- 16 11月, 2008 1 次提交
-
-
由 Linus Torvalds 提交于
We don't want to get rid of the futexes just at exit() time, we want to drop them when doing an execve() too, since that gets rid of the previous VM image too. Doing it at mm_release() time means that we automatically always do it when we disassociate a VM map from the task. Reported-by: pageexec@freemail.hu Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Nick Piggin <npiggin@suse.de> Cc: Hugh Dickins <hugh@veritas.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Brad Spengler <spender@grsecurity.net> Cc: Alex Efros <powerman@powerman.name> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 11月, 2008 1 次提交
-
-
由 Oleg Nesterov 提交于
Impact: fix hang/crash on ia64 under high load This is ugly, but the simplest patch by far. Unlike other similar routines, account_group_exec_runtime() could be called "implicitly" from within scheduler after exit_notify(). This means we can race with the parent doing release_task(), we can't just check ->signal != NULL. Change __exit_signal() to do spin_unlock_wait(&task_rq(tsk)->lock) before __cleanup_signal() to make sure ->signal can't be freed under task_rq(tsk)->lock. Note that task_rq_unlock_wait() doesn't care about the case when tsk changes cpu/rq under us, this should be OK. Thanks to Ingo who nacked my previous buggy patch. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NIngo Molnar <mingo@elte.hu> Reported-by: NDoug Chapman <doug.chapman@hp.com>
-
- 17 10月, 2008 1 次提交
-
-
由 Balbir Singh 提交于
This patch adds an additional field to the mm_owner callbacks. This field is required to get to the mm that changed. Hold mmap_sem in write mode before calling the mm_owner_changed callback [hugh@veritas.com: fix mmap_sem deadlock] Signed-off-by: NBalbir Singh <balbir@linux.vnet.ibm.com> Cc: Sudhir Kumar <skumar@linux.vnet.ibm.com> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: NHugh Dickins <hugh@veritas.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 10月, 2008 1 次提交
-
-
由 Mathieu Desnoyers 提交于
Instrument the scheduler activity (sched_switch, migration, wakeups, wait for a task, signal delivery) and process/thread creation/destruction (fork, exit, kthread stop). Actually, kthread creation is not instrumented in this patch because it is architecture dependent. It allows to connect tracers such as ftrace which detects scheduling latencies, good/bad scheduler decisions. Tools like LTTng can export this scheduler information along with instrumentation of the rest of the kernel activity to perform post-mortem analysis on the scheduler activity. About the performance impact of tracepoints (which is comparable to markers), even without immediate values optimizations, tests done by Hideo Aoki on ia64 show no regression. His test case was using hackbench on a kernel where scheduler instrumentation (about 5 events in code scheduler code) was added. See the "Tracepoints" patch header for performance result detail. Changelog : - Change instrumentation location and parameter to match ftrace instrumentation, previously done with kernel markers. [ mingo@elte.hu: conflict resolutions ] Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Acked-by: N'Peter Zijlstra' <peterz@infradead.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 29 9月, 2008 1 次提交
-
-
由 Balbir Singh 提交于
There's a race between mm->owner assignment and swapoff, more easily seen when task slab poisoning is turned on. The condition occurs when try_to_unuse() runs in parallel with an exiting task. A similar race can occur with callers of get_task_mm(), such as /proc/<pid>/<mmstats> or ptrace or page migration. CPU0 CPU1 try_to_unuse looks at mm = task0->mm increments mm->mm_users task 0 exits mm->owner needs to be updated, but no new owner is found (mm_users > 1, but no other task has task->mm = task0->mm) mm_update_next_owner() leaves mmput(mm) decrements mm->mm_users task0 freed dereferencing mm->owner fails The fix is to notify the subsystem via mm_owner_changed callback(), if no new owner is found, by specifying the new task as NULL. Jiri Slaby: mm->owner was set to NULL prior to calling cgroup_mm_owner_callbacks(), but must be set after that, so as not to pass NULL as old owner causing oops. Daisuke Nishimura: mm_update_next_owner() may set mm->owner to NULL, but mem_cgroup_from_task() and its callers need to take account of this situation to avoid oops. Hugh Dickins: Lockdep warning and hang below exec_mmap() when testing these patches. exit_mm() up_reads mmap_sem before calling mm_update_next_owner(), so exec_mmap() now needs to do the same. And with that repositioning, there's now no point in mm_need_new_owner() allowing for NULL mm. Reported-by: NHugh Dickins <hugh@veritas.com> Signed-off-by: NBalbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: NJiri Slaby <jirislaby@gmail.com> Signed-off-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: NHugh Dickins <hugh@veritas.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Paul Menage <menage@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 9月, 2008 1 次提交
-
-
由 Frank Mayhar 提交于
Overview This patch reworks the handling of POSIX CPU timers, including the ITIMER_PROF, ITIMER_VIRT timers and rlimit handling. It was put together with the help of Roland McGrath, the owner and original writer of this code. The problem we ran into, and the reason for this rework, has to do with using a profiling timer in a process with a large number of threads. It appears that the performance of the old implementation of run_posix_cpu_timers() was at least O(n*3) (where "n" is the number of threads in a process) or worse. Everything is fine with an increasing number of threads until the time taken for that routine to run becomes the same as or greater than the tick time, at which point things degrade rather quickly. This patch fixes bug 9906, "Weird hang with NPTL and SIGPROF." Code Changes This rework corrects the implementation of run_posix_cpu_timers() to make it run in constant time for a particular machine. (Performance may vary between one machine and another depending upon whether the kernel is built as single- or multiprocessor and, in the latter case, depending upon the number of running processors.) To do this, at each tick we now update fields in signal_struct as well as task_struct. The run_posix_cpu_timers() function uses those fields to make its decisions. We define a new structure, "task_cputime," to contain user, system and scheduler times and use these in appropriate places: struct task_cputime { cputime_t utime; cputime_t stime; unsigned long long sum_exec_runtime; }; This is included in the structure "thread_group_cputime," which is a new substructure of signal_struct and which varies for uniprocessor versus multiprocessor kernels. For uniprocessor kernels, it uses "task_cputime" as a simple substructure, while for multiprocessor kernels it is a pointer: struct thread_group_cputime { struct task_cputime totals; }; struct thread_group_cputime { struct task_cputime *totals; }; We also add a new task_cputime substructure directly to signal_struct, to cache the earliest expiration of process-wide timers, and task_cputime also replaces the it_*_expires fields of task_struct (used for earliest expiration of thread timers). The "thread_group_cputime" structure contains process-wide timers that are updated via account_user_time() and friends. In the non-SMP case the structure is a simple aggregator; unfortunately in the SMP case that simplicity was not achievable due to cache-line contention between CPUs (in one measured case performance was actually _worse_ on a 16-cpu system than the same test on a 4-cpu system, due to this contention). For SMP, the thread_group_cputime counters are maintained as a per-cpu structure allocated using alloc_percpu(). The timer functions update only the timer field in the structure corresponding to the running CPU, obtained using per_cpu_ptr(). We define a set of inline functions in sched.h that we use to maintain the thread_group_cputime structure and hide the differences between UP and SMP implementations from the rest of the kernel. The thread_group_cputime_init() function initializes the thread_group_cputime structure for the given task. The thread_group_cputime_alloc() is a no-op for UP; for SMP it calls the out-of-line function thread_group_cputime_alloc_smp() to allocate and fill in the per-cpu structures and fields. The thread_group_cputime_free() function, also a no-op for UP, in SMP frees the per-cpu structures. The thread_group_cputime_clone_thread() function (also a UP no-op) for SMP calls thread_group_cputime_alloc() if the per-cpu structures haven't yet been allocated. The thread_group_cputime() function fills the task_cputime structure it is passed with the contents of the thread_group_cputime fields; in UP it's that simple but in SMP it must also safely check that tsk->signal is non-NULL (if it is it just uses the appropriate fields of task_struct) and, if so, sums the per-cpu values for each online CPU. Finally, the three functions account_group_user_time(), account_group_system_time() and account_group_exec_runtime() are used by timer functions to update the respective fields of the thread_group_cputime structure. Non-SMP operation is trivial and will not be mentioned further. The per-cpu structure is always allocated when a task creates its first new thread, via a call to thread_group_cputime_clone_thread() from copy_signal(). It is freed at process exit via a call to thread_group_cputime_free() from cleanup_signal(). All functions that formerly summed utime/stime/sum_sched_runtime values from from all threads in the thread group now use thread_group_cputime() to snapshot the values in the thread_group_cputime structure or the values in the task structure itself if the per-cpu structure hasn't been allocated. Finally, the code in kernel/posix-cpu-timers.c has changed quite a bit. The run_posix_cpu_timers() function has been split into a fast path and a slow path; the former safely checks whether there are any expired thread timers and, if not, just returns, while the slow path does the heavy lifting. With the dedicated thread group fields, timers are no longer "rebalanced" and the process_timer_rebalance() function and related code has gone away. All summing loops are gone and all code that used them now uses the thread_group_cputime() inline. When process-wide timers are set, the new task_cputime structure in signal_struct is used to cache the earliest expiration; this is checked in the fast path. Performance The fix appears not to add significant overhead to existing operations. It generally performs the same as the current code except in two cases, one in which it performs slightly worse (Case 5 below) and one in which it performs very significantly better (Case 2 below). Overall it's a wash except in those two cases. I've since done somewhat more involved testing on a dual-core Opteron system. Case 1: With no itimer running, for a test with 100,000 threads, the fixed kernel took 1428.5 seconds, 513 seconds more than the unfixed system, all of which was spent in the system. There were twice as many voluntary context switches with the fix as without it. Case 2: With an itimer running at .01 second ticks and 4000 threads (the most an unmodified kernel can handle), the fixed kernel ran the test in eight percent of the time (5.8 seconds as opposed to 70 seconds) and had better tick accuracy (.012 seconds per tick as opposed to .023 seconds per tick). Case 3: A 4000-thread test with an initial timer tick of .01 second and an interval of 10,000 seconds (i.e. a timer that ticks only once) had very nearly the same performance in both cases: 6.3 seconds elapsed for the fixed kernel versus 5.5 seconds for the unfixed kernel. With fewer threads (eight in these tests), the Case 1 test ran in essentially the same time on both the modified and unmodified kernels (5.2 seconds versus 5.8 seconds). The Case 2 test ran in about the same time as well, 5.9 seconds versus 5.4 seconds but again with much better tick accuracy, .013 seconds per tick versus .025 seconds per tick for the unmodified kernel. Since the fix affected the rlimit code, I also tested soft and hard CPU limits. Case 4: With a hard CPU limit of 20 seconds and eight threads (and an itimer running), the modified kernel was very slightly favored in that while it killed the process in 19.997 seconds of CPU time (5.002 seconds of wall time), only .003 seconds of that was system time, the rest was user time. The unmodified kernel killed the process in 20.001 seconds of CPU (5.014 seconds of wall time) of which .016 seconds was system time. Really, though, the results were too close to call. The results were essentially the same with no itimer running. Case 5: With a soft limit of 20 seconds and a hard limit of 2000 seconds (where the hard limit would never be reached) and an itimer running, the modified kernel exhibited worse tick accuracy than the unmodified kernel: .050 seconds/tick versus .028 seconds/tick. Otherwise, performance was almost indistinguishable. With no itimer running this test exhibited virtually identical behavior and times in both cases. In times past I did some limited performance testing. those results are below. On a four-cpu Opteron system without this fix, a sixteen-thread test executed in 3569.991 seconds, of which user was 3568.435s and system was 1.556s. On the same system with the fix, user and elapsed time were about the same, but system time dropped to 0.007 seconds. Performance with eight, four and one thread were comparable. Interestingly, the timer ticks with the fix seemed more accurate: The sixteen-thread test with the fix received 149543 ticks for 0.024 seconds per tick, while the same test without the fix received 58720 for 0.061 seconds per tick. Both cases were configured for an interval of 0.01 seconds. Again, the other tests were comparable. Each thread in this test computed the primes up to 25,000,000. I also did a test with a large number of threads, 100,000 threads, which is impossible without the fix. In this case each thread computed the primes only up to 10,000 (to make the runtime manageable). System time dominated, at 1546.968 seconds out of a total 2176.906 seconds (giving a user time of 629.938s). It received 147651 ticks for 0.015 seconds per tick, still quite accurate. There is obviously no comparable test without the fix. Signed-off-by: NFrank Mayhar <fmayhar@google.com> Cc: Roland McGrath <roland@redhat.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 06 9月, 2008 1 次提交
-
-
由 Balbir Singh 提交于
Spencer reported a problem where utime and stime were going negative despite the fixes in commit b27f03d4. The suspected reason for the problem is that signal_struct maintains it's own utime and stime (of exited tasks), these are not updated using the new task_utime() routine, hence sig->utime can go backwards and cause the same problem to occur (sig->utime, adds tsk->utime and not task_utime()). This patch fixes the problem TODO: using max(task->prev_utime, derived utime) works for now, but a more generic solution is to implement cputime_max() and use the cputime_gt() function for comparison. Reported-by: spencer@bluehost.com Signed-off-by: NBalbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 03 9月, 2008 1 次提交
-
-
由 Oleg Nesterov 提交于
We don't change pid_ns->child_reaper when the main thread of the subnamespace init exits. As Robert Rex <robert.rex@exasol.com> pointed out this is wrong. Yes, the re-parenting itself works correctly, but if the reparented task exits it needs ->parent->nsproxy->pid_ns in do_notify_parent(), and if the main thread is zombie its ->nsproxy was already cleared by exit_task_namespaces(). Introduce the new function, find_new_reaper(), which finds the new ->parent for the re-parenting and changes ->child_reaper if needed. Kill the now unneeded exit_child_reaper(). Also move the changing of ->child_reaper from zap_pid_ns_processes() to find_new_reaper(), this consolidates the games with ->child_reaper and makes it stable under tasklist_lock. Addresses http://bugzilla.kernel.org/show_bug.cgi?id=11391Reported-by: NRobert Rex <robert.rex@exasol.com> Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Acked-by: NSerge Hallyn <serue@us.ibm.com> Acked-by: NPavel Emelyanov <xemul@openvz.org> Acked-by: NSukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 8月, 2008 1 次提交
-
-
由 Steve VanDeBogart 提交于
task->signal->notify_count is only initialized if task->signal->group_exit_task is not NULL. Reorder a conditional so that uninitialised memory is not used. Found by Valgrind. Signed-off-by: NSteve VanDeBogart <vandebo-lkml@nerdbox.net> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 02 8月, 2008 1 次提交
-
-
由 Roland McGrath 提交于
My commit 2b2a1ff6 introduced a regression (sorry about that) for the odd case of exit_signal=0 (e.g. clone_flags=0). This is not a normal use, but it's used by a case in the glibc test suite. Dying with exit_signal=0 sends no signal, but it's supposed to wake up a parent's blocked wait*() calls (unlike the delayed_group_leader case). This fixes tracehook_notify_death() and its caller to distinguish a "signal 0" wakeup from the delayed_group_leader case (with no wakeup). Signed-off-by: NRoland McGrath <roland@redhat.com> Tested-by: NSerge Hallyn <serue@us.ibm.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 28 7月, 2008 1 次提交
-
-
由 Andrea Righi 提交于
Put all i/o statistics in struct proc_io_accounting and use inline functions to initialize and increment statistics, removing a lot of single variable assignments. This also reduces the kernel size as following (with CONFIG_TASK_XACCT=y and CONFIG_TASK_IO_ACCOUNTING=y). text data bss dec hex filename 11651 0 0 11651 2d83 kernel/exit.o.before 11619 0 0 11619 2d63 kernel/exit.o.after 10886 132 136 11154 2b92 kernel/fork.o.before 10758 132 136 11026 2b12 kernel/fork.o.after 3082029 807968 4818600 8708597 84e1f5 vmlinux.o.before 3081869 807968 4818600 8708437 84e155 vmlinux.o.after Signed-off-by: NAndrea Righi <righi.andrea@gmail.com> Acked-by: NOleg Nesterov <oleg@tv-sign.ru> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 7月, 2008 4 次提交
-
-
由 Al Viro 提交于
long overdue... Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Roland McGrath 提交于
This moves the ptrace logic in task death (exit_notify) into tracehook.h inlines. Some code is rearranged slightly to make things nicer. There is no change, only cleanup. There is one hook called with the tasklist_lock write-locked, as ptrace needs. There is also a new hook called after exit_state changes and without locks. This is a better place for tracing work to be in the future, since it doesn't delay the whole system with locking. Signed-off-by: NRoland McGrath <roland@redhat.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Reviewed-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Roland McGrath 提交于
This moves the ptrace-related logic from release_task into tracehook.h and ptrace.h inlines. It provides clean hooks both before and after locking tasklist_lock, for future tracing logic to do more cleanup without the lock. This also changes release_task() itself in the rare "zap_leader" case to set the leader to EXIT_DEAD before iterating. This maintains the invariant that release_task() only ever handles a task in EXIT_DEAD. This is a common-sense invariant that is already always true except in this one arcane case of zombie leader whose parent ignores SIGCHLD. This change is harmless and only costs one store in this one rare case. It keeps the expected state more consisently sane, which is nicer when debugging weirdness in release_task(). It also lets some future code in the tracehook entry points rely on this invariant for bookkeeping. Signed-off-by: NRoland McGrath <roland@redhat.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Reviewed-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Roland McGrath 提交于
This moves the PTRACE_EVENT_EXIT tracing into a tracehook.h inline, tracehook_report_exec(). The change has no effect, just clean-up. Signed-off-by: NRoland McGrath <roland@redhat.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Reviewed-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 26 7月, 2008 8 次提交
-
-
由 Andrea Righi 提交于
Report per-thread I/O statistics in /proc/pid/task/tid/io and aggregate parent I/O statistics in /proc/pid/io. This approach follows the same model used to account per-process and per-thread CPU times. As a practial application, this allows for example to quickly find the top I/O consumer when a process spawns many child threads that perform the actual I/O work, because the aggregated I/O statistics can always be found in /proc/pid/io. [ Oleg Nesterov points out that we should check that the task is still alive before we iterate over the threads, but also says that we can do that fixup on top of this later. - Linus ] Acked-by: NBalbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: NAndrea Righi <righi.andrea@gmail.com> Cc: Matt Heaton <matt@hostmonster.com> Cc: Shailabh Nagar <nagar@watson.ibm.com> Acked-by-with-comments: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
Now that we have core_state->dumper list we can use it to wake up the sub-threads waiting for the coredump completion. This uglifies the code and .text grows by 47 bytes, but otoh mm_struct lessens by sizeof(struct completion). Also, with this change we can decouple exit_mm() from the coredumping code. Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
binfmt->core_dump() has to iterate over the all threads in system in order to find the coredumping threads and construct the list using the GFP_ATOMIC allocations. With this patch each thread allocates the list node on exit_mm()'s stack and adds itself to the list. This allows us to do further changes: - simplify ->core_dump() - change exit_mm() to clear ->mm first, then wait for ->core_done. this makes the coredumping process visible to oom_kill - kill mm->core_done Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Acked-by: NRoland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
Turn core_state->nr_threads into atomic_t and kill now unneeded down_write(&mm->mmap_sem) in exit_mm(). Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
Move mm->core_waiters into "struct core_state" allocated on stack. This shrinks mm_struct a little bit and allows further changes. This patch mostly does s/core_waiters/core_state. The only essential change is that coredump_wait() must clear mm->core_state before return. The coredump_wait()'s path is uglified and .text grows by 30 bytes, this is fixed by the next patch. Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
mm->core_startup_done points to "struct completion startup_done" allocated on the coredump_wait()'s stack. Introduce the new structure, core_state, which holds this "struct completion". This way we can add more info visible to the threads participating in coredump without enlarging mm_struct. No changes in affected .o files. Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
Introduce the new PF_KTHREAD flag to mark the kernel threads. It is set by INIT_TASK() and copied to the forked childs (we could set it in kthreadd() along with PF_NOFREEZE instead). daemonize() was changed as well. In that case testing of PF_KTHREAD is racy, but daemonize() is hopeless anyway. This flag is cleared in do_execve(), before search_binary_handler(). Probably not the best place, we can do this in exec_mmap() or in start_thread(), or clear it along with PF_FORKNOEXEC. But I think this doesn't matter in practice, and if do_execve() fails kthread should die soon. Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
There is no reason for rcu_read_lock() in __exit_signal(). tsk->sighand can only be changed if tsk does exec, obviously this is not possible. Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 7月, 2008 4 次提交
-
-
由 Roland McGrath 提交于
This fixes an arcane bug that we think was a regression introduced by commit b2b2cbc4. When a parent ignores SIGCHLD (or uses SA_NOCLDWAIT), its children would self-reap but they don't if it's using ptrace on them. When the parent thread later exits and ceases to ptrace a child but leaves other live threads in the parent's thread group, any zombie children are left dangling. The fix makes them self-reap then, as they would have done earlier if ptrace had not been in use. Signed-off-by: NRoland McGrath <roland@redhat.com>
-
由 Roland McGrath 提交于
This reverts the effect of commit f2cc3eb1 "do_wait: fix security checks". That change reverted the effect of commit 73243284. The rationale for the original commit still stands. The inconsistent treatment of children hidden by ptrace was an unintended omission in the original change and in no way invalidates its purpose. This makes do_wait return the error returned by security_task_wait() (usually -EACCES) in place of -ECHILD when there are some children the caller would be able to wait for if not for the permission failure. A permission error will give the user a clue to look for security policy problems, rather than for mysterious wait bugs. Signed-off-by: NRoland McGrath <roland@redhat.com>
-
由 Roland McGrath 提交于
ptrace no longer fiddles with the children/sibling links, and the old ptrace_children list is gone. Now ptrace, whether of one's own children or another's via PTRACE_ATTACH, just uses the new ptraced list instead. There should be no user-visible difference that matters. The only change is the order in which do_wait() sees multiple stopped children and stopped ptrace attachees. Since wait_task_stopped() was changed earlier so it no longer reorders the children list, we already know this won't cause any new problems. Signed-off-by: NRoland McGrath <roland@redhat.com>
-
由 Roland McGrath 提交于
This breaks out the guts of do_wait into three subfunctions. The control flow is less nonobvious without so much goto. do_wait_thread and ptrace_do_wait contain the main work of the outer loop. wait_consider_task contains the main work of the inner loop. Signed-off-by: NRoland McGrath <roland@redhat.com>
-
- 03 7月, 2008 1 次提交
-
-
由 Jens Axboe 提交于
Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
- 25 5月, 2008 1 次提交
-
-
由 Oleg Nesterov 提交于
__exit_signal() does flush_sigqueue(tsk->pending) outside of ->siglock. This can race with another thread doing sigqueue_free(), we can free the same SIGQUEUE_PREALLOC sigqueue twice or corrupt the pending->list. Note that even sys_exit_group() can trigger this race, not only sys_timer_delete(). Move the callsite of flush_sigqueue(tsk->pending) under ->siglock. This patch doesn't touch flush_sigqueue(->shared_pending) below, it is called when there are no other threads which can play with signals, and sigqueue_free() can't be used outside of our thread group. Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Acked-by: NRoland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 02 5月, 2008 1 次提交
-
-
由 Al Viro 提交于
Initial splitoff of the low-level stuff; taken to fdtable.h Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 30 4月, 2008 6 次提交
-
-
由 Oleg Nesterov 提交于
Use change_pid() instead of detach_pid() + attach_pid() in __set_special_pids(). This way task_session() is not NULL in between. Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
Add another trivial helper for the sake of grep. It also auto-documents the fact that ->parent != real_parent implies ->ptrace. No functional changes. Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Acked-by: NRoland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
Add a couple of small comments, it is not easy to see what this code does. Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
Trivial, use same_thread_group() in reparent_thread(). Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
exit.c has numerous "->exit_signal == -1" comparisons, this check is subtle and deserves a helper. Imho makes the code more parseable for humans. At least it's surely more greppable. Also, a couple of whitespace cleanups. No functional changes. Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
do_group_exit() checks SIGNAL_GROUP_EXIT to avoid taking sighand->siglock. Since ed5d2cac exec() doesn't set this flag, we should use signal_group_exit(). This is not needed for correctness, but can speedup the multithreaded exec and makes the code more consistent. Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 4月, 2008 1 次提交
-
-
由 Balbir Singh 提交于
Remove the mem_cgroup member from mm_struct and instead adds an owner. This approach was suggested by Paul Menage. The advantage of this approach is that, once the mm->owner is known, using the subsystem id, the cgroup can be determined. It also allows several control groups that are virtually grouped by mm_struct, to exist independent of the memory controller i.e., without adding mem_cgroup's for each controller, to mm_struct. A new config option CONFIG_MM_OWNER is added and the memory resource controller selects this config option. This patch also adds cgroup callbacks to notify subsystems when mm->owner changes. The mm_cgroup_changed callback is called with the task_lock() of the new task held and is called just prior to changing the mm->owner. I am indebted to Paul Menage for the several reviews of this patchset and helping me make it lighter and simpler. This patch was tested on a powerpc box, it was compiled with both the MM_OWNER config turned on and off. After the thread group leader exits, it's moved to init_css_state by cgroup_exit(), thus all future charges from runnings threads would be redirected to the init_css_set's subsystem. Signed-off-by: NBalbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: Sudhir Kumar <skumar@linux.vnet.ibm.com> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: David Rientjes <rientjes@google.com>, Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NPekka Enberg <penberg@cs.helsinki.fi> Reviewed-by: NPaul Menage <menage@google.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 28 4月, 2008 1 次提交
-
-
由 Lee Schermerhorn 提交于
This is a change that was requested some time ago by Mel Gorman. Makes sense to me, so here it is. Note: I retain the name "mpol_free_shared_policy()" because it actually does free the shared_policy, which is NOT a reference counted object. However, ... The mempolicy object[s] referenced by the shared_policy are reference counted, so mpol_put() is used to release the reference held by the shared_policy. The mempolicy might not be freed at this time, because some task attached to the shared object associated with the shared policy may be in the process of allocating a page based on the mempolicy. In that case, the task performing the allocation will hold a reference on the mempolicy, obtained via mpol_shared_policy_lookup(). The mempolicy will be freed when all tasks holding such a reference have called mpol_put() for the mempolicy. Signed-off-by: NLee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 4月, 2008 2 次提交
-
-
由 Al Viro 提交于
* let unshare_files() give caller the displaced files_struct * don't bother with grabbing reference only to drop it in the caller if it hadn't been shared in the first place * in that form unshare_files() is trivially implemented via unshare_fd(), so we eliminate the duplicate logics in fork.c * reset_files_struct() is not just only called for current; it will break the system if somebody ever calls it for anything else (we can't modify ->files of somebody else). Lose the task_struct * argument. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
* unshare_files() can fail; doing it after irreversible actions is wrong and de_thread() is certainly irreversible. * since we do it unconditionally anyway, we might as well do it in do_execve() and save ourselves the PITA in binfmt handlers, etc. * while we are at it, binfmt_som actually leaked files_struct on failure. As a side benefit, unshare_files(), put_files_struct() and reset_files_struct() become unexported. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-