- 07 6月, 2013 1 次提交
-
-
由 Steven Rostedt (Red Hat) 提交于
The irqsoff tracer records the max time that interrupts are disabled. There are hooks in the assembly code that calls back into the tracer when interrupts are disabled or enabled. When they are enabled, the tracer checks if the amount of time they were disabled is larger than the previous recorded max interrupts off time. If it is, it creates a snapshot of the currently running trace to store where the last largest interrupts off time was held and how it happened. During testing, this RCU lockdep dump appeared: [ 1257.829021] =============================== [ 1257.829021] [ INFO: suspicious RCU usage. ] [ 1257.829021] 3.10.0-rc1-test+ #171 Tainted: G W [ 1257.829021] ------------------------------- [ 1257.829021] /home/rostedt/work/git/linux-trace.git/include/linux/rcupdate.h:780 rcu_read_lock() used illegally while idle! [ 1257.829021] [ 1257.829021] other info that might help us debug this: [ 1257.829021] [ 1257.829021] [ 1257.829021] RCU used illegally from idle CPU! [ 1257.829021] rcu_scheduler_active = 1, debug_locks = 0 [ 1257.829021] RCU used illegally from extended quiescent state! [ 1257.829021] 2 locks held by trace-cmd/4831: [ 1257.829021] #0: (max_trace_lock){......}, at: [<ffffffff810e2b77>] stop_critical_timing+0x1a3/0x209 [ 1257.829021] #1: (rcu_read_lock){.+.+..}, at: [<ffffffff810dae5a>] __update_max_tr+0x88/0x1ee [ 1257.829021] [ 1257.829021] stack backtrace: [ 1257.829021] CPU: 3 PID: 4831 Comm: trace-cmd Tainted: G W 3.10.0-rc1-test+ #171 [ 1257.829021] Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./To be filled by O.E.M., BIOS SDBLI944.86P 05/08/2007 [ 1257.829021] 0000000000000001 ffff880065f49da8 ffffffff8153dd2b ffff880065f49dd8 [ 1257.829021] ffffffff81092a00 ffff88006bd78680 ffff88007add7500 0000000000000003 [ 1257.829021] ffff88006bd78680 ffff880065f49e18 ffffffff810daebf ffffffff810dae5a [ 1257.829021] Call Trace: [ 1257.829021] [<ffffffff8153dd2b>] dump_stack+0x19/0x1b [ 1257.829021] [<ffffffff81092a00>] lockdep_rcu_suspicious+0x109/0x112 [ 1257.829021] [<ffffffff810daebf>] __update_max_tr+0xed/0x1ee [ 1257.829021] [<ffffffff810dae5a>] ? __update_max_tr+0x88/0x1ee [ 1257.829021] [<ffffffff811002b9>] ? user_enter+0xfd/0x107 [ 1257.829021] [<ffffffff810dbf85>] update_max_tr_single+0x11d/0x12d [ 1257.829021] [<ffffffff811002b9>] ? user_enter+0xfd/0x107 [ 1257.829021] [<ffffffff810e2b15>] stop_critical_timing+0x141/0x209 [ 1257.829021] [<ffffffff8109569a>] ? trace_hardirqs_on+0xd/0xf [ 1257.829021] [<ffffffff811002b9>] ? user_enter+0xfd/0x107 [ 1257.829021] [<ffffffff810e3057>] time_hardirqs_on+0x2a/0x2f [ 1257.829021] [<ffffffff811002b9>] ? user_enter+0xfd/0x107 [ 1257.829021] [<ffffffff8109550c>] trace_hardirqs_on_caller+0x16/0x197 [ 1257.829021] [<ffffffff8109569a>] trace_hardirqs_on+0xd/0xf [ 1257.829021] [<ffffffff811002b9>] user_enter+0xfd/0x107 [ 1257.829021] [<ffffffff810029b4>] do_notify_resume+0x92/0x97 [ 1257.829021] [<ffffffff8154bdca>] int_signal+0x12/0x17 What happened was entering into the user code, the interrupts were enabled and a max interrupts off was recorded. The trace buffer was saved along with various information about the task: comm, pid, uid, priority, etc. The uid is recorded with task_uid(tsk). But this is a macro that uses rcu_read_lock() to retrieve the data, and this happened to happen where RCU is blind (user_enter). As only the preempt and irqs off tracers can have this happen, and they both only have the tsk == current, if tsk == current, use current_uid() instead of task_uid(), as current_uid() does not use RCU as only current can change its uid. This fixes the RCU suspicious splat. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 23 5月, 2013 1 次提交
-
-
由 Steven Rostedt (Red Hat) 提交于
If ftrace=<tracer> is on the kernel command line, when that tracer is registered, it will be initiated by tracing_set_tracer() to execute that tracer. The nop tracer is just a stub tracer that is used to have no tracer enabled. It is assigned at early bootup as it is the default tracer. But if ftrace=nop is on the kernel command line, the registering of the nop tracer will call tracing_set_tracer() which will try to execute the nop tracer. But it expects tr->current_trace to be assigned something as it usually is assigned to the nop tracer. As it hasn't been assigned to anything yet, it causes the system to crash. The simple fix is to move the tr->current_trace = nop before registering the nop tracer. The functionality is still the same as the nop tracer doesn't do anything anyway. Reported-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 30 4月, 2013 1 次提交
-
-
由 Steven Rostedt 提交于
During the 3.10 merge, a conflict happened and the resolution was almost, but not quite, correct. An if statement was reversed. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org> [ Duh. That was just silly of me - Linus ] Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 4月, 2013 1 次提交
-
-
由 Namhyung Kim 提交于
Check return value and bail out if it's NULL. Link: http://lkml.kernel.org/r/1365553093-10180-2-git-send-email-namhyung@kernel.org Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: stable@vger.kernel.org Signed-off-by: NNamhyung Kim <namhyung@kernel.org> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 09 4月, 2013 2 次提交
-
-
由 Chen Gang 提交于
Use strlcpy() instead of strncpy() as it will always add a '\0' to the end of the string even if the buffer is smaller than what is being copied. Link: http://lkml.kernel.org/r/51624254.30301@asianux.comSigned-off-by: NChen Gang <gang.chen@asianux.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
The commit 34600f0e "tracing: Fix race with max_tr and changing tracers" fixed the updating of the main buffers with the race of changing tracers, but left out the fix to the updating of just a per cpu buffer. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 08 4月, 2013 1 次提交
-
-
由 Chen Gang 提交于
For NUL terminated string we always need to set '\0' at the end. Signed-off-by: NChen Gang <gang.chen@asianux.com> Cc: rostedt@goodmis.org Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/51624254.30301@asianux.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 21 3月, 2013 1 次提交
-
-
由 Steven Rostedt (Red Hat) 提交于
Update the README file in debugfs/tracing to something more useful. What's currently in the file is very old and what it shows doesn't have much use. Heck, it tells you how to mount debugfs! But to read this file you would have already needed to mount it. Replace the file with current up-to-date information. It's rather limited, but what do you expect from a pseudo README file. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 16 3月, 2013 3 次提交
-
-
由 Steven Rostedt (Red Hat) 提交于
ftrace_dump() had a lot of issues. What ftrace_dump() does, is when ftrace_dump_on_oops is set (via a kernel parameter or sysctl), it will dump out the ftrace buffers to the console when either a oops, panic, or a sysrq-z occurs. This was written a long time ago when ftrace was fragile to recursion. But it wasn't written well even for that. There's a possible deadlock that can occur if a ftrace_dump() is happening and an NMI triggers another dump. This is because it grabs a lock before checking if the dump ran. It also totally disables ftrace, and tracing for no good reasons. As the ring_buffer now checks if it is read via a oops or NMI, where there's a chance that the buffer gets corrupted, it will disable itself. No need to have ftrace_dump() do the same. ftrace_dump() is now cleaned up where it uses an atomic counter to make sure only one dump happens at a time. A simple atomic_inc_return() is enough that is needed for both other CPUs and NMIs. No need for a spinlock, as if one CPU is running the dump, no other CPU needs to do it too. The tracing_on variable is turned off and not turned on. The original code did this, but it wasn't pretty. By just disabling this variable we get the result of not seeing traces that happen between crashes. For sysrq-z, it doesn't get turned on, but the user can always write a '1' to the tracing_on file. If they are using sysrq-z, then they should know about tracing_on. The new code is much easier to read and less error prone. No more deadlock possibility when an NMI triggers here. Reported-by: Nzhangwei(Jovi) <jovi.zhangwei@huawei.com> Cc: stable@vger.kernel.org Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 zhangwei(Jovi) 提交于
TRACE_MAX_PRINT macro is defined, but is not used. Link: http://lkml.kernel.org/r/513D8421.4070404@huawei.comSigned-off-by: Nzhangwei(Jovi) <jovi.zhangwei@huawei.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 zhangwei(Jovi) 提交于
Use pr_warn_once, instead of making an open coded implementation. Link: http://lkml.kernel.org/r/513D8419.20400@huawei.comSigned-off-by: Nzhangwei(Jovi) <jovi.zhangwei@huawei.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 15 3月, 2013 29 次提交
-
-
由 Steven Rostedt (Red Hat) 提交于
The function trace_clock() calls "local_clock()" which is exactly the same clock that perf uses. I'm not sure why perf doesn't call trace_clock(), as trace_clock() doesn't have any users. But now it does. As trace_clock() calls local_clock() like perf does, I added the trace_clock "perf" option that uses trace_clock(). Now the ftrace buffers can use the same clock as perf uses. This will be useful when perf starts reading the ftrace buffers, and will be able to interleave them with the same clock data. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add a simple trace clock called "uptime" for those that are interested in the uptime of the trace. It uses jiffies as that's the safest method, as other uptime clocks grab seq locks, which could cause a deadlock if taken from an event or function tracer. Requested-by: NMauro Carvalho Chehab <mchehab@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Currently, the only way to stop the latency tracers from doing function tracing is to fully disable the function tracer from the proc file system: echo 0 > /proc/sys/kernel/ftrace_enabled This is a big hammer approach as it disables function tracing for all users. This includes kprobes, perf, stack tracer, etc. Instead, create a function-trace option that the latency tracers can check to determine if it should enable function tracing or not. This option can be set or cleared even while the tracer is active and the tracers will disable or enable function tracing depending on how the option was set. Instead of using the proc file, disable latency function tracing with echo 0 > /debug/tracing/options/function-trace Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Altough the trace_dump_stack() already skips three functions in the call to stack trace, which gets the stack trace to start at the caller of the function, the caller may want to skip some more too (as it may have helper functions). Add a skip argument to the trace_dump_stack() that lets the caller skip back tracing functions that it doesn't care about. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
echo 'schedule:snapshot:1' > /debug/tracing/set_ftrace_filter This will cause the scheduler to trigger a snapshot the next time it's called (you can use any function that's not called by NMI). Even though it triggers only once, you still need to remove it with: echo '!schedule:snapshot:0' > /debug/tracing/set_ftrace_filter The :1 can be left off for the first command: echo 'schedule:snapshot' > /debug/tracing/set_ftrace_filter But this will cause all calls to schedule to trigger a snapshot. This must be removed without the ':0' echo '!schedule:snapshot' > /debug/tracing/set_ftrace_filter As adding a "count" is a different operation (internally). Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add alloc_snapshot() and free_snapshot() to allocate and free the snapshot buffer respectively, and use these to remove duplicate code. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add EXPORT_SYMBOL_GPL() to let the tracing_snapshot() functions be called from modules. Also add a test to see if the snapshot was called from NMI context and just warn in the tracing buffer if so, and return. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
There's a few places that ftrace uses trace_printk() for internal use, but this requires context (normal, softirq, irq, NMI) buffers to keep things lockless. But the trace_puts() does not, as it can write the string directly into the ring buffer. Make a internal helper for trace_puts() and have the internal functions use that. This way the extra context buffers are not used. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
The trace_printk() is extremely fast and is very handy as it can be used in any context (including NMIs!). But it still requires scanning the fmt string for parsing the args. Even the trace_bprintk() requires a scan to know what args will be saved, although it doesn't copy the format string itself. Several times trace_printk() has no args, and wastes cpu cycles scanning the fmt string. Adding trace_puts() allows the developer to use an even faster tracing method that only saves the pointer to the string in the ring buffer without doing any format parsing at all. This will help remove even more of the "Heisenbug" effect, when debugging. Also fixed up the F_printk()s for the ftrace internal bprint and print events. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
If debugging the kernel, and the developer wants to use tracing_snapshot() in places where tracing_snapshot_alloc() may be difficult (or more likely, the developer is lazy and doesn't want to bother with tracing_snapshot_alloc() at all), then adding alloc_snapshot to the kernel command line parameter will tell ftrace to allocate the snapshot buffer (if configured) when it allocates the main tracing buffer. I also noticed that ring_buffer_expanded and tracing_selftest_disabled had inconsistent use of boolean "true" and "false" with "0" and "1". I cleaned that up too. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Move the tracing startup selftest code into its own function and when not enabled, always have that function succeed. This makes the register_tracer() function much more readable. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
The new snapshot feature is quite handy. It's a way for the user to take advantage of the spare buffer that, until then, only the latency tracers used to "snapshot" the buffer when it hit a max latency. Now users can trigger a "snapshot" manually when some condition is hit in a program. But a snapshot currently can not be triggered by a condition inside the kernel. With the addition of tracing_snapshot() and tracing_snapshot_alloc(), snapshots can now be taking when a condition is hit, and the developer wants to snapshot the case without stopping the trace. Note, any snapshot will overwrite the old one, so take care in how this is done. These new functions are to be used like tracing_on(), tracing_off() and trace_printk() are. That is, they should never be called in the mainline Linux kernel. They are solely for the purpose of debugging. The tracing_snapshot() will not allocate a buffer, but it is safe to be called from any context (except NMIs). But if a snapshot buffer isn't allocated when it is called, it will write to the live buffer, complaining about the lack of a snapshot buffer, and then stop tracing (giving you the "permanent snapshot"). tracing_snapshot_alloc() will allocate the snapshot buffer if it was not already allocated and then take the snapshot. This routine *may sleep*, and must be called from context that can sleep. The allocation is done with GFP_KERNEL and not atomic. If you need a snapshot in an atomic context, say in early boot, then it is best to call the tracing_snapshot_alloc() before then, where it will allocate the buffer, and then you can use the tracing_snapshot() anywhere you want and still get snapshots. Cc: Hiraku Toyooka <hiraku.toyooka.gu@hitachi.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add a ref count to the trace_array structure and prevent removal of instances that have open descriptors. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add the per_cpu directory to the created tracing instances: cd /sys/kernel/debug/tracing/instances mkdir foo ls foo/per_cpu/cpu0 buffer_size_kb snapshot_raw trace trace_pipe_raw snapshot stats trace_pipe Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add the "snapshot" file to the the multi-buffer instances. cd /sys/kernel/debug/tracing/instances mkdir foo ls foo buffer_size_kb buffer_total_size_kb events free_buffer set_event snapshot trace trace_clock trace_marker trace_options trace_pipe tracing_on cat foo/snapshot # tracer: nop # # # * Snapshot is freed * # # Snapshot commands: # echo 0 > snapshot : Clears and frees snapshot buffer # echo 1 > snapshot : Allocates snapshot buffer, if not already allocated. # Takes a snapshot of the main buffer. # echo 2 > snapshot : Clears snapshot buffer (but does not allocate) # (Doesn't have to be '2' works with any number that # is not a '0' or '1') Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
There's a bit of duplicate code in creating the trace buffers for the normal trace buffer and the max trace buffer among the instances and the main global_trace. This code can be consolidated and cleaned up a bit making the code cleaner and more readable as well as less duplication. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
The snapshot buffer belongs to the trace array not the tracer that is running. The trace array should be the data structure that keeps track of whether or not the snapshot buffer is allocated, not the tracer desciptor. Having the trace array keep track of it makes modifications so much easier. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add a 'snapshot_raw' per_cpu file that allows tools to read the raw binary data of the snapshot buffer. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add the snapshot file into the per_cpu tracing directories to allow them to be read for an individual cpu. This also allows to clear an individual cpu from the snapshot buffer. If the kernel allows it (CONFIG_RING_BUFFER_ALLOW_SWAP is set), then echoing in '1' into one of the per_cpu snapshot files will do an individual cpu buffer swap instead of the entire file. Cc: Hiraku Toyooka <hiraku.toyooka.gu@hitachi.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Currently, the way the latency tracers and snapshot feature works is to have a separate trace_array called "max_tr" that holds the snapshot buffer. For latency tracers, this snapshot buffer is used to swap the running buffer with this buffer to save the current max latency. The only items needed for the max_tr is really just a copy of the buffer itself, the per_cpu data pointers, the time_start timestamp that states when the max latency was triggered, and the cpu that the max latency was triggered on. All other fields in trace_array are unused by the max_tr, making the max_tr mostly bloat. This change removes the max_tr completely, and adds a new structure called trace_buffer, that holds the buffer pointer, the per_cpu data pointers, the time_start timestamp, and the cpu where the latency occurred. The trace_array, now has two trace_buffers, one for the normal trace and one for the max trace or snapshot. By doing this, not only do we remove the bloat from the max_trace but the instances of traces can now use their own snapshot feature and not have just the top level global_trace have the snapshot feature and latency tracers for itself. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Currently we do not know what buffer a module event was enabled in. On unload, it is safest to clear all buffer instances, not just the top level buffer. Todo: Clear only the buffer that the event was used in. The infrastructure is there to do this, but it makes the code a bit more complex. Lets get the current code vetted before we add that. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Move the logic to wake up on ring buffer data into the ring buffer code itself. This simplifies the tracing code a lot and also has the added benefit that waiters on one of the instance buffers can be woken only when data is added to that instance instead of data added to any instance. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
If the ring buffer is empty, a read to trace_pipe_raw wont block. The tracing code has the infrastructure to wake up waiting readers, but the trace_pipe_raw doesn't take advantage of that. When a read is done to trace_pipe_raw without the O_NONBLOCK flag set, have the read block until there's data in the requested buffer. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
The trace_pipe_raw never implemented polling and this was casing issues for several utilities. This is now implemented. Blocked reads still are on the TODO list. Reported-by: NMauro Carvalho Chehab <mchehab@redhat.com> Tested-by: NMauro Carvalho Chehab <mchehab@redhat.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Currently only the splice NONBLOCK flag is checked to determine if the splice read should block or not. But the file descriptor NONBLOCK flag also needs to be checked. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
Add a method to the hijacked dentry descriptor of the "instances" directory to allow for rmdir to remove an instance of a multibuffer. Example: cd /debug/tracing/instances mkdir hello ls hello/ rmdir hello ls Like the mkdir method, the i_mutex is dropped for the instances directory. The instances directory is created at boot up and can not be renamed or removed. The trace_types_lock mutex is used to synchronize adding and removing of instances. I've run several stress tests with different threads trying to create and delete directories of the same name, and it has stood up fine. Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
Add the interface ("instances" directory) to add multiple buffers to ftrace. To create a new instance, simply do a mkdir in the instances directory: This will create a directory with the following: # cd instances # mkdir foo # ls foo buffer_size_kb free_buffer trace_clock trace_pipe buffer_total_size_kb set_event trace_marker tracing_enabled events/ trace trace_options tracing_on Currently only events are able to be set, and there isn't a way to delete a buffer when one is created (yet). Note, the i_mutex lock is dropped from the parent "instances" directory during the mkdir operation. As the "instances" directory can not be renamed or deleted (created on boot), I do not see any harm in dropping the lock. The creation of the sub directories is protected by trace_types_lock mutex, which only lets one instance get into the code path at a time. If two tasks try to create or delete directories of the same name, only one will occur and the other will fail with -EEXIST. Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
The global and max-tr currently use static per_cpu arrays for the CPU data descriptors. But in order to get new allocated trace_arrays, they need to be allocated per_cpu arrays. Instead of using the static arrays, switch the global and max-tr to use allocated data. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
Pass the struct ftrace_event_file *ftrace_file to the trace_event_buffer_lock_reserve() (new function that replaces the trace_current_buffer_lock_reserver()). The ftrace_file holds a pointer to the trace_array that is in use. In the case of multiple buffers with different trace_arrays, this allows different events to be recorded into different buffers. Also fixed some of the stale comments in include/trace/ftrace.h Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-