- 27 5月, 2010 1 次提交
-
-
由 InKi Dae 提交于
This is S6E63M0 AMOLED LCD Panel(480x800) driver using 3-wired SPI interface also almost features for lcd panel driver has been implemented in here. and I added new structure common for all the lcd panel drivers to include/linux/lcd.h file. LCD Panel driver needs interfaces for controlling device power such as power on/off and reset. these interfaces are device specific so it should be implemented to machine code at this time, we should create new structure for registering these functions as callbacks and also a header file for that structure and finally registered callback functions would be called by lcd panel driver. such header file(including new structure for lcd panel) would be added for all the lcd panel drivers. If anyone provides common structure for registering such callback functions then we could reduce unnecessary header files for lcd panel. I thought that suitable anyone could be include/linux/lcd.h so a new lcd_platform_data structure was added there. [akpm@linux-foundation.org: coding-style fixes] [randy.dunlap@oracle.com: fix s6e63m0 kconfig] [randy.dunlap@oracle.com: fix device attribute functions return types] Signed-off-by: NInKi Dae <inki.dae@samsung.com> Reviewed-by: KyungMin Park <kyungmin.park.samsung.com> Signed-off-by: NRandy Dunlap <randy.dunlap@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NRichard Purdie <rpurdie@linux.intel.com>
-
- 26 5月, 2010 3 次提交
-
-
由 Michael Hennerich 提交于
Signed-off-by: NMichael Hennerich <michael.hennerich@analog.com> Signed-off-by: NMike Frysinger <vapier@gentoo.org> Signed-off-by: NRichard Purdie <rpurdie@linux.intel.com>
-
由 Michael Hennerich 提交于
The ADP8860 combines a programmable backlight LED charge pump driver with automatic phototransistor control. Signed-off-by: NMichael Hennerich <michael.hennerich@analog.com> Signed-off-by: NMike Frysinger <vapier@gentoo.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NRichard Purdie <rpurdie@linux.intel.com>
-
由 Kay Sievers 提交于
This adds: alias: devname:<name> to some common kernel modules, which will allow the on-demand loading of the kernel module when the device node is accessed. Ideally all these modules would be compiled-in, but distros seems too much in love with their modularization that we need to cover the common cases with this new facility. It will allow us to remove a bunch of pretty useless init scripts and modprobes from init scripts. The static device node aliases will be carried in the module itself. The program depmod will extract this information to a file in the module directory: $ cat /lib/modules/2.6.34-00650-g537b60d1-dirty/modules.devname # Device nodes to trigger on-demand module loading. microcode cpu/microcode c10:184 fuse fuse c10:229 ppp_generic ppp c108:0 tun net/tun c10:200 dm_mod mapper/control c10:235 Udev will pick up the depmod created file on startup and create all the static device nodes which the kernel modules specify, so that these modules get automatically loaded when the device node is accessed: $ /sbin/udevd --debug ... static_dev_create_from_modules: mknod '/dev/cpu/microcode' c10:184 static_dev_create_from_modules: mknod '/dev/fuse' c10:229 static_dev_create_from_modules: mknod '/dev/ppp' c108:0 static_dev_create_from_modules: mknod '/dev/net/tun' c10:200 static_dev_create_from_modules: mknod '/dev/mapper/control' c10:235 udev_rules_apply_static_dev_perms: chmod '/dev/net/tun' 0666 udev_rules_apply_static_dev_perms: chmod '/dev/fuse' 0666 A few device nodes are switched to statically allocated numbers, to allow the static nodes to work. This might also useful for systems which still run a plain static /dev, which is completely unsafe to use with any dynamic minor numbers. Note: The devname aliases must be limited to the *common* and *single*instance* device nodes, like the misc devices, and never be used for conceptually limited systems like the loop devices, which should rather get fixed properly and get a control node for losetup to talk to, instead of creating a random number of device nodes in advance, regardless if they are ever used. This facility is to hide the mess distros are creating with too modualized kernels, and just to hide that these modules are not compiled-in, and not to paper-over broken concepts. Thanks! :) Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: David S. Miller <davem@davemloft.net> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Chris Mason <chris.mason@oracle.com> Cc: Alasdair G Kergon <agk@redhat.com> Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk> Cc: Ian Kent <raven@themaw.net> Signed-Off-By: NKay Sievers <kay.sievers@vrfy.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
- 25 5月, 2010 36 次提交
-
-
由 Grazvydas Ignotas 提交于
FBIO_WAITFORVSYNC is currently implemented by matroxfb, atyfb, intelfb and more. All of them keep redefining the same FBIO_WAITFORVSYNC macro over and over again, so move it to linux/fb.h and clean up those duplicate defines. Signed-off-by: NGrazvydas Ignotas <notasas@gmail.com> Cc: Ville Syrjala <syrjala@sci.fi> Cc: Grant Likely <grant.likely@secretlab.ca> Cc: Maik Broemme <mbroemme@plusserver.de> Cc: Petr Vandrovec <vandrove@vc.cvut.cz> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Cc: "Hiremath, Vaibhav" <hvaibhav@ti.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Martin Ambrose 提交于
This work includes the following: - Implement handler for FBIO_WAITFORVSYNC ioctl. - Allocate the data and palette buffers separately. A consequence of this is that the palette and data loading is now done in different phases. And that the LCD must be disabled temporarily after the palette is loaded but this will only happen once after init and each time the palette is changed. I think this is OK. - Allocate two (ping and pong) framebuffers from memory. - Add pan_display handler which toggles the LCDC DMA registers between the ping and pong buffers. Signed-off-by: NMartin Ambrose <martin@ti.com> Cc: Chaithrika U S <chaithrika@ti.com> Cc: Sudhakar Rajashekhara <sudhakar.raj@ti.com> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Samu Onkalo 提交于
Content for the 8bit device threaded interrupt handlers. Depending on the interrupt line and chip configuration, either click or wakeup / freefall handler is called. In case of click, BTN_ event is sent via input device. In case of wakeup or freefall, input device ABS_ events are updated immediatelly. It is still possible to configure interrupt line 1 for fast freefall detection and use the second line either for click or threshold based interrupts. Or both lines can be used for click / threshold interrupts. Polled input device can be set to stopped state and still get coordinate updates via input device using interrupt based method. Polled mode and interrupt mode can also be used parallel. BTN_ events are remapped based on existing axis remapping information. Signed-off-by: NSamu Onkalo <samu.p.onkalo@nokia.com> Acked-by: NEric Piel <eric.piel@tremplin-utc.net> Cc: Daniel Mack <daniel@caiaq.de> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Samu Onkalo 提交于
Original lis3 driver didn't provide interrupt handler(s) for click or threshold event handling. This patch adds threaded handlers for one or two interrupt lines for 8 bit device. Actual content for interrupt handling is provided in the separate patch. Signed-off-by: NSamu Onkalo <samu.p.onkalo@nokia.com> Tested-by: NDaniel Mack <daniel@caiaq.de> Acked-by: NEric Piel <eric.piel@tremplin-utc.net> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Samu Onkalo 提交于
8 bit device has two wakeup / free fall units. It was not possible to configure the second unit. This patch introduces configuration entry to the platform data and also corresponding changes to the 8 bit setup function. High pass filters were enabled by default. Patch introduces configuration option for high pass filter cut off frequency and also possibility to disable or enable the filter via platform data. Since the control is a new one and default state was filter enabled, new option is used to disable the filter. This way old platform data is still compatible with the change. Signed-off-by: NSamu Onkalo <samu.p.onkalo@nokia.com> Acked-by: NEric Piel <eric.piel@tremplin-utc.net> Tested-by: NDaniel Mack <daniel@caiaq.de> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andy Shevchenko 提交于
hex_to_bin() is a little method which converts hex digit to its actual value. There are plenty of places where such functionality is needed. [akpm@linux-foundation.org: use tolower(), saving 3 bytes, test the more common case first - it's quicker] [akpm@linux-foundation.org: relocate tolower to make it even faster! (Joe)] Signed-off-by: NAndy Shevchenko <ext-andriy.shevchenko@nokia.com> Cc: Tilman Schmidt <tilman@imap.cc> Cc: Duncan Sands <duncan.sands@free.fr> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: "Richard Russon (FlatCap)" <ldm@flatcap.org> Cc: John W. Linville <linville@tuxdriver.com> Cc: Len Brown <lenb@kernel.org> Cc: Joe Perches <joe@perches.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Florian Ragwitz 提交于
[akpm@linux-foundation.org: coding-style fixes] Signed-off-by: NFlorian Ragwitz <rafl@debian.org> Cc: Jason Baron <jbaron@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 OGAWA Hirofumi 提交于
For now, all users of ratelimit_state allocates it statically, so DEFINE_RATELIMIT_STATE() is enough. But, I want to use ratelimit_state for fs, i.e. per super_block to suppress too many error reports. So, this adds ratelimit_state_init() to initialize ratelimite_state which is dynamically allocated, instead of opencoding. Signed-off-by: NOGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 OGAWA Hirofumi 提交于
ratelimit_state initialization of printk_ratelimited() seems broken. This fixes it by using DEFINE_RATELIMIT_STATE() to initialize spinlock properly. Signed-off-by: NOGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Joe Perches <joe@perches.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrew Morton 提交于
Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Peter Fritzsche 提交于
32-bit Sparc used to only allow usage of 24-bit of it's atomic_t type. This was corrected with linux 2.6.3 when Keith M Wesolowski changed the implementation to use the parisc approach of having an array of spinlocks to protect the atomic_t. These warnings were also removed from the sparc implementation when the new implementation was merged in BKrev:402e4949VThdc6D3iaosSFUgabMfvw, but the warning still remained in some other places without any 24-bit-only atomic_t implementation inside the kernel. We should remove these warnings to allow users to rely on the full 32-bit range of atomic_t. Signed-off-by: NPeter Fritzsche <peter.fritzsche@gmx.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joe Perches 提交于
The current logging macros are pr_<level>, dev_<level>, netdev_<level>, and netif_<level>. pr_ uses warning, the other use warn. Standardize these logging macros a bit more by adding pr_warn and pr_warn_ratelimited. Right now, there are: $ for level in emerg alert crit err warn warning notice info ; do \ for prefix in pr dev netdev netif ; do \ echo -n "${prefix}_${level}: `git grep -w "${prefix}_${level}" | wc -l` " ; \ done ; \ echo ; \ done pr_emerg: 45 dev_emerg: 4 netdev_emerg: 1 netif_emerg: 4 pr_alert: 24 dev_alert: 36 netdev_alert: 1 netif_alert: 6 pr_crit: 24 dev_crit: 22 netdev_crit: 1 netif_crit: 4 pr_err: 2013 dev_err: 8467 netdev_err: 267 netif_err: 240 pr_warn: 0 dev_warn: 1818 netdev_warn: 126 netif_warn: 23 pr_warning: 773 dev_warning: 0 netdev_warning: 0 netif_warning: 0 pr_notice: 148 dev_notice: 111 netdev_notice: 9 netif_notice: 3 pr_info: 1717 dev_info: 3007 netdev_info: 101 netif_info: 85 Signed-off-by: NJoe Perches <joe@perches.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alexey Dobriyan 提交于
- C99 knows about USHRT_MAX/SHRT_MAX/SHRT_MIN, not USHORT_MAX/SHORT_MAX/SHORT_MIN. - Make SHRT_MIN of type s16, not int, for consistency. [akpm@linux-foundation.org: fix drivers/dma/timb_dma.c] [akpm@linux-foundation.org: fix security/keys/keyring.c] Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Acked-by: NWANG Cong <xiyou.wangcong@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joakim Tjernlund 提交于
Linux does not define __BYTE_ORDER in its endian header files which makes some header files bend backwards to get at the current endian. Lets #define __BYTE_ORDER in big_endian.h/litte_endian.h to make it easier for header files that are used in user space too. In userspace the convention is that 1. _both_ __LITTLE_ENDIAN and __BIG_ENDIAN are defined, 2. you have to test for e.g. __BYTE_ORDER == __BIG_ENDIAN. Signed-off-by: NJoakim Tjernlund <Joakim.Tjernlund@transmode.se> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jani Nikula 提交于
Add __must_check to error pointer handlers to have the compiler warn about mistakes like: if (err) ERR_PTR(err); It found two bugs: Mar 12 Nikula Jani [PATCH] enclosure: fix error path - actually return ERR_PTR() on error Mar 12 Nikula Jani [PATCH] sunrpc: fix error path - actually return ERR_PTR() on error Signed-off-by: NJani Nikula <ext-jani.1.nikula@nokia.com> Cc: Phil Carmody <ext-phil.2.carmody@nokia.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Chris Metcalf 提交于
This ensures that platforms with lowmem PAs above 32 bits work correctly by avoiding truncating the PA during a left shift. Signed-off-by: NChris Metcalf <cmetcalf@tilera.com> Cc: Barry Song <21cnbao@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Haicheng Li 提交于
Add global mutex zonelists_mutex to fix the possible race: CPU0 CPU1 CPU2 (1) zone->present_pages += online_pages; (2) build_all_zonelists(); (3) alloc_page(); (4) free_page(); (5) build_all_zonelists(); (6) __build_all_zonelists(); (7) zone->pageset = alloc_percpu(); In step (3,4), zone->pageset still points to boot_pageset, so bad things may happen if 2+ nodes are in this state. Even if only 1 node is accessing the boot_pageset, (3) may still consume too much memory to fail the memory allocations in step (7). Besides, atomic operation ensures alloc_percpu() in step (7) will never fail since there is a new fresh memory block added in step(6). [haicheng.li@linux.intel.com: hold zonelists_mutex when build_all_zonelists] Signed-off-by: NHaicheng Li <haicheng.li@linux.intel.com> Signed-off-by: NWu Fengguang <fengguang.wu@intel.com> Reviewed-by: NAndi Kleen <andi.kleen@intel.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Haicheng Li 提交于
For each new populated zone of hotadded node, need to update its pagesets with dynamically allocated per_cpu_pageset struct for all possible CPUs: 1) Detach zone->pageset from the shared boot_pageset at end of __build_all_zonelists(). 2) Use mutex to protect zone->pageset when it's still shared in onlined_pages() Otherwises, multiple zones of different nodes would share same boot strapping boot_pageset for same CPU, which will finally cause below kernel panic: ------------[ cut here ]------------ kernel BUG at mm/page_alloc.c:1239! invalid opcode: 0000 [#1] SMP ... Call Trace: [<ffffffff811300c1>] __alloc_pages_nodemask+0x131/0x7b0 [<ffffffff81162e67>] alloc_pages_current+0x87/0xd0 [<ffffffff81128407>] __page_cache_alloc+0x67/0x70 [<ffffffff811325f0>] __do_page_cache_readahead+0x120/0x260 [<ffffffff81132751>] ra_submit+0x21/0x30 [<ffffffff811329c6>] ondemand_readahead+0x166/0x2c0 [<ffffffff81132ba0>] page_cache_async_readahead+0x80/0xa0 [<ffffffff8112a0e4>] generic_file_aio_read+0x364/0x670 [<ffffffff81266cfa>] nfs_file_read+0xca/0x130 [<ffffffff8117b20a>] do_sync_read+0xfa/0x140 [<ffffffff8117bf75>] vfs_read+0xb5/0x1a0 [<ffffffff8117c151>] sys_read+0x51/0x80 [<ffffffff8103c032>] system_call_fastpath+0x16/0x1b RIP [<ffffffff8112ff13>] get_page_from_freelist+0x883/0x900 RSP <ffff88000d1e78a8> ---[ end trace 4bda28328b9990db ] [akpm@linux-foundation.org: merge fix] Signed-off-by: NHaicheng Li <haicheng.li@linux.intel.com> Signed-off-by: NWu Fengguang <fengguang.wu@intel.com> Reviewed-by: NAndi Kleen <andi.kleen@intel.com> Reviewed-by: NChristoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marcelo Roberto Jimenez 提交于
Got this while compiling for ARM/SA1100: mm/sparse.c: In function '__section_nr': mm/sparse.c:135: warning: 'root' is used uninitialized in this function This patch follows Russell King's suggestion for a new calculation for NR_SECTION_ROOTS. Thanks also to Sergei Shtylyov for pointing out the existence of the macro DIV_ROUND_UP. Atsushi Nemoto observed: : This fix doesn't just silence the warning - it fixes a real problem. : : Without this fix, mem_section[] might have 0 size so mem_section[0] : will share other variable area. For example, I got: : : c030c700 b __warned.16478 : c030c700 B mem_section : c030c701 b __warned.16483 : : This might cause very strange behavior. Your patch actually fixes it. Signed-off-by: NMarcelo Roberto Jimenez <mroberto@cpti.cetuc.puc-rio.br> Cc: Atsushi Nemoto <anemo@mba.ocn.ne.jp> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Sergei Shtylyov <sshtylyov@mvista.com> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Akinobu Mita 提交于
In f4112de6 ("mm: introduce debug_kmap_atomic") I said that debug_kmap_atomic() needs CONFIG_TRACE_IRQFLAGS_SUPPORT. It was wrong. (I thought irqs_disabled() is only available when the architecture has CONFIG_TRACE_IRQFLAGS_SUPPORT) Remove the #ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT check to enable kmap_atomic() debugging for the architectures which do not have CONFIG_TRACE_IRQFLAGS_SUPPORT. Reported-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NAkinobu Mita <akinobu.mita@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 matt mooney 提交于
Add parenthesis in a define. This doesn't change functionality. checkpatch errors: 1) white space fixes 2) add spaces after comas Signed-off-by: Nmatt mooney <mfm@muteddisk.com> Cc: Dan Carpenter <error27@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 matt mooney 提交于
Fix minor spelling errors in a few comments; no code changes. Signed-off-by: Nmatt mooney <mfm@muteddisk.com> Cc: Dan Carpenter <error27@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 minskey guo 提交于
Enable users to online CPUs even if the CPUs belongs to a numa node which doesn't have onlined local memory. The zonlists(pg_data_t.node_zonelists[]) of a numa node are created either in system boot/init period, or at the time of local memory online. For a numa node without onlined local memory, its zonelists are not initialized at present. As a result, any memory allocation operations executed by CPUs within this node will fail. In fact, an out-of-memory error is triggered when attempt to online CPUs before memory comes to online. This patch tries to create zonelists for such numa nodes, so that the memory allocation for this node can be fallback'ed to other nodes. [akpm@linux-foundation.org: remove unneeded export] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: minskey guo<chaohong.guo@intel.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
For now, we have global isolation vs. memory control group isolation, do not allow the reclaim entry function to set an arbitrary page isolation callback, we do not need that flexibility. And since we already pass around the group descriptor for the memory control group isolation case, just use it to decide which one of the two isolator functions to use. The decisions can be merged into nearby branches, so no extra cost there. In fact, we save the indirect calls. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
The fragmentation index may indicate that a failure is due to external fragmentation but after a compaction run completes, it is still possible for an allocation to fail. There are two obvious reasons as to why o Page migration cannot move all pages so fragmentation remains o A suitable page may exist but watermarks are not met In the event of compaction followed by an allocation failure, this patch defers further compaction in the zone (1 << compact_defer_shift) times. If the next compaction attempt also fails, compact_defer_shift is increased up to a maximum of 6. If compaction succeeds, the defer counters are reset again. The zone that is deferred is the first zone in the zonelist - i.e. the preferred zone. To defer compaction in the other zones, the information would need to be stored in the zonelist or implemented similar to the zonelist_cache. This would impact the fast-paths and is not justified at this time. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
mm: compaction: add a tunable that decides when memory should be compacted and when it should be reclaimed The kernel applies some heuristics when deciding if memory should be compacted or reclaimed to satisfy a high-order allocation. One of these is based on the fragmentation. If the index is below 500, memory will not be compacted. This choice is arbitrary and not based on data. To help optimise the system and set a sensible default for this value, this patch adds a sysctl extfrag_threshold. The kernel will only compact memory if the fragmentation index is above the extfrag_threshold. [randy.dunlap@oracle.com: Fix build errors when proc fs is not configured] Signed-off-by: NMel Gorman <mel@csn.ul.ie> Signed-off-by: NRandy Dunlap <randy.dunlap@oracle.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Ordinarily when a high-order allocation fails, direct reclaim is entered to free pages to satisfy the allocation. With this patch, it is determined if an allocation failed due to external fragmentation instead of low memory and if so, the calling process will compact until a suitable page is freed. Compaction by moving pages in memory is considerably cheaper than paging out to disk and works where there are locked pages or no swap. If compaction fails to free a page of a suitable size, then reclaim will still occur. Direct compaction returns as soon as possible. As each block is compacted, it is checked if a suitable page has been freed and if so, it returns. [akpm@linux-foundation.org: Fix build errors] [aarcange@redhat.com: fix count_vm_event preempt in memory compaction direct reclaim] Signed-off-by: NMel Gorman <mel@csn.ul.ie> Acked-by: NRik van Riel <riel@redhat.com> Reviewed-by: NMinchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Add a per-node sysfs file called compact. When the file is written to, each zone in that node is compacted. The intention that this would be used by something like a job scheduler in a batch system before a job starts so that the job can allocate the maximum number of hugepages without significant start-up cost. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Acked-by: NRik van Riel <riel@redhat.com> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: NChristoph Lameter <cl@linux-foundation.org> Reviewed-by: NMinchan Kim <minchan.kim@gmail.com> Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Add a proc file /proc/sys/vm/compact_memory. When an arbitrary value is written to the file, all zones are compacted. The expected user of such a trigger is a job scheduler that prepares the system before the target application runs. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Acked-by: NRik van Riel <riel@redhat.com> Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: NMinchan Kim <minchan.kim@gmail.com> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: NChristoph Lameter <cl@linux-foundation.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
This patch is the core of a mechanism which compacts memory in a zone by relocating movable pages towards the end of the zone. A single compaction run involves a migration scanner and a free scanner. Both scanners operate on pageblock-sized areas in the zone. The migration scanner starts at the bottom of the zone and searches for all movable pages within each area, isolating them onto a private list called migratelist. The free scanner starts at the top of the zone and searches for suitable areas and consumes the free pages within making them available for the migration scanner. The pages isolated for migration are then migrated to the newly isolated free pages. [aarcange@redhat.com: Fix unsafe optimisation] [mel@csn.ul.ie: do not schedule work on other CPUs for compaction] Signed-off-by: NMel Gorman <mel@csn.ul.ie> Acked-by: NRik van Riel <riel@redhat.com> Reviewed-by: NMinchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Currently, vmscan.c defines the isolation modes for __isolate_lru_page(). Memory compaction needs access to these modes for isolating pages for migration. This patch exports them. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Acked-by: NChristoph Lameter <cl@linux-foundation.org> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
mm: migration: avoid race between shift_arg_pages() and rmap_walk() during migration by not migrating temporary stacks Page migration requires rmap to be able to find all ptes mapping a page at all times, otherwise the migration entry can be instantiated, but it is possible to leave one behind if the second rmap_walk fails to find the page. If this page is later faulted, migration_entry_to_page() will call BUG because the page is locked indicating the page was migrated by the migration PTE not cleaned up. For example kernel BUG at include/linux/swapops.h:105! invalid opcode: 0000 [#1] PREEMPT SMP ... Call Trace: [<ffffffff810e951a>] handle_mm_fault+0x3f8/0x76a [<ffffffff8130c7a2>] do_page_fault+0x44a/0x46e [<ffffffff813099b5>] page_fault+0x25/0x30 [<ffffffff8114de33>] load_elf_binary+0x152a/0x192b [<ffffffff8111329b>] search_binary_handler+0x173/0x313 [<ffffffff81114896>] do_execve+0x219/0x30a [<ffffffff8100a5c6>] sys_execve+0x43/0x5e [<ffffffff8100320a>] stub_execve+0x6a/0xc0 RIP [<ffffffff811094ff>] migration_entry_wait+0xc1/0x129 There is a race between shift_arg_pages and migration that triggers this bug. A temporary stack is setup during exec and later moved. If migration moves a page in the temporary stack and the VMA is then removed before migration completes, the migration PTE may not be found leading to a BUG when the stack is faulted. This patch causes pages within the temporary stack during exec to be skipped by migration. It does this by marking the VMA covering the temporary stack with an otherwise impossible combination of VMA flags. These flags are cleared when the temporary stack is moved to its final location. [kamezawa.hiroyu@jp.fujitsu.com: idea for having migration skip temporary stacks] Signed-off-by: NMel Gorman <mel@csn.ul.ie> Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: NRik van Riel <riel@redhat.com> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
For clarity of review, KSM and page migration have separate refcounts on the anon_vma. While clear, this is a waste of memory. This patch gets KSM and page migration to share their toys in a spirit of harmony. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Reviewed-by: NMinchan Kim <minchan.kim@gmail.com> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: NChristoph Lameter <cl@linux-foundation.org> Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
This patchset is a memory compaction mechanism that reduces external fragmentation memory by moving GFP_MOVABLE pages to a fewer number of pageblocks. The term "compaction" was chosen as there are is a number of mechanisms that are not mutually exclusive that can be used to defragment memory. For example, lumpy reclaim is a form of defragmentation as was slub "defragmentation" (really a form of targeted reclaim). Hence, this is called "compaction" to distinguish it from other forms of defragmentation. In this implementation, a full compaction run involves two scanners operating within a zone - a migration and a free scanner. The migration scanner starts at the beginning of a zone and finds all movable pages within one pageblock_nr_pages-sized area and isolates them on a migratepages list. The free scanner begins at the end of the zone and searches on a per-area basis for enough free pages to migrate all the pages on the migratepages list. As each area is respectively migrated or exhausted of free pages, the scanners are advanced one area. A compaction run completes within a zone when the two scanners meet. This method is a bit primitive but is easy to understand and greater sophistication would require maintenance of counters on a per-pageblock basis. This would have a big impact on allocator fast-paths to improve compaction which is a poor trade-off. It also does not try relocate virtually contiguous pages to be physically contiguous. However, assuming transparent hugepages were in use, a hypothetical khugepaged might reuse compaction code to isolate free pages, split them and relocate userspace pages for promotion. Memory compaction can be triggered in one of three ways. It may be triggered explicitly by writing any value to /proc/sys/vm/compact_memory and compacting all of memory. It can be triggered on a per-node basis by writing any value to /sys/devices/system/node/nodeN/compact where N is the node ID to be compacted. When a process fails to allocate a high-order page, it may compact memory in an attempt to satisfy the allocation instead of entering direct reclaim. Explicit compaction does not finish until the two scanners meet and direct compaction ends if a suitable page becomes available that would meet watermarks. The series is in 14 patches. The first three are not "core" to the series but are important pre-requisites. Patch 1 reference counts anon_vma for rmap_walk_anon(). Without this patch, it's possible to use anon_vma after free if the caller is not holding a VMA or mmap_sem for the pages in question. While there should be no existing user that causes this problem, it's a requirement for memory compaction to be stable. The patch is at the start of the series for bisection reasons. Patch 2 merges the KSM and migrate counts. It could be merged with patch 1 but would be slightly harder to review. Patch 3 skips over unmapped anon pages during migration as there are no guarantees about the anon_vma existing. There is a window between when a page was isolated and migration started during which anon_vma could disappear. Patch 4 notes that PageSwapCache pages can still be migrated even if they are unmapped. Patch 5 allows CONFIG_MIGRATION to be set without CONFIG_NUMA Patch 6 exports a "unusable free space index" via debugfs. It's a measure of external fragmentation that takes the size of the allocation request into account. It can also be calculated from userspace so can be dropped if requested Patch 7 exports a "fragmentation index" which only has meaning when an allocation request fails. It determines if an allocation failure would be due to a lack of memory or external fragmentation. Patch 8 moves the definition for LRU isolation modes for use by compaction Patch 9 is the compaction mechanism although it's unreachable at this point Patch 10 adds a means of compacting all of memory with a proc trgger Patch 11 adds a means of compacting a specific node with a sysfs trigger Patch 12 adds "direct compaction" before "direct reclaim" if it is determined there is a good chance of success. Patch 13 adds a sysctl that allows tuning of the threshold at which the kernel will compact or direct reclaim Patch 14 temporarily disables compaction if an allocation failure occurs after compaction. Testing of compaction was in three stages. For the test, debugging, preempt, the sleep watchdog and lockdep were all enabled but nothing nasty popped out. min_free_kbytes was tuned as recommended by hugeadm to help fragmentation avoidance and high-order allocations. It was tested on X86, X86-64 and PPC64. Ths first test represents one of the easiest cases that can be faced for lumpy reclaim or memory compaction. 1. Machine freshly booted and configured for hugepage usage with a) hugeadm --create-global-mounts b) hugeadm --pool-pages-max DEFAULT:8G c) hugeadm --set-recommended-min_free_kbytes d) hugeadm --set-recommended-shmmax The min_free_kbytes here is important. Anti-fragmentation works best when pageblocks don't mix. hugeadm knows how to calculate a value that will significantly reduce the worst of external-fragmentation-related events as reported by the mm_page_alloc_extfrag tracepoint. 2. Load up memory a) Start updatedb b) Create in parallel a X files of pagesize*128 in size. Wait until files are created. By parallel, I mean that 4096 instances of dd were launched, one after the other using &. The crude objective being to mix filesystem metadata allocations with the buffer cache. c) Delete every second file so that pageblocks are likely to have holes d) kill updatedb if it's still running At this point, the system is quiet, memory is full but it's full with clean filesystem metadata and clean buffer cache that is unmapped. This is readily migrated or discarded so you'd expect lumpy reclaim to have no significant advantage over compaction but this is at the POC stage. 3. In increments, attempt to allocate 5% of memory as hugepages. Measure how long it took, how successful it was, how many direct reclaims took place and how how many compactions. Note the compaction figures might not fully add up as compactions can take place for orders other than the hugepage size X86 vanilla compaction Final page count 913 916 (attempted 1002) pages reclaimed 68296 9791 X86-64 vanilla compaction Final page count: 901 902 (attempted 1002) Total pages reclaimed: 112599 53234 PPC64 vanilla compaction Final page count: 93 94 (attempted 110) Total pages reclaimed: 103216 61838 There was not a dramatic improvement in success rates but it wouldn't be expected in this case either. What was important is that fewer pages were reclaimed in all cases reducing the amount of IO required to satisfy a huge page allocation. The second tests were all performance related - kernbench, netperf, iozone and sysbench. None showed anything too remarkable. The last test was a high-order allocation stress test. Many kernel compiles are started to fill memory with a pressured mix of unmovable and movable allocations. During this, an attempt is made to allocate 90% of memory as huge pages - one at a time with small delays between attempts to avoid flooding the IO queue. vanilla compaction Percentage of request allocated X86 98 99 Percentage of request allocated X86-64 95 98 Percentage of request allocated PPC64 55 70 This patch: rmap_walk_anon() does not use page_lock_anon_vma() for looking up and locking an anon_vma and it does not appear to have sufficient locking to ensure the anon_vma does not disappear from under it. This patch copies an approach used by KSM to take a reference on the anon_vma while pages are being migrated. This should prevent rmap_walk() running into nasty surprises later because anon_vma has been freed. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Acked-by: NRik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Miao Xie 提交于
Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Miao Xie 提交于
Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-