- 05 10月, 2016 1 次提交
-
-
由 Darrick J. Wong 提交于
Report the reflink feature in the XFS geometry so that xfs_info and friends know the filesystem has this feature. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 04 10月, 2016 1 次提交
-
-
由 Darrick J. Wong 提交于
Modify the growfs code to initialize new refcount btree blocks. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 19 9月, 2016 1 次提交
-
-
由 Darrick J. Wong 提交于
One unfortunate quirk of the reference count and reverse mapping btrees -- they can expand in size when blocks are written to *other* allocation groups if, say, one large extent becomes a lot of tiny extents. Since we don't want to start throwing errors in the middle of CoWing, we need to reserve some blocks to handle future expansion. The transaction block reservation counters aren't sufficient here because we have to have a reserve of blocks in every AG, not just somewhere in the filesystem. Therefore, create two per-AG block reservation pools. One feeds the AGFL so that rmapbt expansion always succeeds, and the other feeds all other metadata so that refcountbt expansion never fails. Use the count of how many reserved blocks we need to have on hand to create a virtual reservation in the AG. Through selective clamping of the maximum length of allocation requests and of the length of the longest free extent, we can make it look like there's less free space in the AG unless the reservation owner is asking for blocks. In other words, play some accounting tricks in-core to make sure that we always have blocks available. On the plus side, there's nothing to clean up if we crash, which is contrast to the strategy that the rough draft used (actually removing extents from the freespace btrees). Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 17 8月, 2016 1 次提交
-
-
由 Darrick J. Wong 提交于
Track the number of blocks used for the rmapbt in the AGF. When we get to the AG reservation code we need this counter to quickly make our reservation during mount. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 03 8月, 2016 6 次提交
-
-
由 Darrick J. Wong 提交于
Originally-From: Dave Chinner <dchinner@redhat.com> So xfs_info and other userspace utilities know the filesystem is using this feature. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Darrick J. Wong 提交于
Originally-From: Dave Chinner <dchinner@redhat.com> The rmap btree is allocated from the AGFL, which means we have to ensure ENOSPC is reported to userspace before we run out of free space in each AG. The last allocation in an AG can cause a full height rmap btree split, and that means we have to reserve at least this many blocks *in each AG* to be placed on the AGFL at ENOSPC. Update the various space calculation functions to handle this. Also, because the macros are now executing conditional code and are called quite frequently, convert them to functions that initialise variables in the struct xfs_mount, use the new variables everywhere and document the calculations better. [darrick.wong@oracle.com: don't reserve blocks if !rmap] [dchinner@redhat.com: update m_ag_max_usable after growfs] Signed-off-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Darrick J. Wong 提交于
Originally-From: Dave Chinner <dchinner@redhat.com> Now we can read and write rmap btree blocks, we can add support to the growfs code to initialise new rmap btree blocks. [darrick.wong@oracle.com: fill out the rmap offset fields] Signed-off-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Darrick J. Wong 提交于
For the rmap btree to work, we have to feed the extent owner information to the the allocation and freeing functions. This information is what will end up in the rmap btree that tracks allocated extents. While we technically don't need the owner information when freeing extents, passing it allows us to validate that the extent we are removing from the rmap btree actually belonged to the owner we expected it to belong to. We also define a special set of owner values for internal metadata that would otherwise have no owner. This allows us to tell the difference between metadata owned by different per-ag btrees, as well as static fs metadata (e.g. AG headers) and internal journal blocks. There are also a couple of special cases we need to take care of - during EFI recovery, we don't actually know who the original owner was, so we need to pass a wildcard to indicate that we aren't checking the owner for validity. We also need special handling in growfs, as we "free" the space in the last AG when extending it, but because it's new space it has no actual owner... While touching the xfs_bmap_add_free() function, re-order the parameters to put the struct xfs_mount first. Extend the owner field to include both the owner type and some sort of index within the owner. The index field will be used to support reverse mappings when reflink is enabled. When we're freeing extents from an EFI, we don't have the owner information available (rmap updates have their own redo items). xfs_free_extent therefore doesn't need to do an rmap update. Make sure that the log replay code signals this correctly. This is based upon a patch originally from Dave Chinner. It has been extended to add more owner information with the intent of helping recovery operations when things go wrong (e.g. offset of user data block in a file). [dchinner: de-shout the xfs_rmap_*_owner helpers] [darrick: minor style fixes suggested by Christoph Hellwig] Signed-off-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Darrick J. Wong 提交于
Originally-From: Dave Chinner <dchinner@redhat.com> XFS reserves a small amount of space in each AG for the minimum number of free blocks needed for operation. Adding the rmap btree increases the number of reserved blocks, but it also increases the complexity of the calculation as the free inode btree is optional (like the rmbt). Rather than calculate the prealloc blocks every time we need to check it, add a function to calculate it at mount time and store it in the struct xfs_mount, and convert the XFS_PREALLOC_BLOCKS macro just to use the xfs-mount variable directly. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Darrick J. Wong 提交于
Restructure everything that used xfs_bmap_free to use xfs_defer_ops instead. For now we'll just remove the old symbols and play some cpp magic to make it work; in the next patch we'll actually rename everything. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 21 6月, 2016 1 次提交
-
-
由 Brian Foster 提交于
xfs_reserve_blocks() is responsible to update the XFS reserved block pool count at mount time or based on user request. When the caller requests to increase the reserve pool, blocks must be allocated from the global counters such that they are no longer available for general purpose use. If the requested reserve pool size is too large, XFS reserves what blocks are available. The implementation requires looking at the percpu counters and making an educated guess as to how many blocks to try and allocate from xfs_mod_fdblocks(), which can return -ENOSPC if the guess was not accurate due to counters being modified in parallel. xfs_reserve_blocks() retries the guess in this scenario until the allocation succeeds or it is determined that there is no space available in the fs. While not easily reproducible in the current form, the retry code doesn't actually work correctly if xfs_mod_fdblocks() actually fails. The problem is that the percpu calculations use the m_resblks counter to determine how many blocks to allocate, but unconditionally update m_resblks before the block allocation has actually succeeded. Therefore, if xfs_mod_fdblocks() fails, the code jumps to the retry label and uses the already updated m_resblks value to determine how many blocks to try and allocate. If the percpu counters previously suggested that the entire request was available, fdblocks_delta could end up set to 0. In that case, m_resblks is updated to the requested value, yet no blocks have been reserved at all. Refactor xfs_reserve_blocks() to use an explicit loop and make the code easier to follow. Since we have to drop the spinlock across the xfs_mod_fdblocks() call, use a delta value for m_resblks as well and only apply the delta once allocation succeeds. [dchinner: convert to do {} while() loop] Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 06 4月, 2016 2 次提交
-
-
由 Christoph Hellwig 提交于
Merge xfs_trans_reserve and xfs_trans_alloc into a single function call that returns a transaction with all the required log and block reservations, and which allows passing transaction flags directly to avoid the cumbersome _xfs_trans_alloc interface. While we're at it we also get rid of the transaction type argument that has been superflous since we stopped supporting the non-CIL logging mode. The guts of it will be removed in another patch. [dchinner: fixed transaction leak in error path in xfs_setattr_nonsize] Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
Commit 96f859d5 ("libxfs: pack the agfl header structure so XFS_AGFL_SIZE is correct") allowed the freelist to use the empty slot at the end of the freelist on 64 bit systems that was not being used due to sizeof() rounding up the structure size. This has caused versions of xfs_repair prior to 4.5.0 (which also has the fix) to report this as a corruption once the filesystem has been grown. Older kernels can also have problems (seen from a whacky container/vm management environment) mounting filesystems grown on a system with a newer kernel than the vm/container it is deployed on. To avoid this problem, change the initial free list indexes not to wrap across the end of the AGFL, hence avoiding the initialisation of agf_fllast to the last index in the AGFL. cc: <stable@vger.kernel.org> # 4.4-4.5 Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NCarlos Maiolino <cmaiolino@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 19 8月, 2015 1 次提交
-
-
由 Dave Chinner 提交于
Adding this simple change to xfstests:common/rc::_scratch_mkfs_xfs: + if [ $mkfs_status -eq 0 ]; then + xfs_admin -U generate $SCRATCH_DEV > /dev/null + fi triggers all sorts of errors in xfstests. xfs/104 is an example, where growfs fails with a UUID mismatch corruption detected by xfs_agf_write_verify() when trying to write the first new AG headers. Fix this problem by making sure we copy the sb_meta_uuid into new metadata written by growfs. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NEric Sandeen <sandeen@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 04 6月, 2015 2 次提交
-
-
由 Christoph Hellwig 提交于
The flags argument to xfs_trans_commit is not useful for most callers, as a commit of a transaction without a permanent log reservation must pass 0 here, and all callers for a transaction with a permanent log reservation except for xfs_trans_roll must pass XFS_TRANS_RELEASE_LOG_RES. So remove the flags argument from the public xfs_trans_commit interfaces, and introduce low-level __xfs_trans_commit variant just for xfs_trans_roll that regrants a log reservation instead of releasing it. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
xfs_trans_cancel takes two flags arguments: XFS_TRANS_RELEASE_LOG_RES and XFS_TRANS_ABORT. Both of them are a direct product of the transaction state, and can be deducted: - any dirty transaction needs XFS_TRANS_ABORT to be properly canceled, and XFS_TRANS_ABORT is a noop for a transaction that is not dirty. - any transaction with a permanent log reservation needs XFS_TRANS_RELEASE_LOG_RES to be properly canceled, and passing XFS_TRANS_RELEASE_LOG_RES for a transaction without a permanent log reservation is invalid. So just remove the flags argument and do the right thing. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 29 5月, 2015 1 次提交
-
-
由 Brian Foster 提交于
Define an fs geometry bit for sparse inode chunks such that the characteristic of the fs can be identified by userspace. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 23 2月, 2015 5 次提交
-
-
由 Dave Chinner 提交于
Now that there are no users of the bitfield based incore superblock modification API, just remove the whole damn lot of it, including all the bitfield definitions. This finally removes a lot of cruft that has been around for a long time. Credit goes to Christoph Hellwig for providing a great patch connecting all the dots to enale us to do this. This patch is derived from that work. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
Now that the in-core superblock infrastructure has been replaced with generic per-cpu counters, we don't need it anymore. Nuke it from orbit so we are sure that it won't haunt us again... Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
XFS has hand-rolled per-cpu counters for the superblock since before there was any generic implementation. The free block counter is special in that it is used for ENOSPC detection outside transaction contexts for for delayed allocation. This means that the counter needs to be accurate at zero. The current per-cpu counter code jumps through lots of hoops to ensure we never run past zero, but we don't need to make all those jumps with the generic counter implementation. The generic counter implementation allows us to pass a "batch" threshold at which the addition/subtraction to the counter value will be folded back into global value under lock. We can use this feature to reduce the batch size as we approach 0 in a very similar manner to the existing counters and their rebalance algorithm. If we use a batch size of 1 as we approach 0, then every addition and subtraction will be done against the global value and hence allow accurate detection of zero threshold crossing. Hence we can replace the handrolled, accurate-at-zero counters with generic percpu counters. Note: this removes just enough of the icsb infrastructure to compile without warnings. The rest will go in subsequent commits. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
XFS has hand-rolled per-cpu counters for the superblock since before there was any generic implementation. The free inode counter is not used for any limit enforcement - the per-AG free inode counters are used during allocation to determine if there are inode available for allocation. Hence we don't need any of the complexity of the hand-rolled counters and we can simply replace them with generic per-cpu counters similar to the inode counter. This version introduces a xfs_mod_ifree() helper function from Christoph Hellwig. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
XFS has hand-rolled per-cpu counters for the superblock since before there was any generic implementation. There are some warts around the use of them for the inode counter as the hand rolled counter is designed to be accurate at zero, but has no specific accurracy at any other value. This design causes problems for the maximum inode count threshold enforcement, as there is no trigger that balances the counters as they get close tothe maximum threshold. Instead of designing new triggers for balancing, just replace the handrolled per-cpu counter with a generic counter. This enables us to update the counter through the normal superblock modification funtions, but rather than do that we add a xfs_mod_icount() helper function (from Christoph Hellwig) and keep the percpu counter outside the superblock in the struct xfs_mount. This means we still need to initialise the per-cpu counter specifically when we read the superblock, and vice versa when we log/write it, but it does mean that we don't need to change any other code. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 16 2月, 2015 1 次提交
-
-
由 Christoph Hellwig 提交于
Add operations to export pNFS block layouts from an XFS filesystem. See the previous commit adding the operations for an explanation of them. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 05 2月, 2015 1 次提交
-
-
由 Christoph Hellwig 提交于
Growfs updates the secondary superblocks using synchronous unlogged buffer writes after committing the updates to the primary superblock. Mark the transaction to the primary superblock as synchronous so that we guarantee it is committed to disk before we update the secondary superblocks. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 22 1月, 2015 2 次提交
-
-
由 Dave Chinner 提交于
We now have several superblock loggin functions that are identical except for the transaction reservation and whether it shoul dbe a synchronous transaction or not. Consolidate these all into a single function, a single reserveration and a sync flag and call it xfs_sync_sb(). Also, xfs_mod_sb() is not really a modification function - it's the operation of logging the superblock buffer. hence change the name of it to reflect this. Note that we have to change the mp->m_update_flags that are passed around at mount time to a boolean simply to indicate a superblock update is needed. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
When we log changes to the superblock, we first have to write them to the on-disk buffer, and then log that. Right now we have a complex bitfield based arrangement to only write the modified field to the buffer before we log it. This used to be necessary as a performance optimisation because we logged the superblock buffer in every extent or inode allocation or freeing, and so performance was extremely important. We haven't done this for years, however, ever since the lazy superblock counters pulled the superblock logging out of the transaction commit fast path. Hence we have a bunch of complexity that is not necessary that makes writing the in-core superblock to disk much more complex than it needs to be. We only need to log the superblock now during management operations (e.g. during mount, unmount or quota control operations) so it is not a performance critical path anymore. As such, remove the complex field based logging mechanism and replace it with a simple conversion function similar to what we use for all other on-disk structures. This means we always log the entirity of the superblock, but again because we rarely modify the superblock this is not an issue for log bandwidth or CPU time. Indeed, if we do log the superblock frequently, delayed logging will minimise the impact of this overhead. [Fixed gquota/pquota inode sharing regression noticed by bfoster.] Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 28 11月, 2014 2 次提交
-
-
由 Christoph Hellwig 提交于
More on-disk format consolidation. A few declarations that weren't on-disk format related move into better suitable spots. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
More consolidatation for the on-disk format defintions. Note that the XFS_IS_REALTIME_INODE moves to xfs_linux.h instead as it is not related to the on disk format, but depends on a CONFIG_ option. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 02 10月, 2014 1 次提交
-
-
由 Dave Chinner 提交于
xfs_buf_read_uncached() has two failure modes. If can either return NULL or bp->b_error != 0 depending on the type of failure, and not all callers check for both. Fix it so that xfs_buf_read_uncached() always returns the error status, and the buffer is returned as a function parameter. The buffer will only be returned on success. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 25 6月, 2014 1 次提交
-
-
由 Dave Chinner 提交于
Convert all the errors the core XFs code to negative error signs like the rest of the kernel and remove all the sign conversion we do in the interface layers. Errors for conversion (and comparison) found via searches like: $ git grep " E" fs/xfs $ git grep "return E" fs/xfs $ git grep " E[A-Z].*;$" fs/xfs Negation points found via searches like: $ git grep "= -[a-z,A-Z]" fs/xfs $ git grep "return -[a-z,A-D,F-Z]" fs/xfs $ git grep " -[a-z].*;" fs/xfs [ with some bits I missed from Brian Foster ] Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 22 6月, 2014 1 次提交
-
-
由 Eric Sandeen 提交于
XFS_ERROR was designed long ago to trap return values, but it's not runtime configurable, it's not consistently used, and we can do similar error trapping with ftrace scripts and triggers from userspace. Just nuke XFS_ERROR and associated bits. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 06 6月, 2014 1 次提交
-
-
由 Dave Chinner 提交于
Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 20 5月, 2014 3 次提交
-
-
由 Dave Chinner 提交于
We reject any filesystem that is mounted with this feature bit set, so we don't need to check for it anywhere else. Remove the function for checking if the feature bit is set and any code that uses it. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJie Liu <jeff.liu@oracle.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
If the the V2 directory feature bit is not set in the superblock feature mask the filesystem will fail the good version check. Hence we don't need any other version checking on the dir2 feature bit in the code as the filesystem will not mount without it set. Remove the checking code. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
mkfs has turned on the XFS_SB_VERSION_NLINKBIT feature bit by default since November 2007. It's about time we simply made the kernel code turn it on by default and so always convert v1 inodes to v2 inodes when reading them in from disk or allocating them. This This removes needless version checks and modification when bumping link counts on inodes, and will take code out of a few common code paths. text data bss dec hex filename 783251 100867 616 884734 d7ffe fs/xfs/xfs.o.orig 782664 100867 616 884147 d7db3 fs/xfs/xfs.o.patched Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 24 4月, 2014 2 次提交
-
-
由 Brian Foster 提交于
Define the XFS_FSOP_GEOM_FLAGS_FINOBT fs geometry flag and set the associated bit if the filesystem supports the free inode btree. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Brian Foster 提交于
Add finobt support to growfs. Initialize the agi root/level fields and the root finobt block. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 11 12月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
This loop in xfs_growfs_data_private() is incorrect for V4 superblocks filesystems: for (bucket = 0; bucket < XFS_AGFL_SIZE(mp); bucket++) agfl->agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK); For V4 filesystems, we don't have a agfl header structure, and so XFS_AGFL_SIZE() returns an entire sector's worth of entries, which we then index from an offset into the sector. Hence: buffer overrun. This problem was introduced in 3.10 by commit 77c95bba ("xfs: add CRC checks to the AGFL") which changed the AGFL structure but failed to update the growfs code to handle the different structures. Fix it by using the correct offset into the buffer for both V4 and V5 filesystems. Cc: <stable@vger.kernel.org> Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NJie Liu <jeff.liu@oracle.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit b7d961b3)
-
- 06 12月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
This loop in xfs_growfs_data_private() is incorrect for V4 superblocks filesystems: for (bucket = 0; bucket < XFS_AGFL_SIZE(mp); bucket++) agfl->agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK); For V4 filesystems, we don't have a agfl header structure, and so XFS_AGFL_SIZE() returns an entire sector's worth of entries, which we then index from an offset into the sector. Hence: buffer overrun. This problem was introduced in 3.10 by commit 77c95bba ("xfs: add CRC checks to the AGFL") which changed the AGFL structure but failed to update the growfs code to handle the different structures. Fix it by using the correct offset into the buffer for both V4 and V5 filesystems. Cc: <stable@vger.kernel.org> Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NJie Liu <jeff.liu@oracle.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 24 10月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
Currently the xfs_inode.h header has a dependency on the definition of the BMAP btree records as the inode fork includes an array of xfs_bmbt_rec_host_t objects in it's definition. Move all the btree format definitions from xfs_btree.h, xfs_bmap_btree.h, xfs_alloc_btree.h and xfs_ialloc_btree.h to xfs_format.h to continue the process of centralising the on-disk format definitions. With this done, the xfs inode definitions are no longer dependent on btree header files. The enables a massive culling of unnecessary includes, with close to 200 #include directives removed from the XFS kernel code base. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-