci_check_bandwidth() xhci.c-void xhci_reset_bandwidth() xhci.c-static int xhci_check_streams_endpoint() xhci.c-int xhci_discover_or_reset_device() It's also used by xhci_free_dev(). However, we have to take special care in that case, because we want the device memory to be freed if the host controller is halted. This patch should be backported to the 2.6.39 and 3.0 kernel. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable@kernel.org
-
- 18 6月, 2011 2 次提交
-
-
由 Maarten Lankhorst 提交于
The asrock p67 xhci controller completely dies on resume, add a quirk for this, to bring the host back online after a suspend. This should be backported to stable kernels as old as 2.6.37. Signed-off-by: NMaarten Lankhorst <m.b.lankhorst@gmail.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable@kernel.org
-
由 Alex He 提交于
It is one new TRB Completion Code for the xHCI spec v1.0. Asserted if the xHC detects a problem with a device that does not allow it to be successfully accessed, e.g. due to a device compliance or compatibility problem. This error may be returned by any command or transfer, and is fatal as far as the Slot is concerned. Return -EPROTO by urb->status or frame->status of ISOC for transfer case. And return -ENODEV for configure endpoint command, evaluate context command and address device command if there is an incompatible Device Error. The error codes will be sent back to the USB core to decide how to do. It's unnecessary for other commands because after the three commands run successfully means that the device has been accepted. Signed-off-by: NAlex He <alex.he@amd.com> Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
-
- 16 6月, 2011 1 次提交
-
-
由 Sarah Sharp 提交于
While trying to switch a UAS device from the BOT configuration to the UAS configuration via the bConfigurationValue file, Tanya ran into an issue in the USB core. usb_disable_device() sets entries in udev->ep_out and udev->ep_out to NULL, but doesn't call into the xHCI bandwidth management functions to remove the BOT configuration endpoints from the xHCI host's internal structures. The USB core would then attempt to add endpoints for the UAS configuration, and some of the endpoints had the same address as endpoints in the BOT configuration. The xHCI driver blindly added the endpoints again, but the xHCI host controller rejected the Configure Endpoint command because active endpoints were added without being dropped. Make the xHCI driver reject calls to xhci_add_endpoint() that attempt to add active endpoints without first calling xhci_drop_endpoint(). This should be backported to kernels as old as 2.6.31. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Reported-by: NTanya Brokhman <tlinder@codeaurora.org> Cc: stable@kernel.org
-
- 03 6月, 2011 1 次提交
-
-
由 Sarah Sharp 提交于
Some Fresco Logic hosts, including those found in the AUAU N533V laptop, advertise MSI, but fail to actually generate MSI interrupts. Add a new xHCI quirk to skip MSI enabling for the Fresco Logic host controllers. Fresco Logic confirms that all chips with PCI vendor ID 0x1b73 and device ID 0x1000, regardless of PCI revision ID, do not support MSI. This should be backported to stable kernels as far back as 2.6.36, which was the first kernel to support MSI on xHCI hosts. Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com> Reported-by: NSergey Galanov <sergey.e.galanov@gmail.com> Cc: stable@kernel.org
-