- 09 3月, 2016 5 次提交
-
-
由 Viresh Kumar 提交于
We used to drop policy->rwsem just before calling __cpufreq_governor() in some cases earlier and so it was possible that __cpufreq_governor() ran concurrently via separate threads for the same policy. In order to guarantee valid state transitions for governors, 'governor_enabled' was required to be protected using some locking and cpufreq_governor_lock was added for that. But now __cpufreq_governor() is always called under policy->rwsem, and 'governor_enabled' is protected against races even without cpufreq_governor_lock. Get rid of the extra lock now. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Tested-by: NJuri Lelli <juri.lelli@arm.com> Tested-by: NShilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> [ rjw : Changelog ] Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
The cpufreq core code is not consistent with respect to invoking __cpufreq_governor() under policy->rwsem. Changing all code to always hold policy->rwsem around __cpufreq_governor() invocations will allow us to remove cpufreq_governor_lock that is used today because we can't guarantee that __cpufreq_governor() isn't executed twice in parallel for the same policy. We should also ensure that policy->rwsem is held across governor state changes. For example, while adding a CPU to the policy in the CPU online path, we need to stop the governor, change policy->cpus, start the governor and then refresh its limits. The complete sequence must be guaranteed to complete without interruptions by concurrent governor state updates. That can be achieved by holding policy->rwsem around those sequences of operations. Also note that after this patch cpufreq_driver->stop_cpu() and ->exit() will get called under policy->rwsem which wasn't the case earlier. That shouldn't have any side effects, though. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Tested-by: NJuri Lelli <juri.lelli@arm.com> Tested-by: NShilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> [ rjw: Changelog ] Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
Commit 1aee40ac (cpufreq: Invoke __cpufreq_remove_dev_finish() after releasing cpu_hotplug.lock) split the cpufreq's CPU offline routine in two pieces, one of them to be run with CPU offline/online locked and the other to be called later. The reason for that split was a possible deadlock scenario involving cpufreq sysfs attributes and CPU offline. However, the handling of CPU offline in cpufreq has changed since then. Policy sysfs attributes are never removed during CPU offline, so there's no need to worry about accessing them during CPU offline, because that can't lead to any deadlocks now. Governor sysfs attributes are still removed in __cpufreq_governor(_EXIT), but there is a new kobject type for them now and its show/store callbacks don't lock CPU offline/online (they don't need to do that). This means that the CPU offline code in cpufreq doesn't need to be split any more, so combine cpufreq_offline_prepare() with cpufreq_offline_finish(). Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> [ rjw: Changelog ] Tested-by: NJuri Lelli <juri.lelli@arm.com> Tested-by: NShilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
Earlier, when the struct freq-attr was used to represent governor attributes, the standard cpufreq show/store sysfs attribute callbacks were applied to the governor tunable attributes and they always acquire the policy->rwsem lock before carrying out the operation. That could have resulted in an ABBA deadlock if governor tunable attributes are removed under policy->rwsem while one of them is being accessed concurrently (if sysfs attributes removal wins the race, it will wait for the access to complete with policy->rwsem held while the attribute callback will block on policy->rwsem indefinitely). We attempted to address this issue by dropping policy->rwsem around governor tunable attributes removal (that is, around invocations of the ->governor callback with the event arg equal to CPUFREQ_GOV_POLICY_EXIT) in cpufreq_set_policy(), but that opened up race conditions that had not been possible with policy->rwsem held all the time. The previous commit, "cpufreq: governor: New sysfs show/store callbacks for governor tunables", fixed the original ABBA deadlock by adding new governor specific show/store callbacks. We don't have to drop rwsem around invocations of governor event CPUFREQ_GOV_POLICY_EXIT anymore, and original fix can be reverted now. Fixes: 955ef483 (cpufreq: Drop rwsem lock around CPUFREQ_GOV_POLICY_EXIT) Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Reported-by: NJuri Lelli <juri.lelli@arm.com> Tested-by: NJuri Lelli <juri.lelli@arm.com> Tested-by: NShilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
Introduce a mechanism by which parts of the cpufreq subsystem ("setpolicy" drivers or the core) can register callbacks to be executed from cpufreq_update_util() which is invoked by the scheduler's update_load_avg() on CPU utilization changes. This allows the "setpolicy" drivers to dispense with their timers and do all of the computations they need and frequency/voltage adjustments in the update_load_avg() code path, among other things. The update_load_avg() changes were suggested by Peter Zijlstra. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NIngo Molnar <mingo@kernel.org>
-
- 05 2月, 2016 1 次提交
-
-
由 Rafael J. Wysocki 提交于
The preprocessor magic used for setting the default cpufreq governor (and for using the performance governor as a fallback one for that matter) is really nasty, so replace it with __weak functions and overrides. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NSaravana Kannan <skannan@codeaurora.org> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
- 28 1月, 2016 1 次提交
-
-
由 Gautham R Shenoy 提交于
Currently next_policy() explicitly checks if a policy is the last policy in the cpufreq_policy_list. Use the standard list_is_last primitive instead. Signed-off-by: NGautham R. Shenoy <ego@linux.vnet.ibm.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 01 1月, 2016 2 次提交
-
-
由 Rafael J. Wysocki 提交于
Notice that the boost_supported field in struct cpufreq_driver is redundant, because the driver's ->set_boost callback may be left unset if "boost" is not supported. Moreover, the only driver populating the ->set_boost callback is acpi_cpufreq, so make it avoid populating that callback if "boost" is not supported, rework the core to check ->set_boost instead of boost_supported to verify "boost" support and drop boost_supported which isn't used any more. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Rafael J. Wysocki 提交于
cpufreq_boost_supported() is not used outside of cpufreq.c, so make it static. While at it, refactor it as a one-liner (which it really is). Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
- 03 12月, 2015 1 次提交
-
-
由 Srinivas Pandruvada 提交于
For cpufreq drivers which use setpolicy interface, after offline->online the policy is set to default. This can be reproduced by setting the default policy of intel_pstate or longrun to ondemand and then change to "performance". After offline and online, the setpolicy will be called with the policy=ondemand. For drivers using governors this condition is handled by storing last_governor, during offline and restoring during online. The same should be done for drivers using setpolicy interface. Storing last_policy during offline and restoring during online. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 24 11月, 2015 1 次提交
-
-
由 Viresh Kumar 提交于
Subsys interface's ->remove_dev() is called when the cpufreq driver is unregistering or the CPU is getting physically removed. We keep removing the cpuX/cpufreq link for all CPUs except the last one, which is a mistake as all CPUs contain a link now. Because of this, one CPU from each policy will still contain a link (to an already removed policyX directory), after the cpufreq driver is unregistered. Fix that by removing the link first and then only see if the policy is required to be freed. That will make sure that no links are left out. Fixes: 96bdda61 ("cpufreq: create cpu/cpufreq/policyX directories") Reported-and-tested-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 28 10月, 2015 5 次提交
-
-
由 Viresh Kumar 提交于
The sysfs policy directory is postfixed currently with the CPU number for which the policy was created, which isn't necessarily the first CPU in related_cpus mask. To make it more consistent and predictable, lets postfix the policy with the first cpu in related-cpus mask. Suggested-by: NSaravana Kannan <skannan@codeaurora.org> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Reviewed-by: NSaravana Kannan <skannan@codeaurora.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
The cpufreq sysfs interface had been a bit inconsistent as one of the CPUs for a policy had a real directory within its sysfs 'cpuX' directory and all other CPUs had links to it. That also made the code a bit complex as we need to take care of moving the sysfs directory if the CPU containing the real directory is getting physically hot-unplugged. Solve this by creating 'policyX' directories (per-policy) in /sys/devices/system/cpu/cpufreq/ directory, where X is the CPU for which the policy was first created. This also removes the need of keeping kobj_cpu and we can remove it now. Suggested-by: NSaravana Kannan <skannan@codeaurora.org> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Reviewed-by: NSaravana Kannan <skannan@codeaurora.org> Acked-by: is more of a general agreement from the person that he is Reviewed-by: is a more strict tag and implies that the reviewer has Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
They don't do anything special now, remove the unnecessary wrapper. Reviewed-by: NSaravana Kannan <skannan@codeaurora.org> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
Later patches will need to create policy specific directories in /sys/devices/system/cpu/cpufreq/ directory and so the cpufreq directory wouldn't be ever empty. And so no fun creating/destroying it on need basis anymore. Create it once on system boot. Reviewed-by: NSaravana Kannan <skannan@codeaurora.org> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
->related_cpus is empty at this point of time and copying ->cpus to it or orring ->related_cpus with ->cpus would result in the same value. But cpumask_copy makes it rather clear. Reviewed-by: NSaravana Kannan <skannan@codeaurora.org> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 14 10月, 2015 1 次提交
-
-
由 Viresh Kumar 提交于
We just made sure policy->cpu is online and this check will always fail as the policy is active. Drop it. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NSaravana Kannan <skannan@codeaurora.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 09 10月, 2015 1 次提交
-
-
由 Srinivas Pandruvada 提交于
When scaling_available_frequencies is read on an offlined cpu, then either lockup or junk values are displayed. This is caused by freed freq_table, which policy is using. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 16 9月, 2015 1 次提交
-
-
由 Rafael J. Wysocki 提交于
cpufreq_cpu_get() called by get_cur_freq_on_cpu() is overkill, because the ->get() callback is always invoked in a context in which all of the conditions checked by cpufreq_cpu_get() are guaranteed to be satisfied. Use cpufreq_cpu_get_raw() instead of it and drop the corresponding cpufreq_cpu_put() from get_cur_freq_on_cpu(). Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
- 09 9月, 2015 1 次提交
-
-
Some cpufreq drivers may set suspend frequency only for selected setups but still would like to use the generic suspend handler. Thus don't treat !policy->suspend_freq condition as an incorrect one. Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NBartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 08 9月, 2015 2 次提交
-
-
由 Viresh Kumar 提交于
Its better to use __func__ to print functions name instead of writing the name in the print statement. This also has the advantage that a change in function's name doesn't force us to change the print message as well. Reviewed-by: NPreeti U Murthy <preeti@linux.vnet.ibm.com> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
cpufreq_cpu_get_raw() isn't used by any external users, staticize it. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 01 9月, 2015 6 次提交
-
-
由 Viresh Kumar 提交于
Driver is guaranteed to be present on a call to cpufreq_parse_governor() and there is no need to check for !cpufreq_driver. Drop it. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
Its always same as policy->policy, and there is no need to keep another copy of it. Remove it. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
Its always same as policy->governor, and there is no need to keep another copy of it. Remove it. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
'user_policy' caches properties of a policy that are set by userspace. And these must be updated only if cpufreq core was successful in updating them based on request from user space. In store_scaling_governor(), we are updating user_policy.policy and user_policy.governor even if cpufreq_set_policy() failed. That's incorrect. Fix this by updating user_policy.* only if we were successful in updating the properties. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
cpufreq_get_policy() is useful if the pointer to policy isn't available in advance. But if it is available, then there is no need to call cpufreq_get_policy(). Directly use memcpy() to copy the policy. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
What's being done from CPUFREQ_INCOMPATIBLE, can also be done with CPUFREQ_ADJUST. There is nothing special with CPUFREQ_INCOMPATIBLE notifier. Kill CPUFREQ_INCOMPATIBLE and fix its usage sites. This also updates the numbering of notifier events to remove holes. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 07 8月, 2015 1 次提交
-
-
由 Viresh Kumar 提交于
In some cases it wouldn't be known at time of driver registration, if the driver needs to support boost frequencies. For example, while getting boost information from DT with opp-v2 bindings, we need to parse the bindings for all the CPUs to know if turbo/boost OPPs are supported or not. One way out to do that efficiently is to delay supporting boost mode (i.e. creating /sys/devices/system/cpu/cpufreq/boost file), until the time OPP bindings are parsed. At that point, the driver can enable boost support. This can be done at ->init(), where the frequency table is created. To do that, the driver requires few APIs from cpufreq core that let him do this. This patch provides these APIs. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Reviewed-by: NStephen Boyd <sboyd@codeaurora.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 06 8月, 2015 1 次提交
-
-
由 Viresh Kumar 提交于
Its return value is not used by the subsys core and nothing meaningful can be done with it, even if we want to use it. The subsys device is anyway getting removed. Update prototype of ->remove_dev() to make its return type as void. Fix all usage sites as well. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 01 8月, 2015 4 次提交
-
-
由 Pan Xinhui 提交于
This check was originally added by commit 9c9a43ed ("[CPUFREQ] return error when failing to set minfreq").It attempt to return an error on obviously incorrect limits when we echo xxx >.../scaling_max,min_freq Actually we just need check if new_policy->min > new_policy->max. Because at least one of max/min is copied from cpufreq_get_policy(). For example, when we echo xxx > .../scaling_min_freq, new_policy is copied from policy in cpufreq_get_policy. new_policy->max is same with policy->max. new_policy->min is set to a new value. Let me explain it in deduction method, first statement in if (): new_policy->min > policy->max policy->max == new_policy->max ==> new_policy->min > new_policy->max second statement in if(): new_policy->max < policy->min policy->max < policy->min ==>new_policy->min > new_policy->max (induction method) So we have proved that we only need check if new_policy->min > new_policy->max. After apply this patch, we can also modify ->min and ->max at same time if new freq range is very much different from current freq range. For example, if current freq range is 480000-960000, then we want to set this range to 1120000-2240000, we would fail in the past because new_policy->min > policy->max. As long as the cpufreq range is valid, we has no reason to reject the user. So correct the check to avoid such case. Signed-off-by: NPan Xinhui <xinhuix.pan@intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
To protect against races with concurrent CPU online/offline, call get_online_cpus() before registering a cpufreq driver. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Rafael J. Wysocki 提交于
The recover_policy is unsed in cpufreq_online() to indicate whether a new policy object is created or an existing one is reinitialized. The "recover" part of the name is slightly confusing (it should be "reinitialization" rather than "recovery") and the logical not (!) operator is applied to it in almost all of the checks it is used in, so replace that variable with a new one called "new_policy" that will be true in the case of a new policy creation. While at it, drop one of the labels that is jumped to from only one spot. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Rafael J. Wysocki 提交于
To separate the CPU online interface from the CPU device registration, split cpufreq_online() out of cpufreq_add_dev() and make cpufreq_cpu_callback() call the former, while cpufreq_add_dev() itself will only be used as the CPU device addition subsystem interface callback. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Suggested-by: NRussell King <linux@arm.linux.org.uk> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
- 28 7月, 2015 6 次提交
-
-
由 Rafael J. Wysocki 提交于
Change cpufreq_policy_alloc() to take a CPU number instead of a CPU device pointer as its argument, as it is the only function called by cpufreq_add_dev() taking a device pointer argument at this point. That will allow us to split the CPU online part from cpufreq_add_dev() more cleanly going forward. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Rafael J. Wysocki 提交于
The related_cpus mask includes CPUs whose cpufreq_cpu_data per-CPU pointers have been set the the given policy. Since those pointers are only set at the policy creation time and unset when the policy is deleted, the related_cpus should not be updated between those two operations. For this reason, avoid updating it whenever the first of the "related" CPUs goes online. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Rafael J. Wysocki 提交于
The dev argument of cpufreq_add_policy_cpu() and cpufreq_add_dev_interface() is not used by any of them, so drop it. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Rafael J. Wysocki 提交于
The leftover out_release_rwsem label in cpufreq_add_dev() is not necessary any more and confusing, so drop it. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Rafael J. Wysocki 提交于
Notice that when cpufreq_policy_restore() is called, its per-CPU cpufreq_cpu_data variable has been already dereferenced and if that variable is not NULL, the policy local pointer in cpufreq_add_dev() contains its value. Therefore it is not necessary to dereference it again and the policy pointer can be used directly. Moreover, if that pointer is not NULL, the policy is inactive (or the previous check would have made us return from cpufreq_add_dev()) so the restoration code from cpufreq_policy_restore() can be moved to that point in cpufreq_add_dev(). Do that and drop cpufreq_policy_restore(). Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Rafael J. Wysocki 提交于
Since __cpufreq_remove_dev_prepare() and __cpufreq_remove_dev_finish() are about CPU offline rather than about CPU removal, rename them to cpufreq_offline_prepare() and cpufreq_offline_finish(), respectively. Also change their argument from a struct device pointer to a CPU number, because they use the CPU number only internally anyway and make them void as their return values are ignored. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-