1. 25 6月, 2015 4 次提交
    • D
      libnvdimm, nfit: add interleave-set state-tracking infrastructure · eaf96153
      Dan Williams 提交于
      On platforms that have firmware support for reading/writing per-dimm
      label space, a portion of the dimm may be accessible via an interleave
      set PMEM mapping in addition to the dimm's BLK (block-data-window
      aperture(s)) interface.  A label, stored in a "configuration data
      region" on the dimm, disambiguates which dimm addresses are accessed
      through which exclusive interface.
      
      Add infrastructure that allows the kernel to block modifications to a
      label in the set while any member dimm is active.  Note that this is
      meant only for enforcing "no modifications of active labels" via the
      coarse ioctl command.  Adding/deleting namespaces from an active
      interleave set is always possible via sysfs.
      
      Another aspect of tracking interleave sets is tracking their integrity
      when DIMMs in a set are physically re-ordered.  For this purpose we
      generate an "interleave-set cookie" that can be recorded in a label and
      validated against the current configuration.  It is the bus provider
      implementation's responsibility to calculate the interleave set cookie
      and attach it to a given region.
      
      Cc: Neil Brown <neilb@suse.de>
      Cc: <linux-acpi@vger.kernel.org>
      Cc: Greg KH <gregkh@linuxfoundation.org>
      Cc: Robert Moore <robert.moore@intel.com>
      Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      eaf96153
    • D
      libnvdimm: support for legacy (non-aliasing) nvdimms · 3d88002e
      Dan Williams 提交于
      The libnvdimm region driver is an intermediary driver that translates
      non-volatile "region"s into "namespace" sub-devices that are surfaced by
      persistent memory block-device drivers (PMEM and BLK).
      
      ACPI 6 introduces the concept that a given nvdimm may simultaneously
      offer multiple access modes to its media through direct PMEM load/store
      access, or windowed BLK mode.  Existing nvdimms mostly implement a PMEM
      interface, some offer a BLK-like mode, but never both as ACPI 6 defines.
      If an nvdimm is single interfaced, then there is no need for dimm
      metadata labels.  For these devices we can take the region boundaries
      directly to create a child namespace device (nd_namespace_io).
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Tested-by: NToshi Kani <toshi.kani@hp.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      3d88002e
    • D
      libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) · 1f7df6f8
      Dan Williams 提交于
      A "region" device represents the maximum capacity of a BLK range (mmio
      block-data-window(s)), or a PMEM range (DAX-capable persistent memory or
      volatile memory), without regard for aliasing.  Aliasing, in the
      dimm-local address space (DPA), is resolved by metadata on a dimm to
      designate which exclusive interface will access the aliased DPA ranges.
      Support for the per-dimm metadata/label arrvies is in a subsequent
      patch.
      
      The name format of "region" devices is "regionN" where, like dimms, N is
      a global ida index assigned at discovery time.  This id is not reliable
      across reboots nor in the presence of hotplug.  Look to attributes of
      the region or static id-data of the sub-namespace to generate a
      persistent name.  However, if the platform configuration does not change
      it is reasonable to expect the same region id to be assigned at the next
      boot.
      
      "region"s have 2 generic attributes "size", and "mapping"s where:
      - size: the BLK accessible capacity or the span of the
        system physical address range in the case of PMEM.
      
      - mappingN: a tuple describing a dimm's contribution to the region's
        capacity in the format (<nmemX>,<dpa>,<size>).  For a PMEM-region
        there will be at least one mapping per dimm in the interleave set.  For
        a BLK-region there is only "mapping0" listing the starting DPA of the
        BLK-region and the available DPA capacity of that space (matches "size"
        above).
      
      The max number of mappings per "region" is hard coded per the
      constraints of sysfs attribute groups.  That said the number of mappings
      per region should never exceed the maximum number of possible dimms in
      the system.  If the current number turns out to not be enough then the
      "mappings" attribute clarifies how many there are supposed to be. "32
      should be enough for anybody...".
      
      Cc: Neil Brown <neilb@suse.de>
      Cc: <linux-acpi@vger.kernel.org>
      Cc: Greg KH <gregkh@linuxfoundation.org>
      Cc: Robert Moore <robert.moore@intel.com>
      Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
      Tested-by: NToshi Kani <toshi.kani@hp.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      1f7df6f8
    • D
      libnvdimm, nvdimm: dimm driver and base libnvdimm device-driver infrastructure · 4d88a97a
      Dan Williams 提交于
      * Implement the device-model infrastructure for loading modules and
        attaching drivers to nvdimm devices.  This is a simple association of a
        nd-device-type number with a driver that has a bitmask of supported
        device types.  To facilitate userspace bind/unbind operations 'modalias'
        and 'devtype', that also appear in the uevent, are added as generic
        sysfs attributes for all nvdimm devices.  The reason for the device-type
        number is to support sub-types within a given parent devtype, be it a
        vendor-specific sub-type or otherwise.
      
      * The first consumer of this infrastructure is the driver
        for dimm devices.  It simply uses control messages to retrieve and
        store the configuration-data image (label set) from each dimm.
      
      Note: nd_device_register() arranges for asynchronous registration of
            nvdimm bus devices by default.
      
      Cc: Greg KH <gregkh@linuxfoundation.org>
      Cc: Neil Brown <neilb@suse.de>
      Acked-by: NChristoph Hellwig <hch@lst.de>
      Tested-by: NToshi Kani <toshi.kani@hp.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      4d88a97a
新手
引导
客服 返回
顶部