1. 18 1月, 2012 1 次提交
  2. 23 8月, 2011 3 次提交
    • D
      KEYS: Correctly destroy key payloads when their keytype is removed · 0c061b57
      David Howells 提交于
      unregister_key_type() has code to mark a key as dead and make it unavailable in
      one loop and then destroy all those unavailable key payloads in the next loop.
      However, the loop to mark keys dead renders the key undetectable to the second
      loop by changing the key type pointer also.
      
      Fix this by the following means:
      
       (1) The key code has two garbage collectors: one deletes unreferenced keys and
           the other alters keyrings to delete links to old dead, revoked and expired
           keys.  They can end up holding each other up as both want to scan the key
           serial tree under spinlock.  Combine these into a single routine.
      
       (2) Move the dead key marking, dead link removal and dead key removal into the
           garbage collector as a three phase process running over the three cycles
           of the normal garbage collection procedure.  This is tracked by the
           KEY_GC_REAPING_DEAD_1, _2 and _3 state flags.
      
           unregister_key_type() then just unlinks the key type from the list, wakes
           up the garbage collector and waits for the third phase to complete.
      
       (3) Downgrade the key types sem in unregister_key_type() once it has deleted
           the key type from the list so that it doesn't block the keyctl() syscall.
      
       (4) Dead keys that cannot be simply removed in the third phase have their
           payloads destroyed with the key's semaphore write-locked to prevent
           interference by the keyctl() syscall.  There should be no in-kernel users
           of dead keys of that type by the point of unregistration, though keyctl()
           may be holding a reference.
      
       (5) Only perform timer recalculation in the GC if the timer actually expired.
           If it didn't, we'll get another cycle when it goes off - and if the key
           that actually triggered it has been removed, it's not a problem.
      
       (6) Only garbage collect link if the timer expired or if we're doing dead key
           clean up phase 2.
      
       (7) As only key_garbage_collector() is permitted to use rb_erase() on the key
           serial tree, it doesn't need to revalidate its cursor after dropping the
           spinlock as the node the cursor points to must still exist in the tree.
      
       (8) Drop the spinlock in the GC if there is contention on it or if we need to
           reschedule.  After dealing with that, get the spinlock again and resume
           scanning.
      
      This has been tested in the following ways:
      
       (1) Run the keyutils testsuite against it.
      
       (2) Using the AF_RXRPC and RxKAD modules to test keytype removal:
      
           Load the rxrpc_s key type:
      
      	# insmod /tmp/af-rxrpc.ko
      	# insmod /tmp/rxkad.ko
      
           Create a key (http://people.redhat.com/~dhowells/rxrpc/listen.c):
      
      	# /tmp/listen &
      	[1] 8173
      
           Find the key:
      
      	# grep rxrpc_s /proc/keys
      	091086e1 I--Q--     1 perm 39390000     0     0 rxrpc_s   52:2
      
           Link it to a session keyring, preferably one with a higher serial number:
      
      	# keyctl link 0x20e36251 @s
      
           Kill the process (the key should remain as it's linked to another place):
      
      	# fg
      	/tmp/listen
      	^C
      
           Remove the key type:
      
      	rmmod rxkad
      	rmmod af-rxrpc
      
           This can be made a more effective test by altering the following part of
           the patch:
      
      	if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
      		/* Make sure everyone revalidates their keys if we marked a
      		 * bunch as being dead and make sure all keyring ex-payloads
      		 * are destroyed.
      		 */
      		kdebug("dead sync");
      		synchronize_rcu();
      
           To call synchronize_rcu() in GC phase 1 instead.  That causes that the
           keyring's old payload content to hang around longer until it's RCU
           destroyed - which usually happens after GC phase 3 is complete.  This
           allows the destroy_dead_key branch to be tested.
      Reported-by: NBenjamin Coddington <bcodding@gmail.com>
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      0c061b57
    • D
      KEYS: The dead key link reaper should be non-reentrant · d199798b
      David Howells 提交于
      The dead key link reaper should be non-reentrant as it relies on global state
      to keep track of where it's got to when it returns to the work queue manager to
      give it some air.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      d199798b
    • D
      KEYS: Move the unreferenced key reaper to the keys garbage collector file · 8bc16dea
      David Howells 提交于
      Move the unreferenced key reaper function to the keys garbage collector file
      as that's a more appropriate place with the dead key link reaper.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      8bc16dea
  3. 22 1月, 2011 1 次提交
  4. 05 5月, 2010 1 次提交
  5. 25 2月, 2010 1 次提交
  6. 24 9月, 2009 1 次提交
    • D
      KEYS: Have the garbage collector set its timer for live expired keys · 606531c3
      David Howells 提交于
      The key garbage collector sets a timer to start a new collection cycle at the
      point the earliest key to expire should be considered garbage.  However, it
      currently only does this if the key it is considering hasn't yet expired.
      
      If the key being considering has expired, but hasn't yet reached the collection
      time then it is ignored, and won't be collected until some other key provokes a
      round of collection.
      
      Make the garbage collector set the timer for the earliest key that hasn't yet
      passed its collection time, rather than the earliest key that hasn't yet
      expired.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      606531c3
  7. 15 9月, 2009 1 次提交
    • D
      KEYS: Fix garbage collector · c08ef808
      David Howells 提交于
      Fix a number of problems with the new key garbage collector:
      
       (1) A rogue semicolon in keyring_gc() was causing the initial count of dead
           keys to be miscalculated.
      
       (2) A missing return in keyring_gc() meant that under certain circumstances,
           the keyring semaphore would be unlocked twice.
      
       (3) The key serial tree iterator (key_garbage_collector()) part of the garbage
           collector has been modified to:
      
           (a) Complete each scan of the keyrings before setting the new timer.
      
           (b) Only set the new timer for keys that have yet to expire.  This means
               that the new timer is now calculated correctly, and the gc doesn't
               get into a loop continually scanning for keys that have expired, and
               preventing other things from happening, like RCU cleaning up the old
               keyring contents.
      
           (c) Perform an extra scan if any keys were garbage collected in this one
           	 as a key might become garbage during a scan, and (b) could mean we
           	 don't set the timer again.
      
       (4) Made key_schedule_gc() take the time at which to do a collection run,
           rather than the time at which the key expires.  This means the collection
           of dead keys (key type unregistered) can happen immediately.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      c08ef808
  8. 02 9月, 2009 2 次提交
    • D
      KEYS: Add a keyctl to install a process's session keyring on its parent [try #6] · ee18d64c
      David Howells 提交于
      Add a keyctl to install a process's session keyring onto its parent.  This
      replaces the parent's session keyring.  Because the COW credential code does
      not permit one process to change another process's credentials directly, the
      change is deferred until userspace next starts executing again.  Normally this
      will be after a wait*() syscall.
      
      To support this, three new security hooks have been provided:
      cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
      the blank security creds and key_session_to_parent() - which asks the LSM if
      the process may replace its parent's session keyring.
      
      The replacement may only happen if the process has the same ownership details
      as its parent, and the process has LINK permission on the session keyring, and
      the session keyring is owned by the process, and the LSM permits it.
      
      Note that this requires alteration to each architecture's notify_resume path.
      This has been done for all arches barring blackfin, m68k* and xtensa, all of
      which need assembly alteration to support TIF_NOTIFY_RESUME.  This allows the
      replacement to be performed at the point the parent process resumes userspace
      execution.
      
      This allows the userspace AFS pioctl emulation to fully emulate newpag() and
      the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
      alter the parent process's PAG membership.  However, since kAFS doesn't use
      PAGs per se, but rather dumps the keys into the session keyring, the session
      keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
      the newpag flag.
      
      This can be tested with the following program:
      
      	#include <stdio.h>
      	#include <stdlib.h>
      	#include <keyutils.h>
      
      	#define KEYCTL_SESSION_TO_PARENT	18
      
      	#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)
      
      	int main(int argc, char **argv)
      	{
      		key_serial_t keyring, key;
      		long ret;
      
      		keyring = keyctl_join_session_keyring(argv[1]);
      		OSERROR(keyring, "keyctl_join_session_keyring");
      
      		key = add_key("user", "a", "b", 1, keyring);
      		OSERROR(key, "add_key");
      
      		ret = keyctl(KEYCTL_SESSION_TO_PARENT);
      		OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");
      
      		return 0;
      	}
      
      Compiled and linked with -lkeyutils, you should see something like:
      
      	[dhowells@andromeda ~]$ keyctl show
      	Session Keyring
      	       -3 --alswrv   4043  4043  keyring: _ses
      	355907932 --alswrv   4043    -1   \_ keyring: _uid.4043
      	[dhowells@andromeda ~]$ /tmp/newpag
      	[dhowells@andromeda ~]$ keyctl show
      	Session Keyring
      	       -3 --alswrv   4043  4043  keyring: _ses
      	1055658746 --alswrv   4043  4043   \_ user: a
      	[dhowells@andromeda ~]$ /tmp/newpag hello
      	[dhowells@andromeda ~]$ keyctl show
      	Session Keyring
      	       -3 --alswrv   4043  4043  keyring: hello
      	340417692 --alswrv   4043  4043   \_ user: a
      
      Where the test program creates a new session keyring, sticks a user key named
      'a' into it and then installs it on its parent.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      ee18d64c
    • D
      KEYS: Add garbage collection for dead, revoked and expired keys. [try #6] · 5d135440
      David Howells 提交于
      Add garbage collection for dead, revoked and expired keys.  This involved
      erasing all links to such keys from keyrings that point to them.  At that
      point, the key will be deleted in the normal manner.
      
      Keyrings from which garbage collection occurs are shrunk and their quota
      consumption reduced as appropriate.
      
      Dead keys (for which the key type has been removed) will be garbage collected
      immediately.
      
      Revoked and expired keys will hang around for a number of seconds, as set in
      /proc/sys/kernel/keys/gc_delay before being automatically removed.  The default
      is 5 minutes.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      5d135440